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Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease including the
cardiovascular system. Atherosclerosis is the most common cardiovascular complication
of SLE and a significant risk factor for morbidity andmortality. Vascular damage/protection
mechanism in SLE patients is out of balance, caused by the cascade reaction among
oxidative stress, proinflammatory cytokines, Neutrophil Extracellular Traps, activation of B
cells and autoantibodies and abnormal T cells. As a precursor cell repairing vascular
endothelium, endothelial progenitor cells (EPCs) belong to the protective mechanism and
show the reduced number and impaired function in SLE. However, the pathological
mechanism of EPCs dysfunction in SLE remains ill-defined. This paper reviews the latest
SLE epidemiology and pathogenesis, discusses the changes in the number and function
of EPCs in SLE, expounds the role of EPCs in SLE atherosclerosis, and provides new
guidance and theoretical basis for exploring novel targets for SLE treatment.

Keywords: atherosclerosis, endothelial cell, endothelial progenitor cell, pathogenesis, systemic lupus
erythematosus, IFN-I

INTRODUCTION

SLE is an immune complex-mediated autoimmune disease involving multiple systems. Its
prevalence and incidence rate can be as high as 241/100,000 per year and 23.2/100,000 per year,
and the rate of premature death is 2–3 times that of healthy people (1). Since 2000, the prevalence
rate of adult SLE in women has been 30–150/100,000, and the incidence rate is 2.2–23.1/100,000 per
year (2). SLE is also an autoimmune disease characterized by cardiovascular disease (CVD). A
multicenter study found that a quarter of the nearly 10,000 deaths from SLE were caused by CVD
(3). Current studies have demonstrated that the inherent factors of SLE are independent risk factors
for the premature occurrence of atherosclerosis in SLE patients (4). With the improvement of the
diagnosis and treatment, the early mortality of SLE patients has been dramatically reduced.
However, atherosclerosis is still one of the leading causes of death of late SLE patients. It is of
considerable significance to explore the natural course and mechanism of SLE combined with
atherosclerosis, find useful therapeutic targets, provide evidence for clinical intervention, and delay
the death of SLE.
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Vascular endothelial dysfunction is the starting point in SLE
atherosclerosis. Endothelial progenitor cells (EPCs) are closely
related to vascular endothelial function. Therefore, the
relationship between atherosclerosis and EPCs in SLE is a
research direction worth exploring. However, in recent
decades, there are few studies on the relationship between
atherosclerosis and EPCs in SLE, and the results are
controversial. This paper analyzes the changes in the number
and function of EPCs in SLE and reviews the potential role of
EPCs in SLE atherosclerosis.
MECHANISM OF ATHEROSCLEROSIS IN
SLE

Arteriosclerosis is a series of aggregation events of leukocytes and
vascular smooth muscle cells (VSMCs) in intima triggered by
endothelial dysfunction and lipoprotein retention, resulting in
fibrous plaques. Then fibrous plaques rupture, followed by
thrombosis. This process requires the immune response’s help
(5, 6). The abnormal immune response driven by SLE enhances
vascular injury mechanism and weaken repair mechanism,
breaking vascular dynamic balance which determines the
occurrence of CVD (Figure 1).

Oxidative Stress
Mitochondrial dysfunctions, abnormal bioenergetics/
immunometabolism and telomere/telomerase disequilibrium
endowed SLE patients with intense oxidative stress (7). Among the
three main targets of oxidative stress, oxidized lipids—oxLDL and
proinflammatory HDL (piHDL)—play a prominent role in
Frontiers in Immunology | www.frontiersin.org 2
accelerating SLE atherosclerosis (8). OxLDL participates in many
stages of atherosclerosis, from endothelial dysfunction to plaque
rupture (6, 9). Normal HDL plays a role in protecting atherosclerosis
by promoting cholesterol outflow, inhibiting vascular inflammation
and scavenging oxidizing substances. However, lupus-altered HDL
shifts from a normal anti-inflammatory state to a proinflammatory
state, causing atherosclerosis (10). Increased piHDL weakens the
ability to prevent LDL oxidation (8).

Cytokines
Cytokines, the primary regulators of immune responses, regulate
and coordinate multiple stages of atherosclerosis. There is a
cascade reaction between these proinflammatory cytokines in
accelerating SLE atherosclerosis (Figure 2).

IFNs are divided into three classes: IFN-I (IFN-a, IFN-b,
IFN-d, IFN-ϵ, IFN-k, IFN-t, IFN-w), IFN-II (IFN-g), IFN-III
(IFN-l1, IFN-l2, IFN-l3). IFNs participated in the whole
process of atherosclerosis, especially IFN-I (15, 43–45). For
example, IFN-a and IFN-g promote lipoproteins’ oxidation
(15, 16). IFN-a promotes endothelial dysfunction by
accelerating endothelial cells (ECs) apoptosis and damaging
EPCs, one of the vascular repair mechanisms (15, 46–53). IFN-
a enhances the expression of chemokine and adhesion molecules
without leukocytes adhesion (53); while IFN-g can regulate the
attraction and adhesion of leukocytes (54). IFN-a induces the
up-regulation of SR-A expression in monocytes/macrophages,
then promoting the lipid uptake and the formation of
macrophage-derived foam cells (55); IFN-g not only up-
regulates SR-A, but also up-regulate ACAT1 (56) and inhibit
specific anti-atherosclerotic MSRN proteins (APOE and C3) in
macrophages (57) to reduce cholesterol efflux. IFN-a prevents
smooth muscle progenitor cell (SMPC) from maturation which
FIGURE 1 | Imbalance of injury/protection mechanism of SLE arteriosclerosis. AAVE anti-vascular endothelial-cadherin antibody AECA anti-endothelial cell antibody
aPL antiphospholipid antibody BAFF B cell-activating factor EPC endothelial progenitor cell iNKT invariant natural killer T cell LPL lipoprotein lipase MDA
malondialdehyde; MIF, macrophage migration inhibitory factor; NET, neutrophil extracellular trap; PC, choline phosphate; TFH, follicular helper T cell; TPF, peripheral
helper T cell.
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could give rise to macrophages and eventually foam cells (58);
IFN-g enhances VSMCs’ proliferation and migration (56). IFN-a
and IFN-g induce VSMC and macrophages apoptosis in
atherosclerotic plaques, contributing to plaque instability (59–
61). Moreover, IFN-a inhibits the expression of type I collagen
gene COL1A1 in VSMCs (62) and induces the synthesis of TNF-
a, IL-12 and MMP-9 (63); while IFN-g inhibits the expression of
type I collagen gene COL1A2 in VSMCs (64) and induces the
synthesis of MMP-1, MMP-2 and MMP-9 (56). Besides, IFN-a
forms an IFN-a-platelet-CD154-CD40 forward feedback loop to
promote thrombosis (65, 66).

Macrophage migration inhibitory factor (MIF) is an
inflammatory and chemokine-like cytokine and an upstream
regulator of innate immunity. MIF enhances LDL uptake (67),
recruits monocytes and T cells (68–70), migrates VSMCs (71),
resulting in plaques. MIF also increases the expression of MMP-1
and MMP-9, inducing plaques rupture (72, 73).

B-Cell Activating Factor (BAFF) is a critical factor in B cell
maturation, survival and function, and an independent factor in
accelerating SLE atherosclerosis (17). BAFF/BAFF-R axis
supports pathogenic B cells producing pathogenic anti-IgG-
oxLDL antibodies (74, 75), which is over-activated in SLE (76).
The co-expression of BAFF/TNFSF13B and APRIL/TNFSF13 in
the plaque lymphocytes and macrophages up-regulate FURIN,
the primary Proprotein convertase subtilisin/Kexin (PCSK),
which inactivates lipases and regulates inflammation in
Frontiers in Immunology | www.frontiersin.org 3
atherosclerosis (19). And BAFF weakens EPCs’ function and
promotes EPCs’ apoptosis (77).

As an immunopotentiator (78), leptin significantly increases
the risk of atherosclerosis in SLE patients (79). And the serum
leptin level ≥ 34ng/dL was significantly correlated with carotid
plaque (79). Leptin induces oxidative stress, increases MCP-1,
TNF-a, IL-6 and endothelin-1, accompanied by the expression
of other EC adhesion molecules, MMPs and VEGF, which
damages VSMCs and ECs (80). And leptin promotes the
secretion of atherosclerotic factor (42, 81). Besides, leptin
promotes the production of autoantibodies, increases the
release of NET and imbalance of Th17/Treg in SLE (20).

Neutrophil Extracellular Traps (NETs)
NET is a unique form of neutrophils death, characterized by the
extrusion of chromatin and a driver of SLE atherosclerosis (82–
87). NETs damages ECs. They promote vascular leakage and
endothelial-to-mesenchymal transition through the degradation
of VE-cadherin and the activation of b-catenin signaling (87);
they induce EC death through the activation of endothelial
MMP-2 (88). NETs also kill VSMCs (89). Moreover, NETs
mediate HDL’s oxidation, interfering with cholesterol outflow
(22). NETs induce the secretion of IFN-a (23) and IL-1b (24).
Serine proteases from NETs degrade tissue factor pathway
inhibitor (TFPI) (90) and promote FXII (91) that activate
coagulation cascade and thrombosis.
A B

FIGURE 2 | Cross-talk between oxidative stress, cytokines, NETs, activation of B cells and autoantibodies, and abnormal T cells in SLE. (A) Oxidative stress
promotes the production of IFN-I (11), NETs (12), autoantibodies (13), and the imbalance of Th17/Treg (14). IFN-a and IFN-g promote lipids oxidative modification
(15, 16); BAFF promotes the production of autoantibodies (17), the release of NETs (18) and the activation of T cells (19); leptin promotes the production of
autoantibodies, the release of NET and the imbalance of Th17/Treg (20, 21). NET encourages oxidation HDL (22), the expression of IFN-a (23) and IL-1b (24), and
activates NET-specific memory B cells to proliferate and secrete polyclonal IgG (25). Overactive T cells increase ROS (26) and cytokines, especially IFN-g; TFH (27,
28), CXCR5-CXCR3+PD1hiCD4+T helper cell (29), and peripheral helper T cell (TPH) (30) promote the differentiation of B cells and the production of antibodies. SLE-
related autoantibodies and immune complexes induce the release of NET (31); anti-ApoA1-IgG guides the expression of cytokines (32). Anti-PC-IgM increases Tregs
(33); anti-PC-IgM and anti-MDA-IgM reduce oxidative stress (34). (B) IFN-I (35, 36) and IFN-II (37) induce the expression and mobilization of BAFF. BAFF promotes
the activation of B cells by IFN (38). Moreover, IFN-I encourages the production of MIF (39). MIF/CD74 signal regulates BAFF (40, 41). Leptin enhances MIF-induced
inflammation (42). Besides, IFNs, MIF and leptin strengthen the expression of chemokine, adhesion molecule, TNF- a and ILs. BAFF, B cell-activating factor; MDA,
malondialdehyde; MIF, macrophage migration inhibitory factor; NET, neutrophil extracellular trap; PC, choline phosphate; ROS, reactive oxygen species; TFH,
follicular helper T cell; TPF, peripheral helper T cell.
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The Activation of B Cells
and Autoantibodies
B cells mainly affect atherosclerosis by producing autoantibodies:
B1 cells secrete protective natural IgM and IgA antibodies,
whereas B2 cells produce pathogenic IgG antibodies. And the
tendency of overactive B cells to produce pathogenic IgG
antibodies is a potential risk factor for lupus-associated
atherosclerosis (17). In particular, antiphospholipid antibodies
(aPL) have been identified as independent predictors of
atherosclerotic plaque progression in SLE (92, 93).

Anti-HDL-IgG induces LDL to enter the ECs, which is a
major contributor to atherosclerosis in SLE. Recently, Kurien BT
et al. found that SLE RNP and anti-Ro/LaRNP antibodies
probably increase the level of anti-oxLDL antibodies (94).
Anti-HDL antibody, anti-ApoA1 antibody and anti-PON1
antibody probably have a common atherogenic pathway—they
unbalance PON-1/MPO, which enhances lipids oxidative
modification and interferes with HDL’s anti-inflammation (95–
97). Besides, anti-ApoA1-IgG has two pathways that induce
atherosclerosis in a TLR2/TLR4/CD14-dependent manner: it
activates transcriptional nuclear factor NF-kB to guide the
expression of inflammatory factors; it provides an alternative
(or a concomitant) signal to PI3K in an Src-dependent pathway,
activates L-type Ca2+ channels and potassium/calcium
exchangers, resulting in the depolarization of myocardial
plasma membrane (32). Anti-FXa-IgG unbalances hemostasis
and thrombosis by inhibiting the FXa enzyme (98) and promotes
endothelial dysfunction by enhancing FXa-PAR-mediated Ca2+

signal transduction (99). Recent studies have found that IgA-
AECA is involved in SLE endothelial damage by recognizing the
membrane proteins of ECs (100). Anti-C1q antibody plays a role
in atherosclerosis by reducing C1q’s level and protective effects
(101, 102), which polarizes macrophages towards an M2-like
anti-inflammatory phenotype (103) and improves macrophages’
survival and excretion (104).

There are potential protective autoantibodies in SLE patients,
such as anti-oxLDL-IgM, anti-ApoB100 antibodies, anti-choline
phosphate (PC) antibodies and anti-malondialdehyde (MDA)
antibodies. The first three have a synergistic effect: they reduce
the level of oxLDL, the uptake of oxLDL, and the formation of
foam cells (105–107). And Anti-PC-IgM increases Tregs in SLE
and atherosclerosis, reduces IL-17 and TNF-a, and makes
dendritic cells (DCs) immature (33). The combined application
of anti-PC-IgM and anti-MDA-IgM has a doubly preventive
impact on atherosclerosis (34). However, SLE patients showed a
low level of protective autoantibodies (34, 107). Some dietary and
metabolic factors may be responsible for the low levels of anti-
PC-IgM and anti-MDA-IgM (108).

SLE increases the risk of CVD by promoting pathogenic
autoantibodies and inhibiting potential protective autoantibodies.

The Abnormal T Cells
Abnormal T cell subsets are considered to be an essential factor
leading to endothelial dysfunction and CVD in SLE patients.
Tregs are protective T cells in atherogenesis, inhibiting
atherogenic T cell subsets and inflammation. And Treg/Th17
Frontiers in Immunology | www.frontiersin.org 4
imbalance is common in SLE, becoming a risk factor for
atherosclerosis (109). In human circulation, atherosclerosis’s
severity is not directly related to the number of Tregs (110)
but is closely related to the dysfunction of Tregs (111). During
atherosclerosis, most Treg lost Foxp3 expression and its
immunosuppressive function, then transform into follicular
helper T cell (TFH) (112), which is used to stimulate the
formation of germinal center (GC) and the selection of high-
affinity B cells in GC (27). TFH has also been shown to accelerate
atherosclerosis, although not necessarily by inducing the
production of pathogenic IgG (112, 113). Besides, CD4+T cells
in peripheral blood of SLE patients highly express CCR5 and
CXCR3 promoting the migration of inflammatory T cells to the
arterial wall in a chemokine-dependent way (114, 115). In
particular, CCR5 is the critical factor for CD4+T cells homing
to atherosclerotic plaques (116).

A recent study has shown that Invariant natural killer T
(iNKT) in SLE patients has an anti-atherosclerotic phenotype
which induces macrophages to polarize into anti-inflammatory
and anti-atherosclerotic M2 phenotype (117). The protection is
triggered in early atherosclerosis but is lost or submerged in the
development of clinical atherosclerosis (117).

Oxidative stress, cytokines, NETs, activation of B cells and
autoantibodies, and abnormal T cells in SLE interact with each
other, amplifying their pro-atherogenic effects (Figure 2). As a
result, the dynamic vascular homeostasis is broken in SLE
patients, characterized by enhanced injury mechanism and
weakened protection mechanism. Subclinical atherosclerosis in
SLE accelerates, even in environments with low disease
activity (92).
THE ROLE OF EPCS
IN ARTERIOSCLEROSIS

Atherosclerosis is a manifestation of the imbalance between
vascular injury and protection mechanisms, especially in
endothelial dysfunction. EPCs are the primary protection
mechanism for endothelial dysfunction, which promote
angiogenesis and maintains endothelial integrity with a series
of reactions. But the situation of this protection mechanism in
SLE is not optimistic.

Classification, Immunophenotype,
and Physiology of EPCs
Scientists have reached a consensus that EPCs isolated by cell
culture are distinguished into two different groups: myeloid
angiogenic cells (MACs), used to identify early EPCs (118);
endothelial colony forming cells (ECFCs), used to identify late
EPCs (119). They promote vascular repair through different
mechanisms (120). ECFCs, considered to be real EPCs, can
differentiate into ECs promoting vascular repair and
neovascularization (121), with the immunophenotype positive
for CD31, CD105, CD146, and negative for CD45, CD14 (120).
MACs can’t become ECs but secretes angiogenic cytokines to
promote angiogenesis through a paracrine mechanism (122),
November 2020 | Volume 11 | Article 581385
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with the immunophenotype positive for CD45, CD14, CD31,
and negative for CD146, CD133, and Tie2 (120) (Table 1).

The Role of EPCs in Vascular Repair
After the injury, vascular repair occurs by accelerating the
replacement of ECs. Re-endothelialization is a self-repairing
process that maintains vascular endothelial protection after
injury, including the proliferation and migration of adjacent
intact ECs, resident EPCs and recruited EPCs. EPCs provide an
endogenous repair mechanism to counteract persistent cell
damage induced by risk factors. Scientists suggested EPCs are a
useful tool for the treatment of endothelial injury in regenerative
cardiovascular medicine (123–126). Thus, EPCs have been
studied as biomarkers for the diagnosis and prognosis of CVD
(127–129).

ECs
Healthy ECs protect atherosclerosis by promoting vasodilation,
antioxidant and anti-inflammatory and inhibiting leukocyte
adhesion and migration, and smooth muscle cell proliferation
and migration. Remarkably, ECs can repair themselves. VEGF
Frontiers in Immunology | www.frontiersin.org 5
activates Cdc-42 and Rac1, mediates the formation of filamentous
pseudopodia and plate pseudopodia, leading to EC migration
(130). SDF-1 activates GPCR-dependent p110gPI3K, increases the
expression of FoxM1 in ECs, participates in the transcriptional
regulation of cell cycle progression genes, promoting the
proliferation of ECs (131). Also, FoxM1 promotes re-adhesion
between ECs through transcriptional control of b-catenin (132).
When cells exfoliate after injury, surrounding ECs proliferate and
migrate to coverage the basement membrane. However, mature
ECs have limited ability to replace damaged ECs. Compared to
ECs, EPCs show a higher proliferation potential, thus can serve as
an additional source of ECs.

EPCs
EPCs could differentiation into ECs. EPCs locate at the site of
vascular injury, restore endothelial integrity and participate in
neovascularization. The process of re-endothelialization includes
mobilization, chemotaxis, homing, proliferation and differentiation
(Figure 3). Early EPCs release growth factors, adhesion molecules
and chemokines to promote the proliferation, survival andmigration
of late EPCs; late EPCs directly participate in the formation of
endothelium (133). EPCs also release exocrine bodies to respond to
injured ECs (134, 135).

Mobilization
The mobilization is the first step and is strictly regulated. EPCs are
mainly seen in the bone marrow and in an inactive state which
bind to bone marrow stromal cells (BMSCs) through the
interaction of integrins (a4b1 and b3) and VCAM-1 (136).
Under hypoxia, hypoxia-inducible factor 1 (HIF-1) rapidly
increases, then weakens the interaction between EPCs and
TABLE 1 | Classification, immunophenotype and physiology of EPCs.

Classification Physiology Immunophenotype

MACs Secreting angiogenic
cytokines

Positive : VEGFR2,CD133,CD45,
CD115,CD14,CD31
Negative : CD146, CD34,Tie2

ECFCs Differentiating into ECs Positive : VEGFR2,CD34,C D31,
CD105,CD146
Negative : CD133,CD45, CD115,CD14
FIGURE 3 | The process of EPC re-endothelialization. Akt, Protein kinase B; BMSC, bone marrow stromal cell; CXCR4, chemokine (C-X-C motif) receptor 4; EC,
endothelial cell; EPC, endothelial progenitor cell; eNOS, endothelial nitric oxide synthase; FAK, focal adhesion kinase; HDAC3, histone deacetylase 3; HIF-1, hypoxia-
inducible factor 1; HoxA9, Homeobox A9; ICAM-1, intercellular adhesion molecule-1; mKitL, membrane-bound form of Kit ligand; MMP9, matrix metalloproteinase-9;
mTOR, mammalian target of rapamycin; PI3K, phosphatidylinositol-3-kinase; SDF-1, stromal cell-derived factor-1; sKitL, soluble Kit-ligand; VCAM-1, vascular cell
adhesion molecule-1; VEGFR2, vascular endothelial growth factor receptor-2.
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BMSC through NO and MMP-9 in PI3K/AKt/eNOS-dependent
manner. Moreover, neutrophil elastase and cathepsin G prevent
EPCs from combining with BMSCs by cutting integrin and
VCAM-1; and they cooperated with MMP9 to degrade SDF-1
in peripheral blood matrix niches forming a high SDF-1
concentration gradient. Under the synergistic action of elastase,
cathepsin G and MMPs, EPCs are driven into the peripheral
circulation (137).

Homing
After entering the peripheral circulation from the bone marrow,
EPCs are summoned and stay at the site of endothelial injury in
the tissue. This process involves multi-step cascade adhesion and
signaling events, including chemotaxis, involvement, adhesion
and migration (138). The SDF-1/CXCR4 axis regulates the
downstream signal Rac, changes the polarity and cytoskeleton
of the cells, maintains the motor state of the transitional cells,
and navigates the EPCs to the target organ (139). Meanwhile,
integrin, p-selectin ligand and e-selectin ligand expressed on
EPCs interact with p-selectin, e-selectin and ICAM-1 expressed
on activated ECs, supporting EPCs adhesion and migration to
ECs (140, 141). Some studies have shown that SDF-1 increases
the expression of e-selectin in microvascular ECs and then
increases the adhesion of EC-EPC (142).

Differentiation
On the way to the target organ, EPCs begin to differentiate into
ECs. During differentiation, cytokines and shear stress trigger a
series of events, which cause EPCs to acquire some phenotypic
characteristics of ECs. Shear stress supports the differentiation
and proliferation of EPCs via VEGFR2, Tie2, Notch, and b1/3
integrin signaling (143). It stabilizes and activates histone
deacetylase 3 (HDAC3) through the VEGFR2/Tie2/Notch/
PI3K/Akt/mTOR pathway, which in turn deacetylated p53,
leading to increased cell cycle arrest protein p21 and
endothelial markers (144). The homeobox transcription factor
HoxA9 contributes to HDAC-mediated differentiation (145).
Histone deacetylase SIRT1, another downstream factor of
shear stress/PI3K/Akt pathway, is overexpressed in EPCs and
decreases histone H3 acetylation, upregulating endothelial
markers (146). Beside, integrins b1 and b3, also overexpressed,
enhance the expression of endothelial markers via paxillin/FAK/
RAS/ERK pathway (147–149).

Mobilized EPCs enter into the peripheral blood and build a
cell pool, repairing the endothelium by forming a patch at the site
of intimal injury. EPCs represent negative feedback in
intravascular homeostasis. The number and function of EPCs
are regulated by the same molecular pathway, so the decrease of
EPCs number is related to weakened function, and the increase
of EPCs number is related to enhanced function.

Changes in the Number and Function
of EPCs in SLE
There are 15 research articles about the number and function of
SLE EPCs by searching “(Endothelial Progenitor Cells) AND
(Lupus Erythematosus, Systemic)” in PubMed, which have
shown inconsistent results (Table 2). Most of the results on
Frontiers in Immunology | www.frontiersin.org 6
the quantitative studies of SLE EPCs have shown a low level.
Four studies have shown different results. The difference in the
detection, quantification and identification of EPCs and the
active phase of SLE might explain the quantitative differences.
Studies on the qualitative of SLE EPCs also showed different
results. Ablin JN et al. shown enhanced adhesion of SLE EPCs
(156), while the others shown weakened proliferation/migration/
adhesion/differentiation (46–49, 77, 150, 153, 154, 157–159). The
different adhesion test and quantification seems to be the reason.

Causes of Reduced Number and Impaired
Function of EPCs in SLE
Although the results are controversial, we believe that SLE EPCs
show a trend of reduced number and impaired function. The risk
factors (IFN-I, BAFF, OPG, IL-10, IL-18) and protective factors
(Tang) both exist in SLE. The reduced number and impaired
function of SLE EPCs seem to be the result of the game between
the two sides.

There is no doubt that IFN-I accelerates SLE atherosclerosis,
whether in the initiation or development of the disease (15, 52).
The adult and mouse models’ researches conclude that IFN-I
accelerating SLE atherosclerosis by interfering with EPCs (15,
46–49, 51, 52, 160). Like adult-onset SLE, childhood-onset SLE
also shown reduced number and impaired function of EPCs
(150). But there was no significant correlation between IFN-I
activity and childhood-onset SLE subclinical atherosclerosis and
endothelial function (150). We need a longitudinal assessment in
the future to assess whether vascular damage in childhood-onset
SLE is related to IFN-I. Inflammatory body activation is a key
downstream pathway leading to vascular abnormalities. The
interaction between IFN-I and inflammatory factors mediates
reduced number and impaired function of SLE EPCs. IFN-a
down-regulates IL-1b and VEGF (52) and up-regulates IL-18
and its activator caspase-1 (51)— IL-1b promotes the
differentiation of EPCs (52); IL-18 inhibits the differentiation
of EPCs (51). IL10 inhibits EC differentiation and enhances IFN-
a-mediated EPC dysfunction (50). OPG plays a pathogenic role
in atherosclerosis. OPG binds to syndecan 4, the receptor of OPG
on EPC, then induces oxidative stress, causing apoptosis of EPC
(151). Spinelli FR et al. has observed that BAFF receptors are
expressed in both EPC and EC, and mediated the apoptosis of
EPC (77). The addition of BAFF inhibitor—belimumab—
restored the quantity and quality of EPCs in vivo and in vitro,
which further proved this point (77).

Tang, a specific T cell group expressing CD3, CD31 and
CXCR4, promotes early EPCs differentiation and activates locally
resident ECs (161). And the percentage of circulating Tang
increased in SLE patients (162–164). However, the chronic
inflammatory environment of SLE accelerates autoimmune
aging. Aging Tang (CD28null-Tang) is not protective but
cytotoxic, secreting inflammatory mediators and releasing
cytolytic molecules from intracellular particles to induce EC
damage and accelerates atherosclerosis in most SLE patients
(165). And the frequency of CD28null-Tang increased in SLE
patients with traditional CVD risk factors and active
diseases (165).
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Therefore, we speculate that Tang activates the vascular
endothelial protective mechanism in the early SLE. With the
progress of the disease, the chronic inflammatory environment
of SLE not only accelerates the aging of Tang but also enriches a
variety of risk factors for EPCs, which leads to the dysfunction of
EPC in SLE patients.
THE ROLE OF IFN-I IN THE INJURY
OF EPCS IN SLE

The Immune Mechanism of IFN-I
Production in SLE
The IFN-I system in SLE is chronically active. pDCs
(plasmacytoid pre-dendritic cells) are the primary source,
which have high levels of interferon regulatory factor (IRF) 7,
facilitating rapid and large-scale IFN-a generation (166). Up-
regulated interferon-induced genes such as MX1, ISG54, and
ISG56 and transcription factors of interferon pathway such as
IRF5, IRF7, IRAK1, TREX1, STAT4, and PTPN22 mediate
abnormal immune responses and the production of ICs,
Frontiers in Immunology | www.frontiersin.org 7
resulting in abnormal activation of pDCs (167). And other
immune cells such as neutrophils, NK cells, T cells, B cells and
platelets enhance IFN-I production by IC-stimulated pDCs; IFN-
I, in turn, stimulates the activation of these immune cells,
forming a self-magnifying pathogenic loop (65, 66, 168–173).

During exploring the signaling pathway, the increased
exposure of nuclear contents to corresponding nucleic acid
biosensors is the critical risk factors. Under normal
physiological conditions, self DNA/RNA exists in different cell
compartments and is isolated from the nucleic acid biosensor in
the cytoplasm. Due to the insufficient clearance of apoptotic/
necrotic cells, SLE patients are rich in endogenous free DNA/
RNA, which form ICs with anti-DNA/RNA antibodies (174).
Exogenous microbial DNA/RNA also induce autoimmune
response (175–177). Exposed RNA and DNA stimulate the
relevant nucleic acid biosensor in the form of ICs. DNA
biosensors are divided into two types: endosomal membrane
receptors and intracellular receptors (178). TLR9 is the only
known DNA biosensor based on endosomes, which is mainly
expressed in pDCs. The DNA ICs are absorbed and transported
into the endosome through the Fcg RIIa in pDCs, activating
TLR9-MyD88-IRF7 pathway (166). Moreover, TLR9 can bind to
TABLE 2 | Quantitative analysis of circulating EPCs between SLE and healthy control.

Results Research objects Surface labelings for the
determination of EPCs

Detection methods Quantization methods References

Low level of EPCs in the
SLE group

18 patients with SLE CD34+

VEGFR2+
Flow cytometry
Cell colony

Relative to the number of lymphocytes (77)

132 children with SLE CD34+

CD133 +
Flow cytometry Absolute count per unit of blood (150)

90 patients with SLE CD34+

VEGFR2+
Flow cytometry Absolute count per unit of blood (151)

17 patients with SLE CD34+

CD133+

VEGFR2+

/CD34+

VEGFR2+/CD133+ VEGFR2+

Flow cytometry Absolute count per unit of blood (152)

70 patients with SLE CD34+

VEGFR2+
Flow cytometry
Cell colony

Absolute count per unit of blood (47)

135 patients with SLE CD34+CD133+ Flow cytometry
Cell colony

Absolute count per unit of blood (48)

44 patients with SLE CD34+CD133+ Flow cytometry Absolute count per unit of blood (153)
15 patients with SLE CD34+VEGFR2+ Flow cytometry Absolute count per unit of blood (154)
gld.apoE-/- mice Sca-1+

VEGFR2+
Flow cytometry Relative to the number of lymphocytes (155)

gld.apoE-/- mice Sca-1+

VEGFR2+
Flow cytometry Relative to the number of lymphocytes (46)

NZB/W mice CD34+

VEGFR2+
Flow cytometry Relative to the number of lymphocytes (49)

No significant difference 31 patients with SLE Tie-1+

VEGFR2+

CD31+

Cell colony The number of colony (156)

35 patients with SLE CD34+ VEGFR2+ Flow cytometry
Cell colony

Relative to the number of lymphocytes (157)

31 patients with SLE CD34+ VEGFR2+

CD 133+
Flow cytometry
Cell colony

Relative to the number of lymphocytes (158)

Low level of CD34
+VEGFR2+ cells and high
level of CD133+VEGFR2+
cells in the SLE group

19 patients with SLE CD133+VEGFR2+ cells represent
early EPCs, and CD34+VEGFR2+

cells represent late EPCs

Flow cytometry Absolute count per unit of blood (159)
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the curli-DNA complex, composed of bacterial DNA and
amyloid protein curli—a component of bacterial biofilms (175,
176). Compared with TLR9, cytoplasmic DNA biosensors are
widely expressed in mammalian cells. Thirteen cytoplasmic
DNA biosensors have been found so far and cGAS is the most
important cytoplasmic DNA biosensor (178). cGAS binds to
cytoplasmic DNA to produce cGAMP, which then activates ER-
resident STING protein. The activated STING is transported
from the endoplasmic reticulum to the ER-resident Golgi
apparatus and recruits TBK1 to enter the endosome. TBK1
activates IRF3 and IRF7, leading to the expression of IFN-I
(179). Major RNA biosensors include TLR7 and RIG-I/MDA5.
TLR7 also belongs to the endosomal membrane receptor,
activated by single-stranded RNA. The U1snRNA induces
PDCs to produce IFN-a through Fcg RIIa-TLR7-MyD88-IRF7
pathway in SLE patients (180, 181). RIG-I/MDA5 signal is
mainly used to deal with viral infections. After recognizing
viral double-stranded RNA, intracellular RNA helicases (RIG-I
and MDA5) undergo conformational changes to induce MAVS,
and activates IRF3/7 through TRAF6/3, resulting in the secretion
of IFN-I (182). Recent studies have shown that RIG-I/MDA5
signal may reduce the degradation capacity of insoluble virus-like
aggregates, inducing a continuous increase of IFN-I (177).
The Pathways of IFN-I Damaging EPCs
IFN-I is one of the causes of impaired EPCs, but the specific
mechanism remains to be elucidated. IFN-I damages EPCs in
two ways: direct toxicity and indirect toxicity (Figure 4).

IFN-I actively induces the production of ELR-negative CXC
chemokines CXCL9, CXCL10 and CXCL11, which mediate
angiostasis through the receptor CXCR3 (183). CXCR3 exists
in three different splice variants, CXCR3A, CXCR3B, and
Frontiers in Immunology | www.frontiersin.org 8
CXCR3-alt (184). CXCR3A recruits leukocytes, especially in
Th1 lymphocytes (185). CXCR3-alt has a higher affinity for
CXCL11, but its role in angiogenesis remains to be determined
(186). Conversely, CXCR3B, expressed in ECs, is the main
angiostatic variant of CXCR3 and is the primary angiostatic
receptor for CXCL9, CXCL10, and CXCL11, inducing anti-
proliferation and anti-migration (187–189). CXCR3A and
CXCR3B differ for 52 amino acids at the NH2 end and couple
different types of G proteins, triggering different signal
transduction pathways, CXCR3A-Gi-PI3K-MAPK and CXCR3B-
Gs-AC-cAMP-PKA (187, 190). The coupling of CXCR3B with Gs
results in the selective activation of adenylyl cyclase (AC) and a
consequent increase of intracellular cAMP levels (187). Up-
regulation of cAMP in ECs directly activates PKA, inducing
apoptosis (191).

Moreover, IFN-I enhances the toxicity of ILs and BAFF, which
are EPC risk factor as well. IFN-I interacts with inflammatory
factor ILs to damage EPC synergistically. IL-10 enhances the effect
of IFN-a on SLE EPC (50). IFN-I down-regulates angiogenic
molecules IL-1b and VEGF (52) and up-regulates IL-18 and its
activator caspase-1 (51), enhancing the anti-angiogenic effect.
There was a positive correlation between the levels of IFN-I and
BAFF in SLE (192). IFN-I induces the expression andmobilization
of BAFF in SLE monocytes and neutrophils (35, 36). The
expression of BAFF is directly induced by IFN-I through IRF1
and IRF2 (36). IFN-a stimulates the secretion of IL-17, then IL-17
and BAFF promote the survival and differentiation of B cells and
production of autoantibodies, which enhances IFN by pDCs,
forming a closed vicious circle (192).

Therefore, IFN-I has direct and indirect toxic effects on EPC,
resulting in endothelial dysfunction, which starts atherosclerosis
in SLE. It is proved once again that IFN-I plays a central
pathogenic role in SLE CVD.
FIGURE 4 | The signal pathway of IFN-Idamaging EPC. AC, adenylyl cyclase; BAFF, B cell-activating factor; cAMP, cyclic adenosine monophosphate; cGAS, cyclic
guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase; CXCL, chemokine (C-X-C Motif) ligand; CXCR, chemokine (C-X-C motif) receptor;
EPC, endothelial progenitor cell; PKA, Protein kinase A; RIG-I, retinoic acid-inducible gene I; TLR, Toll-like receptor; VEGF, vascular endothelial growth factor.
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CONCLUSION

Long-term activation of IFN-I system in SLE induces the
expression of CXCL9/10/11, activating CXCR3B-Gs-AC-cAMP-
PKA signal pathway to promote the dysfunction of ECs and EPCs;
and CXCR3A-Gi-PI3K-MAPK signaling pathway to recruit
leukocytes into the inflammatory site. Besides, IFN-I enhances
the toxicity of other EPCs dysfunction factors, indirectly
accelerating arteriosclerosis. Overexpression of IFN-I through
the activation of TLR7/9 signal decreases the number and
function of EPCs and increases atherosclerotic lesions in SLE
patients (46), suggesting that targeted therapy of cGAS and RIG-I
signal pathway may have a potential therapeutic effect on SLE
atherosclerosis. Targeted therapy of the IFN-I system has a
potential therapeutic effect on early atherosclerosis in SLE patients.
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