
CPT Pharmacometrics Syst Pharmacol. 2022;11:1151–1169.	﻿	   |  1151www.psp-journal.com

INTRODUCTION

Bayesian inference offers a principled approach to learn
about unknown variables from data using a probabilis-
tic analysis. The conclusions we draw are based on the
posterior distribution that, in all but the simplest cases,
is intractable. We can, however, probe the posterior using
a host of techniques such as Markov Chain Monte Carlo
(MCMC) sampling and approximate Bayesian computa-
tion. Writing these algorithms is a tedious and error-prone
endeavor but fortunately modelers can often rely on exist-
ing software with efficient implementations.

In the field of pharmacometrics, statistical software such
as NONMEM®,1 Monolix®,2 and the R package nlmixr3
support many routines to specify and analyze pharmaco-
kinetic (PK) and pharmacodynamic (PD) population mod-
els. There also exist more general probabilistic programing
languages such as BUGS4 and more recently Stan,5 to name
only a few examples. This tutorial focuses on Stan. Stan sup-
ports a rich library of probability densities, mathematical

functions including matrix operations, and numerical solv-
ers for differential equations. These features make for an
expressive and flexible language; however, writing common
pharmacometrics models can be tedious. Torsten extends
Stan by providing a suite of functions to facilitate the speci-
fication of pharmacometrics models. These functions make
it straightforward to model the event schedule of a clinical
trial and parallelize computation across patients for popu-
lation models.

This tutorial reviews key elements of a Bayesian mod-
eling workflow in Stan, including model implementation,
inference using MCMC, and diagnostics to assess the
quality of our inference and modeling. We assume the
reader is familiar with compartment models in PK and PD
and has experience with data that describe a clinical event
schedule. Because Torsten follows the input conventions
in NMTRAN®, experience with NONMEM® is helpful al-
though not essential. Likewise, exposure to Bayesian sta-
tistics and inference algorithms is desirable, in particular
an elementary understanding of MCMC.

Received: 4 November 2021  |  Revised: 24 March 2022  |  Accepted: 28 April 2022

DOI: 10.1002/psp4.12812

T U T O R I A L

Flexible and efficient Bayesian pharmacometrics modeling
using Stan and Torsten, Part I

Charles C. Margossian1  | Yi Zhang2  | William R. Gillespie2

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.
© 2022 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and
Therapeutics.

1Department of Statistics, Columbia
University (formerly Metrum Research
Group, Inc.), New York, New York, USA
2Metrum Research Group, Inc.,
Tariffville, Connecticut, USA

Correspondence
William R. Gillespie, Metrum Research
Group, Inc., Tariffville, Connecticut,
USA.
Email: billg@metrumrg.com

Funding information
This work has been funded in part by
the Office of Naval Research (Contract
N00014-16-P-2039) and the Bill and
Melinda Gates Foundation

Abstract
Stan is an open-source probabilistic programing language, primarily designed to
do Bayesian data analysis. Its main inference algorithm is an adaptive Hamiltonian
Monte Carlo sampler, supported by state-of-the-art gradient computation. Stan's
strengths include efficient computation, an expressive language that offers a
great deal of flexibility, and numerous diagnostics that allow modelers to check
whether the inference is reliable. Torsten extends Stan with a suite of functions
that facilitate the specification of pharmacokinetic and pharmacodynamic mod-
els and makes it straightforward to specify a clinical event schedule. Part I of this
tutorial demonstrates how to build, fit, and criticize standard pharmacokinetic
and pharmacodynamic models using Stan and Torsten.

http://www.psp-journal.com
https://doi.org/10.1002/psp4.12812
mailto:﻿
https://orcid.org/0000-0002-4560-6482
http://creativecommons.org/licenses/by/4.0/
mailto:billg@metrumrg.com

1152  |     MARGOSSIAN et al.

We introduce programming in Stan and Torsten with
the assumption that the reader is familiar with R.

Why Stan?

We believe that Stan, coupled with Torsten, can be an im-
portant addition to the pharmacometrician's toolkit, espe-
cially for Bayesian data analysis.

The most obvious strength of Stan is its flexibility: it
is straightforward to specify priors, systems of ordinary
differential equations (ODEs), a broad range of measure-
ment models, missing data models and complex hierar-
chies (i.e., population models). Examples of how Stan's
flexibility may be leveraged in pharmacometrics include
the following:

•	 Combining various sources of data and their corre-
sponding measurement models into one large model,
over which full Bayesian inference can be performed
(e.g., Weber et al.6). In a similar vein, it is possible to
build complex hierarchical structures that allow us to
simultaneously pool information across various groups,
for example, patients, trials, or countries. We will study
such an example in Part 2 of this tutorial.

•	 Using a sparsity inducing prior, such as a the Horseshoe
prior,7,8 to fit models with a high-dimensional covariate.
This approach has, for example, been used in oncology9
and is a promising avenue in pharmacogenetics.10

•	 Incorporating a non-parametric regression, such as a
Gaussian process, to build a translational model for pe-
diatric studies (e.g., Siivola et al.11).

 Stan's expressive language plays a crucial part here be-
cause more specialized software do not readily handle the
relatively complex structures and priors the previous exam-
ples require.

In addition, Stan supports state-of-the-art inference al-
gorithms, most notably an adaptive Hamiltonian Monte
Carlo (HMC) sampler, a gradient-based MCMC algo-
rithm12 based on the No U-Turn sampler (NUTS),13 auto-
matic differentiation variational inference (ADVI),14 and
penalized maximum likelihood estimators. Stan's infer-
ence algorithms are supported by a modern automatic dif-
ferentiation library that efficiently generates the requisite
derivatives.15 It is worth pointing out that algorithms such
as NUTS and ADVI were first developed and implemented
in Stan before being widely adopted by the applied statistics
and modeling communities. As of the writing of this arti-
cle, new inference algorithms continue to be prototyped in
Stan. Recent such examples include adjoint-differentiated
Laplace approximations,16 cross-chain warmup,17 and
path finding for improved chain initialization.18 Some of

Stan's algorithms are now available in specialized phar-
macometrics software. NONMEM® supports an HMC
sampler, although certain diagnostics required to assess
the quality of HMC, notably for population models, are
still missing.

Stan indeed provides a rich set of diagnostics, includ-
ing the detection of divergent transitions during HMC
sampling,12 and the improved computation of effective
sample sizes and scale reduction factors, R̂,

19 as well as
detailed warning messages based on these diagnostics.
The automated running of these diagnostics makes the
platform more user friendly and provides much guidance
when troubleshooting our model and our inference.

Last but not least, both Stan and Torsten are open-
source projects, meaning they are free and their source
code can be examined and, if needed, scrutinized. The
projects are under active development with new features
being added regularly.

Bayesian inference: notation, goals,
and comments

Given the observed data  and latent variables � from
the parameter space Θ, a Bayesian model is defined by
the joint distribution p(, �). The latent variables can in-
clude model parameters, missing data, and more. In this
tutorial, we are mostly concerned with estimating model
parameters.

The joint distribution observes a convenient
decomposition,

with p(�) the prior distribution and p(|�) the likeli-
hood. The prior encodes information about the parame-
ters, usually based on scientific expertise or results from
previous analysis. The likelihood tells us how the data
are distributed for a fixed parameter value and, per one
interpretation, can be thought of as a “story of how the
data is generated.”20 The Bayesian proposition is to base
our inference on the posterior distribution of the param-
eters, p(�|), and more generally the posterior distribu-
tion of any derived quantity of interest, p(f (�)|).

For typical pharmacometric applications, the full joint
posterior density of the model parameters is an unfathom-
able object that lives in a high-dimensional space. Usually
we cannot even numerically evaluate the posterior den-
sity at any particular point! Instead, we must probe the
posterior distribution and learn the characteristics that
interest us the most. In our experience, this often includes
a measure of a central tendency and a quantification of
uncertainty, for example, the mean and the variance, or

p(, �) = p(�)p( |�),

     |  1153BAYESIAN MODELING USING STAN AND TORSTEN, PART I

the median and the 5th and 95th quantiles for any quan-
tity of interest. For skewed or multimodal distributions,
we may want a more refined analysis that looks at many
quantiles. What we compute are estimates of these quan-
tities. Most Bayesian inference involves calculations based
on marginal posterior distributions. That typically re-
quires integration over a high number of dimensions—an
integration that is rarely tractable by analytic or numer-
ical quadrature. One strategy is to generate approximate
samples from the posterior distribution and then use the
sample mean, sample variance, and sample quantiles as
our estimators.

Bayes' rule teaches us that

Typically we can evaluate the joint density in the numerator
but not the normalizing constant, p(), in the denominator.
A useful method must therefore be able to generate samples
from the posterior p(�|) using the unnormalized posterior
density, p(, �). Once we generate a sample �, we can apply
a transformation f to obtain a sample from p(f (�)|).

Many MCMC algorithms are designed to generate sam-
ples from an unnormalized density. Starting at an initial
point, these chains explore the parameter space Θ, one
iteration at a time, to produce the desired samples. The
first iterations of MCMC are used to find and explore the
region in the parameter space where the posterior prob-
ability mass concentrates. Only after this initial warmup
phase do we begin the sampling phase.

HMC is an MCMC method that uses the gradi-
ent to efficiently move across the parameter space.12,21
Computationally, running HMC requires evaluating
log p(, �) and ∇�log p(, �) many times across Θ, that is,
for varying values of � but fixed values of . For this pro-
cedure to be well defined, � must be a continuous variable,
else the requisite gradient does not exist. Discrete parame-
ters require a special treatment, which we will not discuss
in this tutorial.

A Stan program specifies a method to evaluate
log p(, �). Thanks to automatic differentiation, this im-
plicitly defines a procedure to compute ∇�log p(, �).22–24
Together, these two objects provide all the relevant infor-
mation about our model to run HMC sampling and other
gradient-based inference algorithms.

Bayesian workflow

Bayesian inference is only one step of a broader modeling
process, which we might call the Bayesian workflow.12,25,26
Once we fit the model, we need to check the inference and,

if needed, fine tune our algorithm, or potentially change
method. And once we trust the inference, we naturally need
to check the fitted model. Our goal is to understand the
shortcomings of our model and motivate useful revisions.
During the early stages of model development, this mostly
comes down to troubleshooting our implementation, and
later this “criticism” step can lead to deeper insights.

All through the tutorial, we demonstrate how Stan and
Torsten can be used to check our inference and our fitted
model.

Setting up Stan and Torsten

Detailed instructions on installing Stan and Torsten can
be found on https://github.com/metru​mrese​archg​roup/
Torsten. At its core, Stan is a C++ library, but it can be
interfaced with one of many scripting languages, includ-
ing R, Python, and Julia. Running Stan requires a modern
C++ compiler such as g++ 8.1 provided by RTools 4.0 on
Windows and the GNU-Make utility program on Mac or the
Windows equivalent mingw32-make. More details of setting
up work environment can be found in the CmdStan User's
Guide.27 We will use cmdStanR, which is a lightweight
wrapper of Stan in R, and in addition, the packages poste-
rior,28 bayesplot,29 and loo.30 We generate most of the figures
in this article using BayesPlot, although at times we trade
convenience for flexibility and fall back to ggplot2.31

The R and Stan code for all examples are available at
https://github.com/metru​mrese​archg​roup/torst​en_​tutor​ial​_1_
suppl​ementary.

Resources

Helpful reads include the Stan User Manual32 and
the Torsten User Manual.33Statistical Rethinking by
McElreath34 provides an excellent tutorial on Bayesian
analysis that may be used for self-learning. A compre-
hensive textbook on Bayesian modeling is Bayesian Data
Analysis by Gelman et al.,20 with more recent insights
on the Bayesian workflow provided by Gelman et al.26
Betancourt12 offers an accessible discussion on MCMC
methods with an emphasis on HMC.

TWO - COMPARTMENT MODEL

As a starting example, we demonstrate the analysis of longi-
tudinal plasma drug concentration data from a single indi-
vidual using a linear two-compartment model with first-order
absorption. The individual receives multiple doses at regular
time intervals, and the plasma drug concentration is recorded

p(� |) =
p(, �)
p()

=
p( |�)p(�)

p()
.

https://github.com/metrumresearchgroup/Torsten
https://github.com/metrumresearchgroup/Torsten
https://github.com/metrumresearchgroup/torsten_tutorial_1_supplementary
https://github.com/metrumresearchgroup/torsten_tutorial_1_supplementary

1154  |     MARGOSSIAN et al.

over time. Our goal is to estimate the posterior distribution of
the parameters of the model describing the time course of the
plasma drug concentrations in this individual.

PK model and clinical event schedule

Let us assume an individual receives a drug treatment of
1200 mg boluses q12h × 14 doses. Drug concentrations are
measured in plasma obtained from blood sampled at 0.083,
0.167, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, and 8 hours following
the first, second, and final doses. In addition, we take meas-
urements before each drug intake as well as 12, 18, and 24 h
following the last dose. We analyze that data using a two-
compartment model with first-order absorption:

 with

•	 u(t): drug amount in each compartment (mg),
•	 ka: absorption rate constant (h−1),
•	 CL: elimination clearance from the central compart-

ment (L/h),
•	Q: intercompartmental clearance (L/h),
•	Vcent: volume of the central compartment (L),
•	Vperi: volume of the peripheral compartment (L).

Both intervention and measurement events are described
by the event schedule. Stan does not have any reserved vari-
able names, but in this tutorial, we follow the NONMEM con-
vention to specify events using the variable names in Table 1.
More details can be found in the Torsten User Manual.

Statistical model

Given a treatment, x, and the PK parameters {
ka,Q, CL,Vcent,Vperi

}
, we compute the drug amounts u

by solving the two-compartment ODE. We use y to denote
the measured drug concentration and ĉ

(
= u∕Vcent

)
 the

model-predicted drug concentration. We model the resid-
ual error from y to ĉ using a lognormal distribution

where � is a scale parameter we wish to estimate. The de-
terministic computation of ĉ along with the measurement
model define our likelihood function p(y|�, x), where
� =

{
ka, CL,Q,Vcent,Vperi, �

}
 and x are input data, that is,

the clinical event schedule. Note that we are not limited to
the above simple model. Stan is capable of many distribu-
tions35 as well as encoding more complex residual models
such as the proportional and additive error variance.

It remains to define a prior distribution, p(�). Our prior
should allocate probability mass to every plausible param-
eter value and exclude patently absurd values. For example,
the volume of the central compartment is on the order of 10
L, but it cannot be the size of the sun. In this simulated ex-
ample, our priors for the individual parameters are based on
population estimates from previous (hypothetical) studies.

Suggestions for building priors can be found in Gabry et al.25
and Betancourt36 and at https://github.com/stan-dev/stan/
wiki/Prior​-Choic​e-Recom​menda​tions.

Specifying a model in Stan

We can now specify our statistical model using a Stan file,
which is divided into coding blocks, each with a specific
role. From R, we then run inference algorithms that take
this Stan file as an input.

Data and parameters block

To define a model, we need a procedure that returns the
log joint distribution, log p(, �). Our first task is to declare

(1a)
dugut

dt
= − kaugut

(1b)
ducent
dt

= kaugut −

(
CL

Vcent
+

Q

Vcent

)
ucent +

Q

Vperi
uperi

(1c)
duperi

dt
=

Q

Vcent
ucent −

Q

Vperi
uperi

y ∣ ĉ, � ∼ logNormal
(
log ĉ, �

)
,

CL ∼ logNormal(log(10), 0.25);

Q ∼ logNormal(log(15), 0.5);

Vcent ∼ logNormal(log(35), 0.25);

Vperi ∼ logNormal(log(105), 0.5);

ka ∼ logNormal(log(2.5), 1);

� ∼ Half−Normal(0, 1);

T A B L E 1   Variables used specify an event schedule

Variable Description

cmt Compartment in which event occurs

evid Type of event: (0) measurement, (1) dosing

addl For dosing events, number of additional doses

ss Steady state indicator: (0) no, (1) yes

amt Amount of drug administered

time Time of the event

rate For dosing by infusion, rate of infusion

ii For events with multiple dosing, interdose interval

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations

     |  1155BAYESIAN MODELING USING STAN AND TORSTEN, PART I

the data, , and the parameters, �, using the coding blocks
data and parameters. It is important to distinguish the
two. The data are fixed. By contrast, the parameter values
change as HMC explores the parameter space, and gradi-
ents of the joint density are computed with respect to �,
but not .

For each variable we introduce, we must declare a type
and, for containers such as arrays, vectors, and matrices, the
size of the container (Chapter 5 in the Stan User's Guide37).
In addition, each statement ends with a semicolon. It is
possible to specify constraints on the parameters using the
keywords lower and upper. If one of these constraints is
violated, Stan returns an error message. More important,
constrained parameters are transformed into unconstrained
parameters—for instance, positive variables are put on the
log scale—which greatly improves computation.

Model block

Next, the model block allows us to modify the variable
target, which Stan recognizes as the log joint distribu-
tion. The following statement increments target using
the prior on �, which is a normal density, truncated at 0 to
only put mass on positive values.

The truncation is implied by the fact � is declared as lower
bounded by 0 in the parameters block. An alternative syntax
is the following:

This statement now looks like our statistical formulation
and makes the code more readable. We should be mindful
that this is not a sampling statement but, rather, instructions
on how to increment target. We now give the full model
block:

The likelihood statement involves a crucial term we have
not defined yet: concentrationHat. Additional vari-
ables can be created using the transformed data and
transformed parameters blocks. We will take ad-
vantage of these to compute the drug concentration in the
central compartment for each event. Note that for the like-
lihood, we only use the concentration during observation
events, hence the indexing [iObs].

Transformed data and transformed
parameters block

In transformed data, we can construct variables that
only depend on the data. For this model, we simply specify
the number of compartments in our model (including the
gut), nCmt, and the numbers of PK parameters, nTheta,
two variables that will come in handy shortly.

Because the data are fixed, this operation is only computed
once. By contrast, operations in the transformed pa-
rameters block need to be performed (and differentiated)
for each new parameter value.

To compute concentrationHat we need to solve
the relevant ODE within the clinical event schedule.
Torsten provides a function that returns the drug mass
in each compartment at each timepoint of the event
schedule.

1156  |     MARGOSSIAN et al.

The first eight arguments define the event schedule and the
last argument, theta, is an array containing the PK param-
eters, and defined as follows:

It is also possible to have theta change between events and
specify lag times and bioavailability fractions, although we
will not take advantage of these features in the example at
hand.

The Torsten function we have chosen to use solves the
ODEs analytically. Other routines use a matrix exponen-
tial, a numerical solver, or a combination of analytical and
numerical methods.38 It now remains to compute the con-
centration in the central compartment at the relevant times.
The full transformed parameters block is as follows:

The Stan file contains all the coding blocks in the following
order: data, transformed data, parameters,
transformed parameters, model. The full Stan
code can be found in the https://github.com/metru​mrese​
archg​roup/torst​en_tutor​ial_1_suppl​ementary.

Calling Stan from R

The R package cmdstanr allows us to run a number of al-
gorithms on a model defined in a Stan file. An excellent
place to get started with the package is https://mc-stan.
org/cmdst​anr/artic​les/cmdst​anr.html.

The first step is to “transpile” the file—call it twocpt.
stan—that is, translate the file into C++ and then compile it.

We can then run Stan's HMC sampler by passing in the
requisite data and providing other tuning parameters;
in this case the specified tuning parameters are (i) the
number of Markov chains (which we run in parallel),
(ii) the initial value for each chain, (iii) the number of
warmup iterations, and (iv) the number of sampling
iterations.

By default, Stan uses 1000 warmup iterations and 1000 sam-
pling iterations. Empirically these defaults work well across a
broad range of models when running an adaptive HMC sam-
pler. For relatively simple models, we may even use shorter
warmup and sampling phases, as we have done previously.
This should be contrasted with random walk MCMC, such as
the Gibbs sampler in BUGS, where it is typical to run 5000 or
even 10,000 iterations per phase. Random walk MCMC tends
to generate Markov chains with a higher autocorrelation than
HMC, hence the need to run more iterations. In the next two
sections, we discuss diagnostics that can be used to adjust the
length of the warmup and sampling phases.

There are several other arguments we can pass to the
sampler and that we will take advantage of throughout
the tutorial. For applications in pharmacometrics, we rec-
ommend specifying the initial starting points via the init
argument, as the defaults may not be appropriate. In this
tutorial, we draw the initial points from their priors by de-
fining an appropriate R function.

The resulting fit object stores the samples generated
by HMC from which we can deduce the sample mean,
sample variance, and sample quantiles of our posterior
distribution. This information is readily accessible using
fit$summary() and summarized in Table 2. We could
also extract the samples and perform any number of oper-
ations on them.

Checking our inference

Unfortunately there is no guarantee that a particular al-
gorithm will work across all the applications we will
encounter. We can, however, make sure that certain nec-
essary conditions are met.

Much of the MCMC literature focuses on estimating
expectation values for quantities of interest f ,

using sample estimators

for some samples �(1), �(2), ⋯ , �(n). When constructing
such estimators using MCMC samples, rather than with
exact independent samples, we must account for the fact
that our samples are correlated and biased.

�f = ∫
Θ

f (�)p(�|y)d�,

�̂f =
1

n

n∑

i=1

f
(
�(i)

)
,

https://github.com/metrumresearchgroup/torsten_tutorial_1_supplementary
https://github.com/metrumresearchgroup/torsten_tutorial_1_supplementary
https://mc-stan.org/cmdstanr/articles/cmdstanr.html
https://mc-stan.org/cmdstanr/articles/cmdstanr.html

     |  1157BAYESIAN MODELING USING STAN AND TORSTEN, PART I

Checking for convergence with R̂

MCMC samples are biased because Markov chains gen-
erate correlated samples, meaning any sample has some
correlation with the initial point. If we run the algorithm
for enough iterations, the correlation to the initial point
becomes negligible and the chain “forgets” its starting
point. But what constitutes enough iterations?

To monitor bias, we run multiple Markov chains, each
started at different points, and check that they all con-
verge to the same region of the parameter space. One way
to check this is to compute the R̂ statistics, for which we
provide an intuitive definition:

If the chains are mixing properly, both the numerator and
denominator measure the posterior variance, and R̂ con-
verges to 1.0, as n increases. Moreover, we want R̂ ≈ 1.0,
as is the case in Table 2. Stan uses an improved R̂ statistics
described in a recent article by Vehtari et al.19 We can also
visually check that the chains are properly mixing using a
trace plot (Figure 1).

If �R≫ 1 and, more generally, if the chains were not
mixing, this would be cause for concern and an invitation
to adjust our inference method. One potential solution
is to increase the warmup length. Even when R̂ ≈ 1, we
should entertain the possibility that all the chains suffer
from the same bias.

Controlling the variance of our estimator

Let us assume that our warmup phase is long enough and
the bias negligible. The expected error of our sample esti-
mator is now determined by the variance. Under certain
regularity conditions, our estimator follows an MCMC
central limit theorem,

where neff is the effective sample size, denoted ESSbulk in
Table 2. Deviations from this approximation have order
(1∕n2

eff

)
. In the limiting case where we generate indepen-

dent samples, neff = n; however, when samples exhibit cor-
relation, neff < n and the variance of our sample estimator
increases. For CL, we have 2000 samples, but the effective
sample size is 1580 (Table 2). If neff is low, our estimator may
not be precise enough, and we should increase the sampling
phase to generate more samples.

Achieving neff ≈ 100 is, in our experience, usually suffi-
cient in an applied setting. This means that the variance of
the sample estimator is 1% that of the posterior, as can be seen
from Equation (2). At this point, the uncertainty is dominated
by the intrinsic posterior variance rather than the error in our
inference procedure. If the effective sample size is below 100
for certain quantities, Stan issues a warning message.

The effective sample size is only formally defined in
the context of estimators for expectation values. We may
also be interested in tail quantities, such as extreme quan-
tiles, which are more difficult to estimate and require
many more samples to achieve a desired precision. Vehtari
et al.19 propose a generalization of the effective sample size
for such quantities and introduce the tail effective sample
size. This is to be distinguished from the traditional effec-
tive sample size, henceforth the bulk effective sample size.
Both quantities are reported by Stan.

Checking the model: posterior
predictive checks

Once we develop enough confidence in our inference, we
still want to check our fitted model. There are many ways
of doing this. We may look at the posterior distribution of
an interpretable parameter and see if it suggests implau-
sible values. Or we may evaluate the model's ability to

R̂
intuitively

=

√
Total variance across all chains

Average within chain variance
.

(2)�̂f
approx
∼ Normal

�
�f ,

�f
√
neff

�

T A B L E 2   Summary of results when fitting a two-compartment model

Mean Median sd mad q5 q95 R̂ ESSbulk ESStail

CL 10.0 10.0 0.378 0.367 9. 39 10.6 1.00 1580 1348

Q 19.8 19.5 4.00 4.01 13.8 26.8 1.00 985 1235

Vcent 41.2 40.8 9.71 9.96 25.6 57.7 1.00 732 1120

Vperi 124 123 18.0 18.0 97.1 155 1.00 1877 1279

ka 1.73 1.67 0.523 0.522 1.01 2.68 1.00 762 1108

� 0.224 0.222 0.0244 0.0232 0.187 0.269 1.01 1549 1083

Note: The first columns return sample estimates of the posterior mean, median, standard deviation, median absolute deviation, 5th and 95th quantiles, based
on our approximate samples. The next three columns return the R̂ statistics and the effective sample size for bulk and tail estimates, and can be used to identify
problems with our inference.

1158  |     MARGOSSIAN et al.

perform a certain task, for example, classification or pre-
diction, as is often done in machine learning. In practice,
we find it useful to do posterior predictive checks (PPCs),
that is, simulate data from the fitted model and compare
the simulation to the observed data (Chapter 6 in Gelman
et al.39). Mechanically, the procedure is straightforward:

1.	 Draw the parameters from their posterior, �̃ ∼ p(�|y).
2.	 Draw the predicted observations from the likelihood,

conditional on the drawn parameters, ỹ ∼ p
(
y | �̃

)
.

This amounts to drawing observations from their pos-
terior distribution, that is, ỹ ∼ p(ỹ |y). Both the uncertainty
due to our estimation and the uncertainty due to our mea-
surement model propagate to our predictions.

Stan provides a generated quantities block, which
allows us to compute values, based on sampled parameters.
In our two-compartment model example, the following
code draws predicted observations from the likelihood:

We generate predictions at the observed points for each
sampled point, �(i). This gives us a sample of predictions,
and we can use the 5th and 95th quantiles to construct
a credible interval. We may then plot the observations
and the credible intervals (Figure 2) and see that, indeed,
the data generated by the model are consistent with the
observations.

Comparing models: leave-one-out
cross-validation

Beyond model criticism, we may be interested in model
comparison. Continuing our running example, we com-
pare our two-compartment model to a one-compartment
model, which is also supported by Torsten via the pmx_
solve_onecpt routine. The corresponding PPCs are
shown in Figure 3.

There are several ways of comparing models, and which
method is appropriate crucially depends on the insights
we wish to gain. If our goal is to assess a model's ability
to make good out-of-sample predictions, we may consider
Bayesian leave-one-out (LOO) cross-validation. The prem-
ise of cross-validation is to exclude a point,

(
yi, xi

)
, from

the training set, that is, the set of data to which we fit the
model. Here, xi denotes the covariate, and in our example,
the relevant row in the event schedule. We denote the re-
duced data set, y−i. We then generate a prediction

(
ỹi, xi

)

using the fitted model and compare ỹi to yi. A classic met-
ric to make this comparison is the squared error,

(
ỹi−yi

)2.
Another approach is to use the LOO estimate of out-of-

sample predictive fit:

Here, no prediction is made. Instead, we examine how con-
sistent an “unobserved” data point is with our fitted model.
Computing this estimator is expensive because it requires

elpdloo: =

n∑

i

log p(yi | y−i).

F I G U R E 1   Trace plots. The sampled values for each parameters are plotted against the iterations during the sampling phase. Multiple
Markov chains were initialized at different points. However, once in the sampling phase, we cannot distinguish the chains.

VP ka sigma

CL Q VC

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

20

30

40

50

0.12

0.15

0.18

0.21

0.24

20

25

30

1

2

3

4

5

15

16

17

18

200

250

300

Chain

1
2
3
4

     |  1159BAYESIAN MODELING USING STAN AND TORSTEN, PART I

fitting the model to n different training sets in order to eval-
uate each term in the sum.

Vehtari et al.40 propose an estimator of elpdloo, which
uses Pareto smooth importance sampling and only re-
quires a single model fit. The premise is to compute

and correct this value, using importance sampling, to esti-
mate log p

(
yi |y−i

)
. Naturally this estimator may be inaccu-

rate. What makes this tool so useful is that we can use the
Pareto shape parameter, k̂, to assess how reliable the esti-
mate is. In particular, if �k > 0.7, then the estimate should not
be trusted. The estimator is implemented in the R package
loo. See Gabry et al.30 for more details, including its connec-
tion and comparison to the widely applicable information
criterion.

Conveniently, we can compute log p
(
yi |y

)
 in Stan's

generated quantities block.

 These results can then be extracted and fed into Loo to
compute elpdloo. The file twoCpt.r in https://github.com/
metru​mrese​archg​roup/torst​en_tutor​ial_1_suppl​ementary
shows exactly how to do this. Figure 4 plots the estimated
elpdloo, along with a standard deviation, and shows the two-
compartment model has better out-of-sample predictive
capabilities.

TWO - COMPARTMENT POPULATION
MODEL

We now consider the scenario where we have data from
multiple patients and fit a population model. Population
models are a powerful tool to capture the heterogeneity
between patients while recognizing similarities. Building
the right prior allows us to pool information between pa-
tients, the idea being that what we learn from one patient
teaches us something—although not everything—about
the other patients. In practice, such models can frustrate
inference algorithms and need to be implemented with
care.41 We start with an example where the interaction be-
tween the model and our MCMC sampler is well behaved.
In Part 2 of this tutorial, we examine a more difficult case

log p(yi|y)

F I G U R E 2   Posterior predictive
checks for two-compartment model. The
circles represent the observed data (y)
and the shaded areas the 50th and 90th
credible intervals based on posterior
draws (yrep).

1.0

3.0

10.0

30.0

0 50 100 150 200
time (h)

dr
ug

 p
la

sm
a

co
nc

en
tra

tio
n

(m
g/

L)

yrep

y

F I G U R E 3   Posterior predictive
checks for a one-compartment model.
The circles represent the observed data
(y) and the shaded areas the 50th and
90th credible intervals based on posterior
draws (yrep). A graphical inspection
suggests that the credible intervals are
wider for the one-compartment model
than they are for the two-compartment
model.

0.3

1.0

3.0

10.0

30.0

0 50 100 150 200
time (h)

dr
ug

 p
la

sm
a

co
nc

en
tra

tio
n

(m
g/

L)

yrep

y

https://github.com/metrumresearchgroup/torsten_tutorial_1_supplementary
https://github.com/metrumresearchgroup/torsten_tutorial_1_supplementary

1160  |     MARGOSSIAN et al.

for which we leverage Stan's diagnostic capabilities in
order to run reliable inference.

Statistical model

Let � be the two-dimensional array of body weight–
normalized PK parameters for each patient, with

the parameters for the jth patient. We construct a population
model by introducing random variation to describe other-
wise unexplained interindividual variability. In a Bayesian
context, this is sometimes referred to as a prior distribution
for the individual parameters,

As before, we work on the log scale to account for the
fact the PK parameters are constrained to be positive.
�pop=

(
CLpop, Qpop, Vcent,pop, Vperi,pop, ka,pop

)
 is the popu-

lation mean (on the logarithmic scale) and Ω the population
covariance matrix. Both �pop and Ω are estimated. In this ex-
ample, we start with the simple case where Ω is diagonal. For
our example, we will also use conventional allometric scaling
to adjust the clearance and volume parameters for body weight.

The likelihood remains mostly unchanged, with the caveat
that it must now be computed for each patient. Putting this

all together, we have the following model, as specified by the
joint distribution,

Specifying the model in Stan

We begin by adjusting our parameters block:

The declaration for ka,pop illustrates that constraints may be
expressions including other variables in the model. In this
case, ka,pop is constrained to avoid identifiability problems
due to “flip-flop.”

The variable, �pop is introduced in transformed pa-
rameters, mostly for convenience purposes:

The model block reflects our statistical formulation:

�j=
(
CLnorm, j,Qnorm, j,Vcent,norm, j,Vperi,norm, j, ka, j

)
,

�j ∼ LogNormal
(
log �pop,Ω

)
.

CLj=CLnorm,j

(
weight

70

)0.75

=�1j

(
weight

70

)0.75

Qj=Qnorm,j

(
weight

70

)0.75

=�2j

(
weight

70

)0.75

Vcent,j=Vcent,norm,j
weight

70
=�3j

weight

70

Vperi,j=Vperi,norm,j
weight

70
=�4j

weight

70

�pop ∼ p
(
�pop

)
, (prior on pharmacokinetic parameters)

Ω ∼ p(Ω), (prior on population covariance)

� ∼ p(�)

� ∣�pop,Ω ∼ logNormal
(
log �pop,Ω

)
,

y ∣ c, � ∼ LogNormal(log c, �).

F I G U R E 4   Leave-one-out estimate of out-of-sample predictive
fit. Plotted is the estimate, elpdloo, for the one- and two-compartment
models as well as the difference in elpdloo for the two models. Clearly,
the two-compartment model has superior predictive capabilities.

−125

−100

−75

one compartment two compartment difference
model

el
pd

 lo
o

     |  1161BAYESIAN MODELING USING STAN AND TORSTEN, PART I

In the transformed parameters block, we also declare
and calculate the individual parameters given �j and any rel-
evant covariates—body weight in this case.

It remains to compute concentrationObs. There are
several ways to do this and, depending on the computational
resources available, we may either compute the concentra-
tion for each patient sequentially or in parallel. For now, we
do the simpler sequential approach. In the upcoming Part 2
of this tutorial, we examine how Torsten offers easy-to-use
parallelization for population models.

Sequentially computing the concentration is a simple
matter of bookkeeping. In transformed parameters,
we loop through the patients using a for loop. The code
is identical to what we used in the “Transformed Data and
Transformed Parameters Block” section with the caveat that
the arguments to pmx_solve_twocpt are now indexed to
indicate for which patient we compute the drug mass. For
example, assuming the time schedule is ordered by patient,
the event times corresponding to the jth patient are given by

where start[j] and end[j] contain the indices of
the first and last events for the jth patient and the syntax for
indexing is as in R. The full for loop is then

Note that the last vector argument in pmx_solve_twocpt
is generated using {} syntax.

Once we have written our Stan model, we can apply the
same methods for inference and diagnostics as we did in the
previous section.

Posterior predictive checks

We follow the exact same procedure as in the “Checking
the Model: Posterior Predictive Checks” section—using
even the same line of code—to simulate new observations
for the same patients we analyzed. Figure 5 plots posterior
predictions for each individual patient. In addition, we
simulate new observations for hypothetical new patients
by (i) drawing PK parameters from our population distri-
bution, (ii) solving the ODEs with these simulated param-
eters, and (iii) using our measurement model to simulate
new observations. Those predictions are also shown in
Figure 5 for each individual. Figure 6 depicts a compos-
ite PPC for all individuals. The generated quantities block
then looks as follows:

It is worth noting that the computational cost of running
operations in the generated quantities is rela-
tively small. Although these operations are executed once
per iteration, in order to generate posterior samples of the
generated quantities, operations in the transformed
parameters and model blocks are run and differentiate

1162  |     MARGOSSIAN et al.

multiple times per iterations, meaning they amply domi-
nate the computation. Hence the cost of doing PPCs, even
when it involves solving ODEs, is marginal. The compu-
tational scaling of Stan, notably for ODE-based models, is
discussed in the article by Grinsztajn et al.42

For this simple population PK modeling example with
a uniform study design for all individuals, the PPCs shown
in Figures 5 and 6 are arguably sufficient model diagnos-
tics. In cases where the study design and patient popula-
tions are more heterogeneous, methods that adjust for such

heterogeneity are desirable. Normalized prediction distribu-
tion errors (NPDEs)43 are commonly used in the maximum
likelihood context and could be applied to point predictions
from Bayesian models, for example, posterior mean or median
predictions. A similar approach termed probability integral
transforms (PIT) are used for Bayesian model checking.25,26

Standard PPCs that use the same data for model fitting and
model checking may be overoptimistic, particularly when ap-
plied to highly flexible or overparameterized models. This may
be remedied by using out-of-sample predictions for PPCs and

F I G U R E 5   Population two-compartment model: posterior predictive checks for each individual. Black dots = observed data, red curve
and shaded area = posterior median and 90% credible intervals for the prediction of new observations in the same individual, and blue curve
and shaded area = posterior median and 90% credible intervals for the prediction of new observations in a hypothetical new individual with
the same body weight.

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

0 50 100 150 2000 50 100 150 2000 50 100 150 2000 50 100 150 2000 50 100 150 200

1

3

10

30

1

3

10

30

1

3

10

30

1

3

10

30

time (h)

pl
as

m
a

dr
ug

 c
on

ce
nt

ra
tio

n

prediction individual population

     |  1163BAYESIAN MODELING USING STAN AND TORSTEN, PART I

PITs. In the context of population models, this means fitting
the model to data from a subset of individuals and predicting
outcomes for the remaining individuals. This may be done for
an entire data set using cross-validation. However, generating
a cross-validation predictive distribution is computationally
expensive and may often be impractical.

NONLINEAR PK/PD MODEL

Now let us consider a PK/PD model described in terms of
a nonlinear ODE system that requires the use of a numeri-
cal solver. The patient receives multiple doses at regular
time intervals, and the drug plasma concentration is re-
corded over time.

Nonlinear ODE model in PK/PD

In this the last example, we go back to the single-patient,
two-compartment model and append it with a PD model.
Specifically, we examine the Friberg–Karlsson semimecha-
nistic model for drug-induced myelosuppression44–49 with
the goal to model the relation between neutrophil counts
and drug exposure. The model describes a delayed feedback
mechanism that keeps the absolute neutrophil count (ANC)
at the baseline (Circ0) in a circulatory compartment (ycirc)
as well as the drug effect that perturbs this mechanism. The
delay between proliferative cells (yprol) and ycirc is modeled
by three transit compartments with mean transit time

where ktr is the transit rate constant. Figure 7 summarizes
the model (see also fig. 2 in Friberg et al.44).

The PD likelihood is

where ĉ = ycent∕Vcent is the drug concentration calculated
from the PK model, and fFK solves the nonlinear ODE:

We use

to model the linear effect of the drug once it has been ab-
sorbed in the central compartment. This effect reduces the
proliferation rate and induces a reduction in neutrophil
count. The upper bound of 1 on Edrug excludes the scenario
where the feedback loop is flipped if ĉ becomes too large.
Although we expect that for any reasonable parameter val-
ues, Edrug < 1, we should anticipate the possibility that our
Markov chains may encounter less well-behaved values as it
explores the parameter space. Encoding such constraints can
lead to improved numerical stability when solving the ODE.

We obtain the complete ODE system for the PK/PD
model by coupling Equations (1) and (4). Because the
equation is nonlinear, we can no longer resort to analyt-
ical solutions as we have done in the previous sections.

(3)MTT = (3 + 1)∕ktr

ANC ∼ logNormal
(
log

(
ycirc

)
, �ANC

)
,

ycirc= fFK
(
MTT,Circ0, �, � , ĉ

)
,

(4a)
dyprol

dt
= kprolyprol

(
1 − Edrug

)(Circ0
ycirc

)�

− ktryprol,

(4b)dytrans1
dt

= ktryprol − ktrytrans1,

(4c)dytrans2
dt

= ktrytrans1 − ktrytrans2,

(4d)dytrans3
dt

= ktrytrans2 − ktrytrans3,

(4e)dycirc
dt

= ktrytrans3 − ktrycirc,

Edrug =min
(
�ĉ, 1

)

F I G U R E 6   Population two-
compartment model: posterior predictive
checks for all individuals. Gray
circles = observed data, blue curve and
shaded areas = posterior median and
80% credible intervals for the population
median, and red curve and shaded
area = posterior median and 80% credible
intervals for the 10th and 90th population
percentiles intervals.

1164  |     MARGOSSIAN et al.

Numerically solving ODEs

To solve an ODE numerically in Stan we first need to define
a function that returns a right-hand side of the ODE, that
is, the derivative of the solution, in the functions block.
The functions block allows users to define functions and
is written at the top of the Stan file before the data block.

This function is an almost direct translation of Equations (1)
and (4). The first three components of dydt describe the PK.

The next five components of dydt describe the PD minus
the baseline Circ0. Writing the ODE as a difference from the
baseline means the initial PD conditions is 0, as opposed to
a parameter dependent value. This results in better compu-
tation because derivatives of the ODE solution with respect
to the initial conditions no longer need to be computed; for
more details, see section 5.2 in Grinsztajn et al.42 In addition,
we encode a constraint on the circulatory compartment

where � is the machine precision and can be interpreted as
the smallest nonzero number the computer can handle. This
is to improve numerical stability, especially during the early
stages of MCMC exploration when we may need to handle
somewhat implausible parameter values.

Stan and Torsten provide several numerical solvers. In this
example, we use the Runge–Kutta solver pmx_solve_rk45
(section 3.4 in Zhang et al.33). The signature of pmx_solve_
rk45 is a bit more sophisticated than that of pmx_solve_
twocpt and requires the following arguments:

1.	 the name of the user-defined ODE function
(twoCptNeutModelODE)

2.	 the number of states/compartments in the ODE
3.	 the event schedule
4.	 the bioavailability fraction, F, and the dosing lag time,
tlag for each compartment (optional)

5.	 the tuning parameters for the ODE solver (optional)

Because arguments are nameless in Stan, we can only
pass the ODE tuning parameters if we also pass F and tlag.
By setting F to 1 and tlag to 0 for each compartment, we es-
sentially ignore their effect. This is best done in the trans-
formed data block:

ycirc > 𝜀 > 0,

F I G U R E 7   Friberg–Karlsson
semimechanistic model.

     |  1165BAYESIAN MODELING USING STAN AND TORSTEN, PART I

 Numerical solvers in Stan and Torsten admit three tuning
parameters:

•	 rtol: relative tolerance to determine solution
convergence,

•	 atol: absolute tolerance to determine solution
convergence,

•	 max_num_step: maximum number of steps
allowed.

Although Stan and Torsten provide default values, we
highly recommend that the user define the ODE solver
control parameters in the data block:

 Users should make problem-dependent decisions on rtol
and atol, according to the expected scale of the unknowns,
so that the error does not affect our inference. For example,
when an unknown can be neglected below a certain thresh-
old without affecting the rest of the dynamic system, setting
atol greater than that threshold avoids spurious and error-
prone computation. For more details, see Chapter 13 in the
Stan User's Guide37 and section 3.7.5 in Zhang et al.33 and
references therein.

As before, we solve the ODE within the event schedule in
the transformed parameters block:

Solving PK/PD ODEs as a coupled system

The approach in the last section applies to all models that
involve ODE solutions, but we will not use it here. An
acute observer may have noticed the PK/PD model here
exhibits a particular one-way coupling structure. That is,

the PK (Equation 1) and PD (Equation 4) are coupled
through the proliferation cell count yprol and Edrug, such
that the PK can be solved independently from the PD. This
is what motivates Torsten's coupled solvers that analyti-
cally solve the PK ODEs before passing the PK solution to
the PD ODE. The PD ODE is then solved numerically.
Because the dimension of the numerical ODE solution is
reduced, in general this coupled strategy is more efficient
than the last section's approach of numerically solving a
full ODE system. To see it in action, let us apply the cou-
pled solver pmx_solve_twocpt_rk45 (section 3.5 in
Zhang et al.33) to the same model. We need only make two
changes. First, we modify the ODE function to reflect that
only the PD states are to be solved.

Note that we pass in PD and PK states as separate argu-
ments, y and yPK, respectively. The above function only
returns dy∕dt, while yPK is solved internally using an ana-
lytical solution, meaning users do not need to explicitly call
pmx_solve_twocpt.

Then we replace pmx_solve_rk45 with pmx_solve_
twocpt_rk45 call.

Building the remaining coding blocks

We omit the data block but note that it is similar to
the one we constructed in previous sections. The key

1166  |     MARGOSSIAN et al.

difference is we now include measurements for the abso-
lute neutrophil count. The parameters block now con-
tains the PD variables:

The model block is similar to that in “PK Model and
Clinical Event Schedule” section:

Posterior predictive checks

We hope by now the reader has developed the habit of per-
forming PPCs on every model. Because we have both PK
(drug concentration) and PD (neutrophil count) observa-
tions, the PPC should be conducted on both.

It is possible to only run the generated quantities block
based on a fitted model using cmdstanr's generate_
quantities routine. This is useful when we change the

generated quantities, but not the rest of a model we have al-
ready fitted. The compiled model and the fit are respectively
stored in the mod and fit objects in R. We then run:

and use the results for a PPC (Figure 8).

DISCUSSION

Stan provides an expressive language to build models,
state-of-the-art algorithms to fit these models, and a host
of easy-to-use diagnostics. Torsten complements Stan
with a suite of routines that solve ODEs within the context
of clinical event schedules. Together, Stan and Torsten are
potent tools when working through the tangled steps of a
Bayesian workflow for PK/PD modeling.

Current and potential role for Stan and
Torsten for pharmacometrics applications

We can apply Stan/Torsten to a large palette of generative
models, both for inference and simulation. Applications
range from simple linear regression to complex mul-
tiscale quantitative systems pharmacology models.
Compared with specialized pharmacometrics tools such
as NONMEM®, Stan/Torsten is particularly well suited
for cases where more flexibility is desired. This includes
models with

•	 random-effects distributions other than normal,
•	 prior distributions other than the limited set available

in existing pharmacometrics tools,
•	 multiple submodels with different random-effect

structures.

It is important to recognize that MCMC, including the
HMC scheme used by Stan/Torsten, can be computation-
ally intensive, notably when fitting hierarchical models
that require us to numerically solve ODEs. This can be
especially frustrating during the initial model exploration
stage of a project. For such exploratory analyses, access
to a rapid approximate Bayesian inference engine may
be desirable. Stan/Torsten includes two optimization-
based inference engines, one for estimation of posterior
modes and one for variational inference. These algo-
rithms attempt to simultaneously optimize over the en-
tire joint posterior distribution of all model parameters.
This process can be relatively slow and error prone when
trying to optimize over the large number of population
and individual-level parameters of a typical population

     |  1167BAYESIAN MODELING USING STAN AND TORSTEN, PART I

pharmacometrics model. This contrasts with typical
mixed-effects modeling programs that use algorithms
specialized for a more limited range of models—usually
employing an alternating sequence of lower dimensional
optimization problems.

For applications that may be implemented with typi-
cal pharmacometrics tools, the choice between those and
Stan/Torsten comes down to the trade-offs between flex-
ibility, doing accurate Bayesian inference, and computa-
tion time.

We would also like to point out that Stan is not the only
probabilistic programing language that is actively under
development. PyMC3,50 TensorFlow Probability,51,52 and
Turing,53 among others, provide similar modeling capa-
bilities. A full review and comparison of these languages
is, however, beyond the scope of this article.

Preview of Part 2

In Part 2 of this tutorial, we plan to build on the material
we have covered thus far and tackle more advanced top-
ics, including:

•	 Improving the performance of HMC, using within-
chain parallelization for population models and
Torsten's dedicated group solvers.

•	 Advanced diagnostic tools, namely, divergent transi-
tions that can flag bias in our posterior samples. Stan
makes these diagnostics readily available.

•	 Fake data simulation and analysis, in particular
prior predictive checks as a way to understand
and build priors, fitting the model to fake data as
an imperfect tool to troubleshoot Bayesian infer-
ence, and an overview of the more sophisticated
but computationally demanding simulation-based
calibration.54

•	 Performance tuning of ODE models, such as solver se-
lection and accuracy control as well as stability issues.

We will dive into these subjects by examining more
advanced models and using techniques such as rep-
arameterization, within-chain parallelization, and
pooling multiple data sources. We will also discuss
ongoing developments with Stan and Torsten, such as
tools to handle larger scale ODEs and plans to leverage
parallelization.

CONFLICT OF INTEREST
The authors declared no competing interests for this work.

ORCID
William R. Gillespie https://orcid.org/0000-0002-4560-6482

REFERENCES
	 1.	 Beal S, Sheiner L, Boeckmann A, Bauer R. NONMEM 7.5 Users

Guides. (1989–2020). ICON plc; 2020.
	 2.	 Monolix. Antony, France: Lixoft SAS; 2021. http://lixoft.com/

produ​cts/monol​ix/
	 3.	 Fidler M, Wilkins JJ, Hooijmaijers R, et al. Nonlinear mixed-

effects model development and simulation using nlmixr and
related R open-source packages. CPT: Pharmacometr Syst
Pharmacol. 2019;8(9):621-633.

	 4.	 Lunn D, Spiegelhalter D, Thomas A, Best N. The BUGS proj-
ect: evolution, critique and future directions. Stat Med.
2009;28(25):3049-3067.

	 5.	 Carpenter B, Gelman A, Hoffman MD, et al. Stan: a probabilis-
tic programming language. J Stat Softw. 2017;76:1-32.

	 6.	 Weber S, Gelman A, Lee D, Betancourt M, Vehtari A, Racine-
Poon A. Bayesian aggregation of average data: an application in
drug development. Annals Appl Stat. 2018;12(3):1583-1604.

	 7.	 Carvalho CM, Polson NG, Scott JG. The Horseshoe estimator
for sparse signals. Biometrika. 2010;97(2):465-480.

	 8.	 Piironen J, Vehtari A. Sparsity information and regularization
in the horseshoe and other shrinkage priors. Electronic J Stat.
2017;11:5018-5051.

	 9.	 Yin O, Zahir H, French J, et al. Exposure–response analysis
of efficacy and safety for pexidartinib in patients with tenosy-
novial giant cell tumor. CPT: Pharmacometr Syst Pharmacol.
2021;10:1422-1432.

	10.	 Bertrand J, De Lorio M, Balding DJ. Bayesian Approaches for
Pharmacogenetic Models with JAGS and Stan 2017. Available

F I G U R E 8   Posterior predictive
checks for the pharmacokinetic/
pharmacodynamic model. The circles
represent the observed data (y) and the
shaded areas the 50th and 90th credible
intervals based on posterior draws (yrep)

500

1000

1500

2000

0 50 100 150 200
time (h)

dr
ug

 p
la

sm
a

co
nc

. (
ng

/m
L)

2

3

4

5

6

7

0 200 400 600
time (h)

N
eu

tro
ph

il
co

un
ts

yrep
y

https://orcid.org/0000-0002-4560-6482
https://orcid.org/0000-0002-4560-6482
http://lixoft.com/products/monolix/
http://lixoft.com/products/monolix/

1168  |     MARGOSSIAN et al.

from: https://appli​bugs.mathn​um.inrae.fr/sites/​defau​lt/files/​
2021-07/fichi​er-docum​ent/appli​bugs.17_06_13.jbert​rand.pdf

	11.	 Siivola E, Weber S, Vehtari A. Qualifying drug dosing regimens in
pediatrics using Gaussian processes. Stat Med. 2021;40:2355-2372.

	12.	 Betancourt M. A Conceptual Introduction to Hamiltonian Monte
Carlo. arXiv:170102434v1. 2018.

	13.	 Hoffman MD, Gelman A. The No-U-turn sampler: adaptively
setting path lengths in hamiltonian Monte Carlo. J Mach Learn
Res. 2014;15:1593-1623.

	14.	 Kucukelbir A, Tran D, Ranganath R, Gelman A, Blei D.
Automatic differentiation variational inference. J Mach Learn
Res. 2017;18:1-45.

	15.	 Carpenter B, Hoffman MD, Brubaker MA, Lee D, Li P,
Betancourt MJ. The Stan Math Library: Reverse-Mode Automatic
Differentiation in C++. arXiv 150907164. 2015.

	16.	 Margossian CC, Vehtari A, Simpson D, Agrawal R. Hamiltonian
Monte Carlo using an adjoint-differentiated Laplace ap-
proximation: Bayesian inference for latent Gaussian mod-
els and beyond. Adv Neural Inform Process Syst (NeurIPS).
2020;33:9086-9097.

	17.	 Zhang Y, Gillespie WR, Bales B, Vehtari A. Speed up population
Bayesian inference by combining cross-chain warmup and within-
chain parallelization. American Conference on Pharmcometrics
11, Virtual Meeting, 11 November 2020. Available from: https://
www.metru​mrg.com/wp-conte​nt/uploa​ds​/2020/11/ZhangY_
ACOP2​020_Bayes​ianWa​rmUpM​ethods.pdf

	18.	 Zhang L, Carpenter B, Gelman A, Vehtari A. Pathfinder:
Parallel Quasi-Newton Variational Inference. arXiv:210803782.
2021.

	19.	 Vehtari A, Gelman A, Simpson D, Carpenter B, Bürkner PC.
Rank-normalization, folding, and localization: an improved
R̂ for assessing convergence of MCMC (with Discussion).
Bayesian Anal. 2021;16(2):667–718. Publisher: International
Society for Bayesian Analysis.

	20.	 Gelman A, Shalizi CR. Philosophy and the practice of Bayesian
statistics. Br J Math Stat Psychol. 2013;66(1):8-38.

	21.	 Neal RM. MCMC using Hamiltonian dynamics. Handbook of
Markov Chain Monte Carlo. CRC Press; 2011:113-162.

	22.	 Griewank A, Walther A. Evaluating derivatives. 2nd ed. Society
for Industrial and Applied Mathematics (SIAM); 2008.

	23.	 Baydin AG, Pearlmutter BA, Radul AA, Siskind JM. Automatic
differentiation in machine learning: a survey. J Mach Learn Res.
2018;18:1-43.

	24.	 Margossian CC. A review of automatic differentiation and its
efficient implementation. Wiley Interdisciplinary Rev: Data Min
Knowledge Discov. 2019;3:9.

	25.	 Gabry J, Simpson D, Vehtari A, Betancourt M, Gelman A.
Visualization in Bayesian workflow. J R Stat Soc A Stat Soc.
2019;182(2):389-402.

	26.	 Gelman A, Vehtari A, Simpson D, et al. Bayesian Workflow.
arXiv preprint arXiv:201101808. 2020.

	27.	 Stan Development Team. CmdStan User's Guide; 2021. Available
from: https://mc-stan.org/docs/2_28/cmdst​an-guide/​index.html

	28.	 Bürkner PC, Gabry J, Kay M, Aki V. Posterior: Tools for Working
with Posterior Distributions. Available from: https://mc-stan.
org/poste​rior

	29.	 Gabry J, Mahr T. bayesplot: Plotting for Bayesian Models; 2021.
R package version 1.8.0. Available from: https://mc-stan.org/
bayes​plot/

	30.	 Gabry J, Vehtari A, Magnusson M, et al. Efficient Leave-One-
Out Cross-Validation and WAIC for Bayesian Models; 2020.
Available from: https://cran.r-proje​ct.org/web/packa​ges/loo/
index.html

	31.	 Wickham H. ggplot2: Elegant Graphics for Data Analysis. York
SVN, editor; 2009. Available from: https://ggplo​t2.tidyv​erse.org

	32.	 Stan development team. Stan Reference Manual; 2021. Available
from: https://mc-stan.org/docs/2_28/refer​ence-manua​l/index.
html

	33.	 Zhang Y, Gillespie B, Margossian C. Torsten User Guide; 2021.
Available from: https://metru​mrese​archg​roup.github.io/Torst​en/

	34.	 McElreath R. Statistical rethinking: a bayesian course with ex-
amples in R and STAN. 2nd ed. CRC Press; 2020.

	35.	 Stan development team. Stan Functions Reference; 2021. Available
from: https://mc-stan.org/docs/2_28/funct​ions-refer​ence/​index.
html

	36.	 Betancourt M. Towards A Principled Bayesian Workflow; 2020.
https://betan​alpha.github.io/asset​s/case_studi​es/princ​ipled_
bayes​ian_workf​low.html

	37.	 Stan development team. Stan User's Guide; 2021. Available
from: https://mc-stan.org/docs/2_28/stan-users​-guide/​index.
html

	38.	 Margossian CC, Gillespie WR. Differential Equation Based
Models in Stan. StanCon; 2017:2017.

	39.	 Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin
DB. Bayesian data analysis. Chapman and Hall/CRC; 2013.

	40.	 Vehtari A, Mononen T, Tolvanen V, Sivula T, Winther O.
Bayesian leave-one-out cross-validation approximations
for Gaussian latent variable models. J Mach Learn Res.
2016;17(103):1-38.

	41.	 Betancourt M, Girolami M. Hamiltonian Monte Carlo for
Hierarchical Models. arXiv:13120906v1. 2013.

	42.	 Grinsztajn L, Semenova E, Margossian CC, Riou J. Bayesian
Workflow for Disease Transmission Modeling in Stan.
arXiv:200602985. 2021.

	43.	 Brendel K, Comets E, Laffont C, Laveille C, Mentré F.
Metrics for external model evaluation with an application to
the population pharmacokinetics of gliclazide. Pharm Res.
2006;23(9):2036-2049.

	44.	 Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson
MO. Model of chemotherapy-induced myelosuppression
with parameter consistency across drugs. J Clin Oncol.
2002;20(24):4713-4721.

	45.	 Friberg LE, Karlsson MO. Mechanistic models for myelosup-
pression. Invest New Drugs. 2003;21(2):183-194.

	46.	 Latz JE, Karlsson MO, Rusthoven JJ, Ghosh A, Johnson RD.
A semimechanistic-physiologic population pharmacokinetic/
pharmacodynamic model for neutropenia following pemetrexed
therapy. Cancer Chemother Pharmacol. 2006;57(4):412-426.

	47.	 Troconiz IF, Garrido MJ, Segura C, et al. Phase I dose-finding
study and a pharmacokinetic/pharmacodynamic analysis of
the neutropenic response of intravenous diflomotecan in pa-
tients with advanced malignant tumours. Cancer Chemother
Pharmacol. 2006;57(6):727-735.

	48.	 Kathman SJ, Williams DH, Hodge JP, Dar M. A Bayesian pop-
ulation PK-PD model of ispinesib-induced myelosuppression.
Clin Pharmacol Ther. 2007;81(1):88-94.

	49.	 Kathman SJ, Williams DH, Hodge JP, Dar M. A Bayesian
population PK-PD model for ispinesib/docetaxel

https://applibugs.mathnum.inrae.fr/sites/default/files/2021-07/fichier-document/applibugs.17_06_13.jbertrand.pdf
https://applibugs.mathnum.inrae.fr/sites/default/files/2021-07/fichier-document/applibugs.17_06_13.jbertrand.pdf
https://www.metrumrg.com/wp-content/uploads/2020/11/ZhangY_ACOP2020_BayesianWarmUpMethods.pdf
https://www.metrumrg.com/wp-content/uploads/2020/11/ZhangY_ACOP2020_BayesianWarmUpMethods.pdf
https://www.metrumrg.com/wp-content/uploads/2020/11/ZhangY_ACOP2020_BayesianWarmUpMethods.pdf
https://mc-stan.org/docs/2_28/cmdstan-guide/index.html
https://mc-stan.org/posterior
https://mc-stan.org/posterior
https://mc-stan.org/bayesplot/
https://mc-stan.org/bayesplot/
https://cran.r-project.org/web/packages/loo/index.html
https://cran.r-project.org/web/packages/loo/index.html
https://ggplot2.tidyverse.org
https://mc-stan.org/docs/2_28/reference-manual/index.html
https://mc-stan.org/docs/2_28/reference-manual/index.html
https://metrumresearchgroup.github.io/Torsten/
https://mc-stan.org/docs/2_28/functions-reference/index.html
https://mc-stan.org/docs/2_28/functions-reference/index.html
https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html
https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html
https://mc-stan.org/docs/2_28/stan-users-guide/index.html
https://mc-stan.org/docs/2_28/stan-users-guide/index.html

     |  1169BAYESIAN MODELING USING STAN AND TORSTEN, PART I

combination-induced myelosuppression. Cancer Chemother
Pharmacol. 2009;63(3):469-476.

	50.	 Salvatier J, Wiecki TV, Fonnesbeck C. Probabilistic program-
ming in Python using PyMC3. PeerJ Comput Sci. 2016;2:e55.

	51.	 Dillon JV, Langmore I, Tran D, et al. Tensorflow Distributions.
arXiv preprint arXiv:171110604. 2017.

	52.	 Lao J, Suter C, Langmore I, et al. tfp.mcmc: Modern Markov
Chain Monte Carlo Tools Built for Modern Hardware; 2020.

	53.	 Ge H, Xu K, Ghahramani Z. Turing: a language for flexible prob-
abilistic inference. Proc Mach Learn Res. 2018;84:1682-1690.
Available from: https://www.repository.cam.ac.uk/bitstream/
handle/1810/295184/ge18b.pdf?sequence=1&isAllowed=y

	54.	 Talts S, Betancourt M, Simpson D, Vehtari A, Gelman A.
Validating Bayesian Inference Algorithms with Simulation-
Based Calibration. arXiv:180406788v1. 2012.

How to cite this article: Margossian CC, Zhang Y,
Gillespie WR. Flexible and efficient Bayesian
pharmacometrics modeling using Stan and Torsten,
Part I. CPT Pharmacometrics Syst Pharmacol.
2022;11:1151-1169. doi:10.1002/psp4.12812

https://www.repository.cam.ac.uk/bitstream/handle/1810/295184/ge18b.pdf?sequence=1&isAllowed=y
https://www.repository.cam.ac.uk/bitstream/handle/1810/295184/ge18b.pdf?sequence=1&isAllowed=y
https://doi.org/10.1002/psp4.12812

	Flexible and efficient Bayesian pharmacometrics modeling using Stan and Torsten, Part I
	Abstract
	INTRODUCTION
	Why Stan?
	Bayesian inference: notation, goals, and comments
	Bayesian workflow
	Setting up Stan and Torsten
	Resources

	TWO-­COMPARTMENT MODEL
	PK model and clinical event schedule
	Statistical model
	Specifying a model in Stan
	Data and parameters block
	Model block
	Transformed data and transformed parameters block

	Calling Stan from R
	Checking our inference
	Checking for convergence with
	Controlling the variance of our estimator

	Checking the model: posterior predictive checks
	Comparing models: leave-­one-­out cross-­validation

	TWO-­COMPARTMENT POPULATION MODEL
	Statistical model
	Specifying the model in Stan
	Posterior predictive checks

	NONLINEAR PK/PD MODEL
	Nonlinear ODE model in PK/PD
	Numerically solving ODEs
	Solving PK/PD ODEs as a coupled system

	Building the remaining coding blocks
	Posterior predictive checks

	DISCUSSION
	Current and potential role for Stan and Torsten for pharmacometrics applications
	Preview of Part 2

	CONFLICT OF INTEREST
	REFERENCES

