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Abstract

Background: The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and
hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction
and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a
member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are
still unclear.

Methodology/Principal Findings: In order to obtain more information about possible functions of OmpW family
members we have solved the X-ray crystal structure of P. aeruginosa OprG at 2.4 Å resolution. OprG forms an eight-
stranded b-barrel with a hydrophobic channel that leads from the extracellular surface to a lateral opening in the barrel
wall. The OprG barrel is closed off from the periplasm by interacting polar and charged residues on opposite sides of
the barrel wall.

Conclusions/Significance: The crystal structure, together with recent biochemical data, suggests that OprG and other
OmpW family members form channels that mediate the diffusion of small hydrophobic molecules across the OM by a lateral
diffusion mechanism similar to that of E. coli FadL.
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Introduction

The Gram-negative bacterium Pseudomonas aeruginosa is an

opportunistic human pathogen associated with lung infections in

cystic fibrosis patients and nosocomial infections [1]. It has the

ability to grow on a diverse range of carbon sources [2]. Like in

other Gram-negative bacteria, the outer membrane (OM) creates

an effective protective barrier to the permeation of small

molecules [3]. Due to the impermeability of the OM, gram-

negative bacteria have evolved three major classes of outer

membrane proteins to facilitate the transport of nutrients into the

cell: active transporters, general porins, and diffusion-driven

specific transporters [2]. The TonB-dependent active transporters

(e.g. FhuA and FepA in E. coli) are used for the uptake of large

molecules such as iron-siderophore complexes [4,5]. General

porins (e.g. E coli OmpF) occur in many Gram-negative bacteria

and form water-filled channels that facilitate the non-specific

diffusion of small hydrophilic compounds across the outer

membrane [6]. P. aeruginosa and other pseudomonads lack general

porins and instead have a large number of substrate-specific

channels for nutrient transport [2]. Due to the lack of porins, the

OM of P. aeruginosa is highly impermeable, making it resistant to

many antibiotics [1].

Besides small water-soluble compounds, the OM also forms an

effective barrier against the permeation of hydrophobic molecules

due to the presence of lipopolysaccharide (LPS) on the outside of

the cell. The diffusion of many hydrophobic compounds across the

OM is mediated by proteins belonging to the FadL family of OM

channels [7]. FadL-mediated transport occurs via a mechanism

involving lateral diffusion of the substrate from the barrel lumen,

via an opening in the barrel wall, into the OM [8].

The OmpW family of small OM proteins is widespread among

Gram-negative bacteria, with orthologs found in a, b, c, and d
proteobacteria. Recent research in Vibrio cholerae has shown that

OmpW is very immunogenic and present in all V. cholerae strains

analyzed to date [9,10,11]. E. coli OmpW has been shown to be a

receptor for colicin S4, which is part of the E. coli bacteriocin

defense system [9,12]. In addition, recent proteomic profiling

studies have suggested a role for OmpW in osmoregulation [13].

However, none of these studies provid11/29/2010es any direct

evidence for OmpW protein function. Perhaps the best clue for a

putative function for OmpW family members is provided by

sequence similarity to OM proteins present in operons dedicated

to the biodegradation of small, hydrophobic molecules such as

medium-chain alkanes (AlkL) and naphthalene (NahQ and

DoxH) [14,15,16]. The crystal structure of E. coli OmpW showed
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an eight-stranded b-barrel with a hydrophobic channel contain-

ing a LDAO detergent molecule, supporting the notion that

OmpW could mediate diffusion of hydrophobic molecules [17].

The channel present in E. coli OmpW is not a classical channel in

the sense that it leads directly into the periplasm. Instead, the

OmpW channel leads to a lateral opening in the barrel wall,

suggesting a transport mechanism similar to that employed by

FadL family members [8]. Very recently, OmpW from

Pseudomonas fluorescens was shown to be required for the growth

of this organism on naphtalene, the first direct evidence for

function of a OmpW family member [18].

OprG is a major OM protein from P. aeruginosa and is an

OmpW family member [19]. Its expression is very dependent on

the growth conditions, suggesting a complex regulation.

Decreased expression of OprG has previously been linked to

increased antibiotic resistance, leading to speculation that OprG

could be a transporter of norflaxin, tetracyclin and kanamycin

[20]. Recently, OprG expression was found to be increased

under high iron conditions when grown under anaerobic

conditions [21]. Results for an oprg knockout strain, however,

showed that OprG is not involved in iron or antibiotics uptake

[21]. Very recently, OprG from P. putida, which is 70% identical

to P. aeruginosa OprG, was shown to have a high emulsifying

activity, leading to the suggestion that it may be involved in the

utilization and uptake of hydrocarbons [22]. None of these

studies, however, have provided a direct clue as to the function

of OprG. For this reason we have determined the crystal

structure of P. aeruginosa OprG at 2.4 Å resolution. The structure

suggests that OprG forms a channel for the diffusion of small

hydrophobic molecules.

Results and Discussion

Description of the overall structure
OprG is structurally similar to E. coli OmpW (the Ca r.m.s.d.

between OmpW and OprG is 0.9 Å; Fig. 1c). It forms an eight-

stranded b-barrel about 50 Å in length with long extracellular

loops (L) and short periplasmic turns (T) connecting the strands, as

shown in Fig. 1. We observe density for the entire OprG molecule,

with the exception of a short stretch of three residues (Gly80–

Gly82) in the tip of loop L2, which are presumably disordered.

The cross-section of the barrel has an oval shape with dimensions

of ,12618 Å. In addition, OprG has a small a-helix in

extracellular loop L3.

A distinctive feature of OprG is that the lumen of the barrel on

the extracellular side of the OM is lined almost exclusively with

hydrophobic residues (Fig. 2a): of the ,45 residues with

sidechains pointing towards the lumen of the barrel, only ,5

are polar (Gln35, His72, Gln92 Asn120, Arg133 and Gln136 in

OprG). The many hydrophobic residues in the extracellular

loops create a hydrophobic funnel that most likely forms a

binding site for hydrophobic molecules (Fig. 2a). This notion is

supported by the fact that although OprG does not have anything

bound in this funnel, E. coli OmpW does have clear density for an

LDAO detergent molecule at this position [17]. Interestingly, the

hydrophobic character (but not the identity) of the residues lining

the barrel lumen is conserved between members of the OmpW

family (Fig. 3). The hydrophobic residues form a hydrophobic

channel that extends approximately to the interface of the outer

leaflet of the OM (Fig. 2a). At this position, Trp170 and Val65

come together to form the bottom of the channel. Thus, the

hydrophobic channel does not continue all the way down into the

periplasm. Interestingly, the residues on the periplasmic side of

Trp170/Val65 are not hydrophobic, but predominantly polar

and charged in character (Fig. 2c). A number of hydrogen bonds

and salt bridges are present between these residues, similar to E.

coli OmpA and OmpW [17,23]. Both of these channels have been

characterized in detail by single channel conductance experi-

ments, showing that these small-diameter, apparently closed

barrels can indeed form channels for the conductance of ions.

However, the channels are not permanently open, and the

observed conductance values are, as expected, very low (28 pS

Figure 1. Structural overview of OprG. Views from the side (a) and from the extracellular side (b; top panel) and periplasmic side (b; bottom
panel). b-strands are colored blue, a-helices red and loops green. Selected extracellular loops are indicated. The approximate positions of the outer
membrane interface regions are indicated by horizontal lines. (c) Structural comparison between OprG (blue) and E. coli OmpW (red). Loops have
been smoothed for clarity. This and the following figures were made with PYMOL [32].
doi:10.1371/journal.pone.0015016.g001

Crystal Structure of P. aeruginosa OprG
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Figure 2. OprG has a distinct hydrophobic channel. (a) Stereoviews from the side, showing the amino acid residues of which the sidechains are
pointing towards the barrel lumen (carbons yellow, oxygens red, nitrogens blue). A hydrophobic funnel on the extracellular side is indicated with an
arrow. Residue Trp170 at the bottom of the hydrophobic channel is labeled. (b) Surface representation of the environment of the lateral opening. The
location of the residues Pro69, Pro94 and Pro95 is shown. The lateral opening in the barrel wall is indicated by an arrow. (c) Stereoview from the
extracellular side focusing on the lower (periplasmic) part of the barrel. Polar and charged residues that interact with each other to close the barrel
are colored cyan, while hydrophobic residues are colored yellow. Residues Val65, Trp170 and His5 at the N-terminus are indicated.
doi:10.1371/journal.pone.0015016.g002

Crystal Structure of P. aeruginosa OprG
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for OmpA and 19 pS for OmpW at 1 M KCl) [17,24]. Thus, it

seems unlikely that OprG can form permanently open channels

with a conductance of ,500 pS at 1 M KCl [21], a conductance

value comparable to that of monomers of the porin OmpC

[25].

Comparison between OprG and other members of the
OmpW family

An alignment of OmpW orthologs from five Gram-negative

bacterial species (Pseudomonas aeruginosa, Pseudomonas putida,

Aeromonas hydrophila, Vibrio cholerae, Escherichia coli) together with

the more distantly related orthologs AlkL from Pseudomonas

oleovorans and DoxH from Pseudomonas sp. C18 is shown in Fig. 3.

The similarity among the different species, which range in

sequence identity between ,20% (AlkL, DoxH) and 70% (P.

putida) compared to P. aeruginosa OprG, is greatest in the barrel

region, with most divergence in the extracellular loops,

something which is commonly observed for outer membrane

proteins. Less than 15 residues are absolutely conserved across

all species (Fig. 3); most of these are accounted for by glycines

and outward-pointing (i.e. exposed to lipid) residues in the

transmembrane regions, and are likely structurally important

Figure 3. ClustalW alignment of OprG and other OmpW family members. The observed secondary structure of OprG is shown above the
alignment, with b-strands (S) in blue and the a-helix in loop l3 in red. OprG residues are colored as follows: red; hydrophobic with sidechains pointing
inwards, purple; polar/charged with sidechains pointing inwards and green; absolutely conserved prolines lining the lateral opening. The following
orthologs have been aligned: Pa, Pseudomonas aeruginosa OprG; Pp, Pseudomonas putida OprG; Ec, E. coli OmpW; Ah, Aeromonas hydrophila OmpW;
Vc, Vibrio cholerae OmpW; AlkL, Pseudomonas oleovorans AlkL; DoxH, Pseudomonas sp. (strain C18) DoxH.
doi:10.1371/journal.pone.0015016.g003
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rather than functionally. Several absolutely conserved amino

acids (Ala150, Thr176, Pro199) are hydrophobic residues with

their sidechains pointing towards the barrel lumen, and are part

of the hydrophobic channel. However, the most interesting

conserved residues are Pro69 and Pro94. Both of these residues

are adjacent to a lateral opening in the barrel wall between

strands S3 and S4 (Fig. 2b). In addition, Pro95 is highly

conserved, albeit not in more distantly related orthologs AklK

and DoxH (Fig. 3). The prolines are likely responsible for the

lateral opening, by interrupting the inter-strand hydrogen bond

formation between strands S3 and S4. The conservation of the

proline residues suggests that the lateral opening is present in all

OmpW family members and thus may be functionally

important. This notion is supported by the previously deter-

mined crystal structure of E. coli OmpW, which shows a lateral

opening similar to that of OprG [17].

A putative transport mechanism for OprG and other
OmpW family members

The FadL family of OM channels is currently the only OM

protein family that has been shown to be involved in the

transport of hydrophobic molecules across the OM [7]. FadL

channels form 14-stranded b-barrels and transport their

substrates by lateral diffusion from the lumen of the barrel,

through a lateral opening in the barrel wall, into the OM. Like

FadL, OprG and other OmpW family members have a

hydrophobic binding site on the extracellular side of the

membrane (Fig. 2). In addition, the interior of the barrel is

largely hydrophobic in both FadL and OmpW family members

[8]. In FadL, a small N-terminal globular domain plugs the

barrel on the periplasmic side, preventing direct diffusion of the

substrates into the periplasm [26]. For OmpW proteins, the 8-

stranded barrels are narrow enough so that interactions between

polar/charged residues on opposite sides of the barrel wall

effectively close the barrel towards the periplasm. Another

similarity between FadL channels and OmpW proteins is the

location of the lateral opening, approximately at the interface

region of the outer leaflet of the OM. Thus, while clearly

unrelated in sequence, OmpW proteins and FadL channels have

the same structural features (Fig. 4), i.e. 1) a hydrophobic channel

that runs from the extracellular surface to a lateral opening in

the barrel wall and 2) a closure of the barrel lumen on the

periplasmic side, effectively preventing the direct diffusion of

substrates other than ions into the periplasm. Based on these

structural arguments we propose that members of the OmpW

family form channels for the uptake of small, hydrophobic

molecules across the OM (Fig. 4). As for FadL family members,

the final step in the diffusion process mediated by OmpW

channels is likely to be the lateral diffusion of the substrate

through a lateral opening in the barrel wall, into the OM. The

next step will be to identify substrates for OmpW family

members and to test the mechanism of transport in a similar way

as has been done for E. coli FadL.

Materials and Methods

The gene encoding for mature P. aeruginosa OprG was cloned

from genomic DNA (ATCC) with EcoRI/XbaI restriction sites,

digested and ligated into an arabinose inducible pB22 vector

with the E. coli FadL signal sequence and an C-terminal histidine

tag [27]. The tagged protein was over-expressed in C43 (DE3)

cells via induction with 0.2% arabinose at 30uC for 5 hours.

OprG was purified in a similar way as previously described for

FadL [26]. The protein was concentrated to ,10 mg/ml and

dialyzed overnight against 10 mM sodium acetate pH 5.5,

50 mM NaCl, 10% glycerol, 0.4% C8E4. The final yield of

purified protein was ,0.3 mg per liter of cells. Initial

crystallization trials were set up using Crystal Screen I

(Hampton) and MembFac (Nextal). Small blocks were obtained

in Crystal Screen condition # 82, and were optimized in 2–

5 mM NiCl2/20% PEG 2K MME/0.1 M Tris pH 8.5. The

crystals belong to space group I222 and diffract X-rays to about

Figure 4. Proposed transport mechanism for OmpW family members. (a) Cartoon of Pseudomonas aeruginosa FadL (PDB ID: 3DWO) viewed
from the side [8]. The hatch domain, closing off the barrel on the periplasmic side, is colored red. Bound detergent molecules delineating the
hydrophobic transport channel are shown as space-filling models in blue. An arrow marks the lateral opening into the membrane. (b) Surface slab
through the center of OprG, showing the hydrophobic channel as a dark tube. Residues Trp170 and Val65, forming the bottom of the channel, are
shown in red. An arrow marks the lateral opening into the membrane. (c) Schematic model for transport of small hydrophobic substrates (depicted as
octane in green) by members of the OmpW family. The bottom of the channel is shown in red.
doi:10.1371/journal.pone.0015016.g004
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2.3 Å resolution. There is one OprG molecule in the asymmetric

unit (Vm = 2.52; 51% solvent). The data collection and

refinement statistics are summarized in Table 1; the final model

and structure factor have been deposited in the Protein Data

Bank with accession code 2627. Diffraction data were collected

at NSLS (Brookhaven National Lab) Beamline X6A tuned to a

wavelength of 1.1 Å. Images were processed in HKL2000 [28].

Phases were determined by molecular replacement using the

program Phaser17 in the CCP4 software package18 with E. coli

OmpW as the search model. The molecular replacement

solution was then subjected to automated model building in

Phenix [29]. Model manipulation in Coot [30], followed by

further refinement in Phenix resulted in a final model with

Rwork = 0.191 and Rfree = 0.268. The final model contains 12

C8E4 molecules, 3 nickel ions, and 113 water molecules. The

entire sequence with the exception of residues 80–82 of L2 was

built into electron density. Molprobity [31] found one Rama-

chandran outlier (Pro 94 at the lateral opening) that could not be

refined to a preferred geometry. Although the Nickel K-edge is

at ,1.48 Å and the data were collected at 1.1 Å, processing the

data with the anomalous flag on in HKL2000 resulted in an

anomalous difference map with several peaks greater than 8

sigma (Ni f = 2.02 at 1.1 Å). The environments of the difference

peaks are consistent with binding sites for a divalent cation.

Taking into account the presence of 2 mM nickel in our

crystallization condition we have assigned these anomalous peaks

as nickel ions. Coordinates and phases have been deposited in

the PDB with the accession code 2627.
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