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Abstract: In this work, fluorocarbon film was deposited on silicon (P/100) substrate using
polytetrafluoroethylene (PTFE) as target material at elevated sputtering temperature. Field emission
scanning electron microscopy (FESEM), atomic force microscopy (AFM), Raman spectroscopy and
X-ray photoelectron spectroscopy (XPS) were employed to investigate the surface morphology as
well as structural and chemical compositions of the deposited film. The surface energy, as well as the
polar and dispersion components, were determined by water contact angle (WCA) measurement.
The experimental results indicated that increasing sputtering temperature effectively led to higher
deposition rate, surface roughness and WCA of the film. It was found that the elevated temperature
contributed to increasing saturated components (e.g., C–F2 and C–F3) and decreasing unsaturated
components (e.g., C–C and C–CF), thus enhancing the fluorine-to-carbon (F/C) ratio. The results are
expected aid in tailoring the design of fluorocarbon films for physicochemical properties.

Keywords: fluorocarbon; surface nanostructure; sputtering temperature; surface properties

1. Introduction

Fluorocarbon film, due to its superior hydrophobicity, low dielectric constant and small friction
coefficient, is a promising material in various fields (e.g., self-cleaning coatings for perovskite solar
cells, interlayer dielectrics in integrated circuits and lubricant coatings in micro-machines) [1–3]. Based
on these attractive properties, a variety of approaches have been applied to fabricate fluorocarbon films,
such as dielectric barrier discharge (DBD), ion beam sputter depositing (IBSD) and plasma-enhanced
chemical vapor deposition (PECVD) [4–6]. However, drawbacks like induced impurities, small-scale
deposition, as well as harmful and expensive raw materials (e.g., CF4, C4F8 and C5F8) restrict
their extensive applications. Radio-frequency (RF) sputtering is quoted as an excellent alternative
for fluorocarbon film fabrication owing to its capability of large-scale deposition, safe preparation
process and excellent process controllability [7–9]. The sputtered fluorocarbon film exhibits improved
physicochemical properties (e.g., lubrication, chemical inertness and thermal stability) by controlling
the fabrication process to form a structure similar to that of polytetrafluoroethylene (PTFE). The
PTFE-like fluorocarbon film with improved physicochemical properties is expected and pursued in
various fields [10,11].

The deposition of fluorocarbon films is controlled by various factors, including sputtering
type [12–14], target material [15,16] and substrate temperature [17,18]—all of which govern the
modulus, hardness and wettability by adjusting the elemental composition and surface morphology.
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Since the deposition is a plasma-associated process, much is known of the sputtering power [19],
target–substrate distance [20,21] and gas conditions [22–25] that vary the plasma conditions, leading to
various fluorocarbon film characteristics (e.g., electrical conductivity, scratch resistance and thermal
stability). Additionally, the chamber temperature has been documented to affect the surface topography
and wettability of fluorocarbon films [26]. The phenomenon of an elevated chamber temperature
leading to plasma color transformation from light red to dark red is also observed in our experiments.
As is well-known, the color change manifests variations of plasma species, density and temperature,
etc. [27]. This prompted us to investigate the influence of sputtering temperature, which includes
the chamber and substrate temperatures, on fluorocarbon film deposition. This work aimed to
obtain full-scale understanding of the kinetic energies of argon ions, the collisions between argon
atoms and ejected fragments (e.g., C–C, C–CF, C–F), as well as the adsorption capabilities of ejected
fragments by discovering the variations of surface topography and elemental composition with
sputtering temperature.

2. Materials and Methods

Figure 1 shows the RF (13.56 MHz) magnetron sputtering system for fluorocarbon film fabrication.
The vacuum chamber of the sputtering system was in a “sputter-up” configuration with a PTFE target
(purity 99.99%, diameter 3 inches, thickness 4 mm). The silicon substrate (size 4 × 4 mm2, thickness 0.5
mm) was mounted on top of the chamber with the capability of adjusting temperature (50–200 ◦C) by
an installed heater and a thermocouple. The stainless-steel heating elements were fixed around the
substrate with another thermocouple monitoring the chamber temperature.
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Figure 1. Schematic diagram of the magnetron sputtering system.

The silicon substrate was ultrasonically cleaned by anhydrous alcohol and deionized water
successively, and then dried in nitrogen before being loaded into the chamber. The chamber was
evacuated to a base pressure of 5 × 10−4 Pa. The PTFE target was pre-sputtered in argon plasma for 15
min in order to remove excessive oxide surface layer. The sputtering was conducted in argon plasma at
a target–substrate distance of 100 mm, a working pressure of 0.5 Pa and a discharge power of 80 W for
1 h. Both the chamber and substrate temperatures were controlled at the same value. Each experiment
was done at a fixed temperature of 50, 100, 150 and 200 ◦C.

The film thickness was an average value of five measurements taken by a surface profiler (Dektak
XT, Bruker, Germany). Field-emission scanning electron microscopy (FESEM, JSM-7800F, JEOL, Tokyo,
Japan) with a beam accelerating voltage of 20 kV was applied to inspect the surface morphology of
fluorocarbon films. An atomic force microscope (AFM, MFP-3D-BIO, Asylum Research, Goleta, CA,
USA) working in contact mode was utilized to measure the arithmetic average of the roughness profile
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(Ra). The AFM provided quantitative information about surface structures through a mechanical tip
which scans and senses the surface. The static water contact angle (WCA) was examined on a WCA
goniometer (SDC-100, SINDIN, Chengdu, China). Both contact angles of water and methylene iodide
with the droplet volume of 10 µL were measured at room temperature. The polar component (γs

p) and
dispersion component (γs

d) of the surface free energy (γs
owk) were calculated by applying the contact

angles of water and methylene iodide to the Owens–Wendt–Kaelble (OWK) approach and Young’s
equation (Equations (1) and (2)) [28].

γs
owk = γs

p+γs
d (1)

γL·(1 + cosθ) = 2[(γs
dγL

d)1/2 + [(γs
pγL

p)1/2] (2)

In Equation (2), the parameters of θ and γL indicate the measured contact angles and the known
surface free energy of water and methylene iodide, respectively. The structural changes of fluorocarbon
films were determined by Raman spectroscopy (LabRAM HR Evolution, HORIBA Jobin Yvon S.A.S,
Palaiseau, France) with laser wavelength of 325 nm. Based on the interaction of light with chemical
bonds within the films, the non-destructive light scattering technique provides detailed spectra, which
demonstrates the intensity and wavelength position of the Raman scattered light. The chemical
composition was evaluated through X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo
Scientific, Waltham, MA, USA) with Al Kα radiation (1486.6 eV) at a power of 25 W. Charging of the
films that resulted from photoemission was calibrated using adventitious carbon referencing (C 1s,
284.6 eV). The spot size of the X-ray beam was 500 × 500 µm2 in each case.

3. Results and Discussion

Figure 2 exhibits the overall XPS spectra of fluorocarbon films with elevated temperature. The
dominant peak of F 1s with small peaks of C 1s, O 1s and O 2s in XPS spectra verify the successful
deposition of the films on the substrate. Compared with the molecular formula of PTFE ([C2F4]n),
the appearance of weak O 1s and O 2s peaks indicates that a small amount of oxygen was present in
fluorocarbon films, which may be due to the residual contaminations on the substrate, as well as the
oxidation of the films when exposed to the atmosphere. Furthermore, the peak intensities of C 1s and F
1s increased while those of O 1s and O 2s decreased with the elevated temperature. The phenomenon
was probably caused by the removal of adsorbed contaminants from the substrate, which resulted
from the increased substrate temperature. Accordingly, the elevated temperature was beneficial for
improving the purity of the fluorocarbon films.
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Figure 2. Full-scan XPS spectra of fluorocarbon films as a function of sputtering temperature. Figure 2. Full-scan XPS spectra of fluorocarbon films as a function of sputtering temperature.
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The XPS spectra related to the C 1s signal (Figure 3) were divided into five peaks at the binding
energies of 284.2, 286.8, 289.7, 291.5 and 293.5 eV, suggesting the existence of C–C, C–CF, C–F, C–F2

and C–F3 bonds, respectively [14,29–32]. The expression of C–F, C–F2 and C–F3 means that the carbon
atoms are linked to one, two and three fluorine atoms, respectively, while C–CF indicates the connection
of one carbon atom to another carbon atom, which is bound with a fluorine atom. In addition, C–C
demonstrates that only two carbon atoms are linked together. The area under each peak indicates the
relative presence of each bond type.
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Figure 3. The C 1s spectra of fluorocarbon films deposited at the sputtering temperature of 50 ◦C (a),
100 ◦C (b), 150 ◦C (c) and 200 ◦C (d).

The elevated temperature was beneficial for the enhanced atomic concentrations of C–F2 and C–F3,
which increased to 37.15% and 11.64%, respectively (Figure 4). Meanwhile, the atomic concentrations
of C–C and C–CF dramatically reduced down to 1.13% and 27.12%, respectively. However, the atomic
concentration of C–F fluctuated, first increasing from 22.52% to 23.77%, and then decreasing from
23.77% to 22.96%, via 23.02%. The calculated F/C ratio of fluorocarbon films exhibited an increasing
trend, from 0.99 to 1.24 (via 1.05 and 1.11) with the elevation of temperature from 50 to 200 ◦C, via 100
and 150 ◦C.
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For the PTFE target characterized by long chains of fluorinated carbons, [CF2-CF2]n served as
the bulk of the chain. The appeared chemical bonds of C–C, C–CF and C–Fx (x = 1, 2, 3) indicate that
the chain had broken due to the collisions between the target and argon. As the bond dissociation
energy of C–C (618.3 ± 15.4 kJ/mol) is higher than that of C–F (513.8 ± 10.0 kJ/mol), the formation of
C–C bonds is much easier than the formation of C–F bonds [33]. The survival competition between
the saturated components (SCs, e.g., C–F3, C–F2) and the unsaturated components (UCs, e.g., C–C,
C–CF) on the substrate indicates that the formation of SCs requires a higher momentum transfer.
Therefore, the proportion of SCs increased with the elevated substrate temperature. The survival
competition between UCs and SCs was confirmed by the increased proportions of C–F2 and C–F3, as
well as the relatively decreased proportions of C–C and C–CF. As the structure of the PTFE target
is long continuous chains with fluorinated carbon twisted into a helix, the fluorine sheath of PTFE
exhibits a compact “capsule” structure. The fluorine sheath consists of C–F bonds. The initial breaking
of C–F bonds offers opportunities for argon ions to collide with C–C bonds inside the sheath, resulting
in the breaking of C–C bonds. Therefore, although the elevated substrate temperature was beneficial
for the formation of a higher proportion of C–F bonds on the substrate, the atomic concentration of C–F
fluctuated with the sputtering temperature. The increased F/C ratio was consequently caused by the
formation of a higher proportion of SCs and a lower proportion of UCs on the substrate. Accordingly,
the elevated sputtering temperature contributed to increasing the F/C ratio, which favors the formation
of PTFE-like fluorocarbon films with superior physicochemical properties [34,35].

Figure 5 shows a nonlinear relationship between sputtering temperature and the deposition rate
of fluorocarbon films. The elevated temperature from 50 to 200 ◦C effectively increased the deposition
rate from 1.25 to 4.13 nm/min, via 2.91 and 3.43 nm/min. The sputtering temperature covered both
the chamber and substrate temperatures. The elevated chamber temperature induced the increased
temperature of argon ions. Higher temperature of argon ions prolongs its mean free path (λ′fp),
according to Equations (3) and (4). In these equations, N relates to the density of argon ions. Pg and
Tg refer to the pressure and temperature of argon ions. KB is the Boltzmann constant. σ indicates
the geometric cross section between argon ions and other particles (e.g., argon atoms and ejected
fragments) during collisions.
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N = Pg/(KB·Tg) (3)

λ = 1/(N·σ) (4)

Ei = 2(λ′fp/L)·(e·Vc) (5)

Based on Equation (5), the prolonged λ′fp increases the average energy (E′i) of argon ions. L is the
distance between the cathode and the anode of the RF sputtering system. Vc indicates the cathode fall
voltage and e refers to the electron charge [36]. The elevated chamber temperature should be beneficial
for increasing the ion temperature, as well as the ion energy. However, the ion energy gained from the
higher chamber temperature is less than 1% of that from the power supply. This phenomenon guides
us to focus the process of the fragments from target to substrate, which could be strongly influenced by
the elevated chamber temperature.

The higher chamber temperature increases the temperature of ejected fragments, resulting in
their prolonged mean free path (λ”fp). The prolonged λ”fp decreases the number of effective collisions
between ejected fragments and other particles (e.g., argon ions and atoms), which is helpful to reduce
the kinetic energy loss of ejected fragments. Furthermore, the prolonged λ”fp is beneficial for the
increased average energy (E”i) of ejected fragments, thus contributing to the successful deposition of
ejected fragments on the substrate [37].

Elevated substrate temperature has been reported to have a negative effect on fluorocarbon film
deposition, due to the negative apparent activation energy, which promotes desorption rather than
adsorption of ejected fragments on the substrate [10]. The promoted desorption reduces the sticking
coefficient of ejected fragments, thus weakening their adhering capabilities to the substrate [17]. The
sticking coefficient depicts a probability for the ejected fragments to be trapped on the surface of the
silicon substrate through losing their kinetic energy by transferring their energy to the silicon atoms.
However, the reduced sticking coefficient tends to be offset by the increased E”i [29]. In addition, the
atomic concentrations of larger fragments (e.g., C–F2, C–F3) increases with the elevated sputtering
temperature (Figure 4). As larger fragments exhibit a higher sticking coefficient than smaller fragments
(e.g., C–C and C–CF), the increased atomic concentrations of larger fragments help to increase the
sticking coefficient of fluorocarbon films [29]. Moreover, the elevated substrate temperature is beneficial
for fluorocarbon film densification by enhancing the re-condensation process of ejected fragments on
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the substrate [38]. Accordingly, the elevated sputtering temperature is beneficial for more efficient
fluorocarbon film deposition, through the decreased energy loss, improved sticking coefficient and
enhanced re-condensation of ejected fragments.

Figure 6 shows the nanostructural evolution of fluorocarbon films as a function of elevated
sputtering temperature. It can be seen that the films consisted of almost spherical grains with an
equivalent diameter of 100 nm. For the temperatures of 50 and 100 ◦C, the amount of grains was
relatively small, which is consistent with the low deposition rate demonstrated in Figure 5. The
grains were sparsely distributed on the substrate, with a tendency of adjoining each other at elevated
temperatures. When the temperature increased to 150 ◦C, the adjacent grains pressed together and
formed large numbers of clusters. At 200 ◦C, the bottoms of the clusters connected with each other and
the top of that grew vertically, leading to the network structure formation of granular fluorocarbon films.
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Figure 6. Surface morphology of fluorocarbon films deposited at various sputtering temperatures: (a)
50 ◦C, (b) 100 ◦C, (c) 150 ◦C, (d) 200 ◦C.

Based on the minimum surface area criterion, grains exhibit a spherical shape, with the lowest
surface energy. The similar sizes of spherical grains indicate their formation in vapor phase. The
surface morphology of granular films is primarily controlled by the mobility and diffusion of ejected
fragments on the substrate. Owing to the increased E”i, the ejected fragments exhibited activated
mobility, which contributed to the formation of adjacent grains. The improved diffusion of ejected
fragments was achieved by the elevated substrate temperature, which favors grain accumulation and
cluster densification [39]. Moreover, as the elevated sputtering temperature is beneficial for higher
deposition rates, more grains formed on the substrate. The increased amount of grains reduces the
average distance between them and contributes to their combination.

The AFM images in Figure 7 indicate an increased Ra from 16.7 to 22.8 nm, via 18.2 and 20.3 nm
with the elevated sputtering temperature. The insert images are corresponding WCAs of fluorocarbon
films. Based on the measured contact angles, the γs

OWK, γS
d and γS

p were calculated and are listed in
Table 1. As WCA of the reference silicon substrate is 68.2◦, the introduction of fluorocarbon films on
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the substrate at 50 ◦C dramatically increased the WCA to 107.2◦. The further elevated temperature
contributed to a higher WCA from 112.1◦ to 125.1◦, via 122.5◦. Based on Equations (1) and (2), the
calculated γs

OWK decreased from 11.82 to 9.52 mJ/m2. Meanwhile, γS
d and γS

p dropped from 15.13
and 1.09 mJ/m2 down to 9.49 and 0.02 mJ/m2.
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Figure 7. Atomic force microscopy (AFM) images and water contact angles (WCAs) of fluorocarbon
films sputtered at 50 ◦C (a), 100 ◦C (b), 150 ◦C (c) and 200 ◦C (d).

Table 1. Surface properties of fluorocarbon films.

Sputtering Temperature (◦C) Ra (nm) WCA (◦) γs
OWK (mN/m) γs

d (mN/m) γs
p (mN/m)

50 16.7 107.2 16.22 15.13 1.09
100 18.2 112.1 11.82 10.74 1.08
150 20.3 122.5 10.54 10.48 0.06
200 22.8 125.1 9.52 9.49 0.02

The elevated sputtering temperature was confirmed to promote the growth, motion and coalescence
of fluorocarbon films according to their nanostructural evolution (Figure 6). For the sputtering
temperature of 50 ◦C, clusters seldom formed on the substrate. Surface roughness mainly depends on
the small amount of initially dispersed grains. With the increase of sputtering temperature from 100 to
150 ◦C, the grains gradually joined with each other, leading to the formation of clusters. As the size
of clusters is larger than that of grains, the surface roughness was further enhanced. For sample 4,
prepared at 200 ◦C, the granular fluorocarbon film showed a nanoscale network structure consisting of
larger clusters. The formation of the network structure further enlarged the film’s surface roughness.
Accordingly, the film surface roughness is determined by three factors (i.e., grain, cluster and network
structure), which are dependent on the sputtering temperature.

The surface roughness and chemical composition of fluorocarbon films are considered to have
a critical influence on the WCA [40]. According to the Cassie model, the WCA of a rough surface
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is a composite contact angle between water and the compound surface made of fluorocarbon film
and air [41]. The elevated temperature from 50 to 200 ◦C increased the surface roughness through
the deposition of grains and clusters, followed by the formation of the network structure. Compared
with grains, clusters are more capable of trapping air. Furthermore, the network structure has the
most powerful ability to trap air, thus preventing penetration of the droplet into the film surface.
Accordingly, the elevated temperature contributed to enhanced surface roughness, leading to the
increased WCA of fluorocarbon films.

Compared with the WCA of the silicon substrate, the increased WCA of fluorocarbon films was
mainly attributed to the presence of fluorinated groups, which help to lower γs

OWK due to their
chemical inertness [42]. In addition, XPS results confirmed the increased fluorine-to-carbon (F/C)
ratio, resulting in further reduced γs

OWK of fluorocarbon films with elevated temperature (Figure 4).
Therefore, both the enhanced surface roughness and the reduced γs

OWK were responsible for the
increased WCA of the films. Table 1 shows that the reduced γs

OWK was mainly due to the decreased
γS

d of the fluorocarbon films. Overall, the γs
OWK originates from the unbalanced forces between

atoms or molecules inside and interface. The γS
p is determined by different intermolecular forces

(e.g., permanent, induced dipoles and hydrogen bonding), while the γS
d known as London forces is

caused by instantaneous dipole–induced dipole interactions. Specifically, the γS
p reduced due to fewer

unsaturated components (e.g., C–C and C–CF) in fluorocarbon films with the elevated temperature [43].
Compared with the slightly changed amount of C–F, the decreased amount of C–CF and increased
amount of C–F2 contributed to reduce the γS

d (Figure 4) [43,44].
Figure 8 reports the Raman spectra (1200–2000 cm−1) detecting a G (graphite) peak and a D

(disorder) peak. The G peak was broader and more asymmetric compared to the D peak. The peak
intensities and positions were obtained by deconvolving the spectra. The deconvolved spectra revealed
the intensity ratio of D and G peaks (I(D)/I(G)), which decreased from 0.74 to 0.46, via 0.66 and 0.60.
Meanwhile, the corresponding G peak position shifted upward from 1585 to 1609 cm−1, via 1592 and
1606 cm−1, with the elevated temperature from 50 to 200 ◦C, via 100 and 150 ◦C.
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The G peak in Figure 8 was attributed to the symmetric E2g vibrational mode in graphite-like
materials, while the D peak stemmed from the limitation in the graphite domain size induced by
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grain boundaries or imperfections, such as sp3 carbon and other defects [45]. The Raman spectra
reflected the amorphous structure of fluorocarbon films with sputtering temperature ranging from 50
to 200 ◦C. The decreased intensity ratio of I(D)/I(G) and upshifting of the G peak position towards a
higher wavenumber were attributed to the increased proportion of sp3 carbon atoms, accompanying
more covalently bonded fluorine to carbon [46,47]. From the molecule kinematics viewpoint, the
elevated sputtering temperature contributed to prolonging the mean free path of argon atoms and
electrons, thus decreasing their collisions. The decreased collisions between argon atoms and electrons
reduced the ionization rate of argon ions [48]. As the PTFE target consists of sp3 carbon atoms, the
reduced ionization rate, together with the enhanced deposition rate of fluorocarbon films, promoted
the formation of a higher proportion of sp3 carbon atoms (Figure 5) [49]. The increased proportion
of sp3 carbon atoms is beneficial for the sp2 configuration of olefinic groups with high vibrational
frequencies, which leads to the upshifting of the G peak position [46].

4. Conclusions

In this work, fluorocarbon film was deposited on silicon substrate at elevated sputtering
temperatures from 50 to 200 ◦C, via 100 and 150 ◦C. The deposition rate of the films increased
from 1.25 to 4.13 nm/min, and the surface roughness was enhanced from 16.7 to 22.8 nm. Based
on the increased WCA of fluorocarbon films from 107.2◦ to 125.1◦, the calculated γs

OWK decreased
from 16.22 to 9.52 mJ/m2, accompanied by both the reduction of γS

d and γS
p. Besides the increased

surface roughness, the enhanced F/C ratio was also responsible for the WCA increment. The elevated
temperature enhanced the F/C ratio from 0.99 to 1.24, due to the increased proportions of saturated
components and decreased proportions of unsaturated components. From the molecule kinematics
viewpoint, the elevated temperature contributes to prolonging the mean free path of argon ions,
argon atoms and ejected fragments, leading to reduced collisions inside the vacuum chamber and the
improved sticking coefficient on the substrate. Therefore, elevated temperature contributes to promote
fragment deposition on the substrate with increased F/C ratio.
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