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RIG-I like receptors and their signaling crosstalk in the regulation
of antiviral immunity
Hilario J Ramos and Michael Gale Jr.
During virus infection, multiple immune signaling pathways are

triggered, both within the host cell and bystander cells of an

infected tissue. These pathways act in concert to mediate innate

antiviral immunity and to initiate the inflammatory response

against infection. The RIG-I-like receptor (RLR) family of pattern

recognition receptors (PRRs) is a group of cytosolic RNA

helicase proteins that can identify viral RNA as nonself via

binding to pathogen associated molecular pattern (PAMP) motifs

within RNA ligands that accumulate during virus infection. This

interaction then leads to triggering of an innate antiviral response

within the infected cells through RLR induction of downstream

effector molecules such as type I interferon (IFN) and other pro-

inflammatory cytokines that serve to induce antiviral and

inflammatory gene expression within the local tissue. Cellular

regulation of RLR signaling is a critical process that can direct the

outcome of infection and is essential for governance of the

overall immune response and avoidance of immune toxicity.

Mechanisms of positive and negative regulation of RLR signaling

have been identified that include signaling crosstalk between RLR

pathways and nuclear oligomerizationdomain (NOD)-like receptor

(NLR) pathways and Caspase networks. Furthermore, many

viruses have evolved mechanisms to target these pathways to

promote enhanced replication and spread within the host. These

virus–host interactions therefore carry important consequences

for host immunity and viral pathogenesis. Understanding the

pivotal role of RLRs in immune regulation and signaling crosstalk in

antiviral immunity may provide new insights into therapeutic

strategies for the control of virus infection and immunity.
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Introduction
The development of effective antiviral immunity

requires robust and specific immune activation during
www.sciencedirect.com
acute virus infection. This process is dependent on the

ability of the host cell to first sense the viral pathogen and

then to signal within the infected cell, alerting neighbor-

ing bystander cells and adaptive immune cells that a viral

infection is underway. This form of cellular communi-

cation requires that pattern recognition receptors (PRRs)

work in concert to sense specific pathogen associated

molecular patterns (PAMPs) expressed by the virus which

are distinct from the host. Several PRRs have now been

described to sense and distinguish viral PAMPs. The toll-

like receptor (TLR) family of PRRs resides at the cell

surface and in endosomal compartments and are poised to

sense extracellular or actively engulfed pathogens but not

those in the cytoplasm [1]. By contrast, several PRRs have

been identified that recognize microbial products within

the cytoplasm of infected cells. These include the nuclear

oligomerization domain (NOD)-like receptors (NLRs),

proinflammatory DNA-binding receptors such as AIM2

and DAI (DLM-1/ZBP1), and the RLRs [2,3]. Although

we now have a strong understanding of the signaling

pathways which PRRs engage in response to viral in-

fection, it is only in the past few years that we have began

to understand the unique crosstalk that exists between

these pathways. This review will present an overview of

contemporary studies defining RLR function and their

signaling crosstalk that programs the immune response to

virus infection.

Structure of RLR family members
The RLR family members include retinoic acid inducible

gene-I (RIG-I), melanoma differentiation gene-5

(MDA5) and laboratory of genetics and physiology-2

(LGP2). They contain a distinct DEX/DH box RNA

helicase domain involved in RNA binding and ATPase

function to drive a conformation change that initiates

signaling activation [4]. In addition, RIG-I and MDA5

but not LGP2 contain two N-terminal Caspase activation

and recruitment domains (CARDs) which facilitate their

interactions with other CARD containing molecules.

These CARD–CARD interactions promote RIG-I/

MDA5 binding to interferon promoter stimulator-1

(IPS-1; also called MAVS/VISA/Cardif) through a

CARD–CARD interaction, leading to IPS-1-dependent

activation of interferon regulator factor (IRF)-3, IRF-7

and nuclear factor kB (NF-kB) [5]. These processes result

in transcriptional activities that direct the expression of

IFN and the induction of a variety of antiviral effector

genes, including interferon-stimulated genes (ISGs),

whose actions limit virus replication and spread [6].

Furthermore, the C-terminus of RIG-I and LGP2 has
Current Opinion in Virology 2011, 1:167–176
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Requirements for RIG-I and MDA5 in recognition of distinct viral families. Interactions between viruses and RIG-I and MDA5 are delineated by arrows.

Red arrows depict known requirements for RIG-I in sensing viruses while blue arrows denote known requirements for MDA5. Of note, members of the

Flaviviridae and Reoviridae can trigger both MDA5 and RIG-I activation. The RNA polymerase III pathway for generation of RIG-I ligands and the DNA

viruses and bacteria, Legionella, known to activate this pathway are also shown.
been described as a repressor domain (RD) that acts to

keep these molecules in an inactive ‘closed’ confirmation

in the absence of activating RNA [7].

Multiple RNA viruses are known to trigger RLR signaling

through distinct RIG-I or MDA5 dependent responses

(Figure 1). RIG-I has been shown to be involved in

recognition of Paramyxoviruses, Newcastle disease virus

(NDV), Sendai virus (SeV), and Respiratory syncytial virus

(RSV) [8]; Rhabdoviruses, Vesicular Stomatitis virus (VSV)

and Rabies virus [8,9]; Orthomyxoviruses, Influenza A,B

virus (IAV, IBV); Flaviviruses, Hepatitis C virus (HCV),

and Japanese Encephalitis virus (JEV) [8,10] and the

Filovirus, Ebola virus [11]. By contrast, MDA5 was found

to be responsible for the recognition of Picornaviruses such

as EMCV, the Coronavirus, Murine Hepatitis virus and the

Calicivirus, Murine Norovirus-1 as well as the dsRNA

mimetic, poly(I:C) [8,12]. Both RIG-I and MDA5 were

shown to function in the recognition of the Flaviviruses,

Dengue virus (DENV) and West Nile virus (WNV) as well

as the dsRNA Reovirus, Rotavirus [10,13,14].

Recent work by Ablasser et al. [15��] and Chiu et al. [16��]
now provides evidence that RLR signaling is critical to a

broader range of pathogens. In these studies, the DNA

mimetic poly (dA:dT) was found to trigger IFN responses

in a RIG-I-dependent manner. This was driven by the

host cell RNA polymerase III, which functioned to tran-
Current Opinion in Virology 2011, 1:167–176
scribe DNA to RNA ligands that were then recognized by

RIG-I in the cytosol. Several DNA viruses have now been

shown to activate this pathway including herpes-simplex

virus-1, Adenovirus, Epstein-Barr virus and Vaccinia virus

(VV) (Figure 1) [15��,16��,17,18]. Surprisingly, the intra-

cellular gram negative bacterium, Legionella pnuemophila,

was also shown to activate type I IFN responses through

RIG-I signaling [16��]. It is likely that other intracellular

bacterium will be identified to trigger this pathway thus

reflecting a broad role for RLR signaling in anti-microbial

immunity.

The characterization of PAMP motifs that are recognized

by RLRs to trigger innate immune signaling is ongoing.

RIG-I was initially described to bind dsRNA [19] how-

ever, key findings have now identified that ssRNA con-

taining a 5’tri-phosphate motif (5’ppp) was required for

recognition by RIG-I [20,21]. This interaction provides a

way by which RIG-I can distinguish between host and

viral RNAs as host mRNAs are capped at their 5’ ends

while mature tRNA and rRNA lack 5’ppp and are covered

as ribonucleoproteins respectively, thus preventing 5’ppp

from recognition by RIG-I. This concept has been called

into question by studies that showed that in addition

to 5’ppp, RIG-I triggering requires some double stranded

nature in the RNA, and that previous studies involving

the 5’ppp contained double stranded hairpins that

were introduced by the T7 polymerase in vitro [22]. An
www.sciencedirect.com
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examination of 5’ppp RNA generated with non-hairpin

coding polymerases is necessary to for definitive demon-

stration of this however. A study by Saito et al. [23] has

also revealed a mechanism for self/non-self recognition by

RIG-I. Here, it was shown that RIG-I engagement actu-

ally requires 5’ppp and specific sequences including

uridine or adenosine-rich regions that are found within

a PAMP motif of the Hepatitis C virus RNA and a number

of other viruses recognized by RIG-I [23]. In the case of

HCV, deletion of this region form the viral RNA abol-

ished RIG-I binding despite the presence of 5’ppp. Thus,

multiple motifs likely mark a viral RNA as non-self,

including 5’ppp and specific sequence domains and sec-

ondary structures.

The RNA motifs which drive the activation of MDA5 are

less clear. As mentioned above, the recognition of

poly(I:C) by MDA5 but not RIG-I suggested that dsRNA

was the ligand for MDA5. In line with these observations,

recent studies suggested that higher order dsRNA ‘web’

structure which is produced during EMCV and VV virus

infection were responsible for the activation of MDA5

[24]. However, the exact mechanism by which this higher

order RNA would be engaged by MDA5 to trigger this

response is still unclear.

RLR signaling cascade
RLR activation is thought to trigger the formation of an

IPS-1 antiviral signaling complex or signalsome anchored

at mitochondria-associated membranes, mitochondria, and

peroxisomes. However, it is currently unclear how sig-

naling at these distinct sites is orchestrated [25,26�].
IPS-1 signaling leads to activation of Tank Binding

Kinase-1 (TBK-1) and IkB kinase e (IKKe) which then

mediates downstream activation of IRFs and NF-kB as

well as IFN and pro-inflammatory cytokine expression

[12]. Several adaptors have been characterized to function

in this complex including the tumor necrosis factor (TNF)

associated factors (TRAFs), TRAF3 [27], and TRAF2/

TRAF6 [28,29], NEMO/Ikkg [30], Fas-associated death

domain (FADD), receptor interacting protein-1 (RIP1),

TRADD and Caspase 8 and 10 [31]. These molecules

participate in distinct signaling responses which drive the

bifurcation of IRF and NF-kB; the findings of which have

been reviewed in great detail elsewhere [12,32] (Figure 2).

In addition, to IPS-1, another adaptor molecule, stimulator

of interferon genes (STING, also known as MITA) was

shown to interact with RIG-I and IPS-1 and potentiate

IRF/IFN activation [33,34]. Further analysis has demon-

strated that STING/MITA play crucial roles to IFN induc-

tion upon DNA stimulation however, the significance for

STING/MITA in RLR signaling during RNA viral in-

fection is still an area of contention.

Cellular regulation of RLR signaling
RLR signaling is tightly controlled. The first regulatory

mechanism described was the identification of the RD of
www.sciencedirect.com
RIG-I and LGP2, which autoregulates RLR function

through dynamic intramolecular interactions [7].

Multiple protein factors have also been identified to

function in RLR regulation. LGP2 itself was found to

act as both a positive and negative regulator of RLR

signaling, wherein its over expression enhanced ISG

induction to a variety of viruses including SeV and

NDV [35–37], and LGP2�/� mice showed increased

IFN responses and decreased susceptibility to VSV but

not EMCV infection in vitro and in vivo [38]. By contrast,

examination of an independently generated LGP2�/�

mouse line or mice with mutations in the LGP2 ATP

binding site (LGP2K30A/K30A) demonstrated decreased

IFN responses and increased susceptibility to VSV,

EMCV, SeV, JEV but not IAV [39]. These differences

could be due in part to genetic background distinctions of

mouse lines, as well as the nature of each targeting

construct used to make the LGP2 null lines. A more

complete examination of LGP2 in a cell/murine strain-

specific manner is required for understanding the func-

tion of LGP2 in RLR signaling of immunity.

RLR ubiquitination
RIG-I is also regulated though interaction with and

modification by the E3 ubiquitin ligase, tripartate motif

25 (TRIM25) which binds to RIG-I and mediates lysine

63 (K63) ubiquitin ligation at residue 172. This modifi-

cation was critical to the ability of RIG-I to interact with

IPS-1 and mediate downstream signaling [40]. In

addition, the E2 ubiquitin-conjugating enzyme Ubc5

has also been shown to be involved in activation of

RLR signaling. This event occurs downstream of RIG-

I and IPS-1 and may function via conjugation of K63-ub to

NEMO which enables recruitment of TBK-1 and IRF/

NF-kB activation [41]. Neither TRIM25 nor Ubc5 were

shown to ubiquitinate MDA5.

It should also be noted that ubiquitination of RLRs has also

been shown to function in RLR negative regulation. The

Ring Finger 125 (RNF125) E3 ligase, was shown to con-

jugate K48 ubiquitin to RIG-I and MDA5 promoting their

proteosomal degradation [42]. Similar to this response,

RNF5 directly interacts with IPS-1 and mediates K48-

ub at positions K362 and K461 leading to degradation of

IPS-1 during SeV infection [43]. In line with these obser-

vations, the E3 ligase, Triad3A was also shown to target

TRAF3 for degradation via K48-ubiquitination [44].

These observations demonstrate that negative regulation

by K48 ubiquitination occurs at multiple levels to control

RLR signaling. A key push in understanding the mech-

anism of action by which these modifications operate

should be a prime focus of future studies in this area.

In addition to ubiquitination, de-ubiquitinases (DUBs)

play an important role in negative regulation of RLRs. For

example, the DUB enzyme cylindromatosis (CYLD) was

shown to directly bind RIG-I and mediate the removal of
Current Opinion in Virology 2011, 1:167–176
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Figure 2
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K63-ub and limit IFN induction [45]. In addition, CYLD

was shown to de-ubiquitinate TBK-1 suggesting a broad

regulatory role for DUB activity in regulating the effects

of TRIM25 and Ubc5. In line with this idea, the de-

ubiquitinating enzyme A (DUBA) has been shown to

directly interact with TRAF3 and mediate the removal of

K63-ub chains. The functional consequence of this

response is the loss of interaction with TBK-1, alteration

of the IPS-1 signalsome, and a block in signaling down-

stream of RLR signaling [46].
Current Opinion in Virology 2011, 1:167–176
Regulatory protein interactions
RLR signaling regulation also occurs through direct inter-

action with specific activating or repressor factors. The

zinc finger antiviral protein shorter isoform (ZAPS) was

found to directly interact with RIG-I to potentiate sig-

naling actions to suppress virus infection [47]. By contrast,

the proteosome molecule, PSMA7(a4) subunit was

shown to bind directly to IPS-1 and limit its ability to

translate downstream IFN signals. This regulation oper-

ates though a mechanism dependent on proteosomal
www.sciencedirect.com
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degradation of IPS-1. In addition, since VSV infection

triggers expression of PSMA7a4, this factor may act as a

negative feedback loop stimulated by virus infection [48].

PCBP2 was also shown to interact with IPS-1 and mediate

its ubiquitination and degradation by the E3 ligase AIP4

[49], while the autophagy conjugate Atg5–Atg12 was

shown to regulate RLR signaling by interacting directly

with both RIG-I and IPS-1 to limit downstream IFN

production [50]. Specific regulation of MDA5 function by

protein interactions is less well understood. However,

regulation of MDA5 has been described to occur via

the dihydroacetone kinase (DAK), in which overexpres-

sion of the molecule led to decreased IFN responses to

MDA5 agonists. Further, DAK was found to interact with

MDA5 but not RIG-I suggesting that the mechanism for

action was at the level of preventing MDA5 activation and

interaction with IPS-1 [33]. Further comparison of regu-

latory mechanism involved in RIG-I versus MDA5-

specific signaling are required in order to define the

processes of RLR regulation through protein interaction.

Caspases and RLR signaling control
The Caspase family of proteins function in the activation

of apoptotic cascades as well as in triggering inflamma-

some activation through the processing and release of IL-

1b, IL-18 and IL-33 [51]. Two recent studies have

identified unique roles for Caspase family members in

the regulation of RLR signaling. Caspase-8 has been

shown to associate with the IPS-1 signalsome via inter-

actions with FADD, RIP-1 and IPS-1 after dsRNA stimu-

lation of cells [31]. Caspase-8 may function to suppress

RLR signaling through two distinct mechanisms. First,

Caspase-8 promotes a direct depletion of RIG-I, through

a mechanism dependent on its ability to bind FADD but

independent of its catalytic cleavage ability. Secondly,

Caspase-8 cleaves RIP1 at the IPS-1 signalsome/RLR

signaling complex which leads to loss of IFN induction

[52�]. Both of these functions of Caspase-8 are thought to

act to negatively regulate and shut down the RLR

response at later times after initial RLR triggering during

acute virus infection. However further interrogation into

the mechanism by which RIP-1 cleavage mediates this

regulation is required in order to fully understand how

this process regulates the IPS-1 signalsome and RLR

functions.

The Caspase family member, Caspase-12, has also been

identified as a negative regulator of RLR signaling. Using

a model of WNV infection, Caspase-12�/� mice showed

increased mortality to viral infection. Further, cells from

knockout mice failed to mediate TRIM25 ubiquitination

of RIG-I and this correlated with decreased IFN

responses and lack of protection against WNV [53].

The exact mechanism by which Caspase-12 regulates

TRIM25 was not described in this study, therefore war-

ranting further analyses. In addition, as only a small

percentage of the human population expresses Cas-
www.sciencedirect.com
pase-12 its role in regulation of the RLRs in humans

remains debatable. Despite this caveat, these studies

identify the potential for cross-talk between RLRs and

Caspase signaling pathways as a regulatory feature that

governs the innate antiviral immune response. Since

CARD–CARD interactions play an important role in both

RLR signaling and Caspase responses, further inter-

actions between such CARD proteins will likely be

identified and revealed as regulatory interactions.

Viral antagonism of RLR signaling
Pathogenic viruses have evolved mechanisms to target

and disrupt RLR signaling programs in order to escape

from the immune response to infection. Numerous viral

proteins have now been described as RLR antagonists to

block RLR recognition of viral RNA, target and bind

RLRs, and modulate or disrupt downstream signaling

components of the RLR pathway (Figure 3).

Several viruses have found ways to prevent recognition of

their viral RNA in the cytoplasm by the RLRs. The Ebola

virus VP35 protein has been shown to sequester dsRNA

in the cytosol and prevent viral RNA recognition by RIG-

I [11]. In addition, Picornaviruses utilize their Vpg protein

to cap viral RNA [8]. This mechanism may serve to block

the 5’ppp RNA motif associated with RIG-I activation

thus preventing RIG-I recognition and signaling. One

interesting mechanism of direct subversion was found to

occur in the Haantan virus, Crimean-Congo Hemorrhagic

Fever virus and Borna Disease virus which modify their

viral RNA to remove the 5’ppp motif thus remaining

hidden from recognition by RIG-I [54].

Viral targeting of RLR signaling components has also

been described. In particular, the cleavage and inacti-

vation of IPS-1 by multiple viruses has been shown as a

mechanism for RLR antagonism. The HCV protease,

NS3/4A cleaves IPS-1, removing it from intracellular

membranes and preventing RLR signaling of IFN

induction, resulting in increased cell permissiveness to

HCV [55,56]. In addition, the Coxsackie virus protease

B3C was recently shown to cleave IPS-1 and block

downstream signaling responses, while the Hepatitis A

virus protease precursor, 3ABC, was shown to cleave

IPS-1 [57,58]. Other viruses have been shown to block

RLR signaling by sequestering signaling components or

targeting their degradation through host machinery. The

V proteins of several Paramyxoviruses have been shown

to directly bind MDA5 and block its downstream sig-

naling actions [59,60]. Further, the NS1 protein of IAV

was also shown to directly bind and sequester RIG-I

from its downstream signaling complex [61]. Impor-

tantly, NS1 was also shown to directly bind TRIM25

and effectively block K63-ub of RIG-I [62�]. This

activity is of interest as it demonstrates the ability of

viruses to not only target the RLR signaling pathway but

a key pathway involved in RLR signaling and metab-
Current Opinion in Virology 2011, 1:167–176
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Figure 3
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olism as well. More recently, the Arenavirus family

member, LCMV, was also shown to directly interact

with RIG-I and MDA5 through its nuclear protein

(NP). Here, NP functioned to modulate the late phase

of IFN production both in vitro and in vivo; however, the

mechanism of this regulation and interaction has yet to

be elucidated [63].

The identification RNA polymerase III products as RLR

agonists has identified DNA viruses as a new subset of

viruses likely recognized, albeit indirect, by RLRs.

Multiple DNA viruses have now been identified to

modulate RLR signaling in order to escape its antiviral

actions. The Hepadna virus, Hepatitis B virus X protein
Current Opinion in Virology 2011, 1:167–176
can bind IPS-1 and target it for degradation via K63

ubiquitination [64]. The VV virus protein E3 was also

shown to bind RNA polymerase III generated RNAs and

may act to prevent their recognition by RIG-I [18]. The

protease of HIV, a lentivirus, was also recently shown to

sequester RIG-I and limit ISG induction, thus linking

RIG-I signaling to recognition of HIV-derived nucleic

acid products [65]. However, as HIV RNA is known to be

capped and polyadenylated it is unclear as to the actual

viral RNA species which could actively trigger the RLR

pathway during HIV infection. In addition, to blockade of

RLR signaling by HIV, recent studies from our lab and

others have demonstrated HIV directly depletes IRF-3 to

block ISG induction downstream of TLR, RLR and other
www.sciencedirect.com
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signaling pathways [66,67]. This activity has been linked

to the viral proteins Vpr, Vif [67] and now Vpu (Doehle

et al. submitted) and appears a common mechanism

employed by multiple viruses [68]. These observations

reflect a broad theme among pathogenic viruses to sup-

press innate immune signaling at multiple levels, thus

supporting the complex viral replication cycle.

Cross talk between the RLR and NLR
signaling platforms
NLRs play important roles in the induction of pro-inflam-

matory cytokines, antimicrobial genes, and inflammasome

activation. For example, the NLR, NOD2 is known to

signal through the adaptor RIP2 to trigger NF-kB upon

activation by the bacterial cell wall component, muramyl-

dipeptide (MDP) [69]. NLRs, NLRC4, NLRP1 and

NLPR3 are likewise involved in the activation of inflam-

masome cleavage of IL-1b, IL-18 and IL-33 [51]. Inter-

estingly, two recent reports have identified unique links

between RLRs and NLRs in these signaling responses.

First, Sabbah et al. [70��] demonstrated that NOD2 could

respond to viral infection and mediate the activation of

IRF-3 and that this was mediated through direct inter-

actions between NOD2 and IPS-1. This response occurred

through the recognition of ssRNA derived from respiratory

syncytial virus (RSV), a novel ligand for NOD2, which

triggered the activation of IRF-3 and IFN expression. This

study indicates for the first time, a model in which a

bacterial trigger of NOD2 drives a RIP2-dependent acti-

vation of NF-kB genes while viral infection triggers an

NOD2/IPS-1 driven IRF-3 response, thus defining host-

pathogen interactions of polymicrobial infection. It is

unclear whether NOD2 acts as a direct sensor for ssRNA

or simply associates with RNA binding factors. One intri-
Figure 4
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guing possibility is that NOD2 may interact with RIG-I or

MDA5 which then sense the ssRNA, thus triggering IPS-1

dependent signaling (Figure 4). Polymicrobial infection

presents complexities of host interactions that are likely to

engage a variety of response pathways, including RLRs,

NLRs, and others. Future studies are necessary to define

these interactions and their role in polymicrobial infection

and immunity.

Work by Poeck and Ruland [71��] has now shown that

RIG-I has the capacity to directly trigger the inflamma-

some and secretion of IL-1b through two distinct inter-

actions. First, the authors reveal a novel interaction

between RIG-I and the CARD9-BCL10, factors know

to be involved in triggering of NF-kB activation. Inter-

estingly, RIG-I and MDA5 could directly interact with

CARD9 to drive this response during acute VSV in-

fection or 5’ppp RNA stimulation. In addition, RIG-I

alone was shown to interact with ASC to promote

Caspase-1 mediated cleavage of pro-IL-1b independent

of the known NLR, NLRP3 (Figure 4). These obser-

vations demonstrate unique signaling pathway for RIG-I

that occurs independently of IPS-1 within a novel

inflammasome pathway. A highly rigorous examination

of this response is necessary to truly place it in the

context of anti-viral signaling and innate immune pro-

graming.

NLRs have also been identified as negative regulators of

RLR signaling. The NLR family member NLRX1 loca-

lizes to the mitochondria and was shown to block RIG-I

signaling in a mechanism that required its binding to IPS-

1. Further, siRNA knockdown of NLRX1 led to

enhanced IFN and NF-kB activation to Sindbis virus
RIG-I Inflammasome

VSV, 5’ppp

NFκB

IL-1β

Cleaved IL-1βCASP1

ASCRIG-IA5

CARD9

BCL10
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athway for recognition of bacterial and viral PAMPs is shown on the left.

SV leads to activation of IRF-3 signaling. The RIG-I inflammasome is

0 to activate NF-kB. This leads to induction of pro-IL-1b. RIG-I but not

f Caspase-1. This leads to cleavage of IL-1b and secretion from the cell.
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infection [72]. NLRP5 was also recently described to

limit multiple pro-inflammatory pathways including

NF-kB and IFN response pathways, either through

modulation of IKK phosphorylation or direct binding to

RIG-I and MDA5 [73–75]. The ability of NLRs to act

both as positive and negative regulators of RLR signaling

suggests an important new avenue in understanding PRR

cross-regulation.

Concluding remarks
The RLR pathway plays a critical role in the induction of

both IFN and pro-inflammatory responses to viral in-

fection. Our initial understanding of the complexity of

this pathway has recently been expanded by key findings

in the mechanisms that trigger activation and regulation

of RLRs and their crosstalk with other innate immune

signaling programs. Moreover, a role for RLR signaling

crosstalk has been revealed as paramount in controlling

polymicrobial infections involving RLRs, NLRs, and

TLRs as specific PRRs that induce the immune response

to viral and bacterial infections. Consideration of RLR

signaling regulation, ligand and protein interactions, and

signaling crosstalk will be important for future vaccine

and immune adjuvant strategies aimed at suppressing

microbial infection and controlling virus replication and

spread.
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