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INTRODUCTION

Bayesian inference offers a principled approach to learn 
about unknown variables from data using a probabilis-
tic analysis. The conclusions we draw are based on the 
posterior distribution that, in all but the simplest cases, 
is intractable. We can, however, probe the posterior using 
a host of techniques such as Markov Chain Monte Carlo 
(MCMC) sampling and approximate Bayesian computa-
tion. Writing these algorithms is a tedious and error-prone 
endeavor but fortunately modelers can often rely on exist-
ing software with efficient implementations.

In the field of pharmacometrics, statistical software such 
as NONMEM®,1 Monolix®,2 and the R package nlmixr3 
support many routines to specify and analyze pharmaco-
kinetic (PK) and pharmacodynamic (PD) population mod-
els. There also exist more general probabilistic programing 
languages such as BUGS4 and more recently Stan,5 to name 
only a few examples. This tutorial focuses on Stan. Stan sup-
ports a rich library of probability densities, mathematical 

functions including matrix operations, and numerical solv-
ers for differential equations. These features make for an 
expressive and flexible language; however, writing common 
pharmacometrics models can be tedious. Torsten extends 
Stan by providing a suite of functions to facilitate the speci-
fication of pharmacometrics models. These functions make 
it straightforward to model the event schedule of a clinical 
trial and parallelize computation across patients for popu-
lation models.

This tutorial reviews key elements of a Bayesian mod-
eling workflow in Stan, including model implementation, 
inference using MCMC, and diagnostics to assess the 
quality of our inference and modeling. We assume the 
reader is familiar with compartment models in PK and PD 
and has experience with data that describe a clinical event 
schedule. Because Torsten follows the input conventions 
in NMTRAN®, experience with NONMEM® is helpful al-
though not essential. Likewise, exposure to Bayesian sta-
tistics and inference algorithms is desirable, in particular 
an elementary understanding of MCMC.
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We introduce programming in Stan and Torsten with 
the assumption that the reader is familiar with R.

Why Stan?

We believe that Stan, coupled with Torsten, can be an im-
portant addition to the pharmacometrician's toolkit, espe-
cially for Bayesian data analysis.

The most obvious strength of Stan is its flexibility: it 
is straightforward to specify priors, systems of ordinary 
differential equations (ODEs), a broad range of measure-
ment models, missing data models and complex hierar-
chies (i.e., population models). Examples of how Stan's 
flexibility may be leveraged in pharmacometrics include 
the following: 

•	 Combining various sources of data and their corre-
sponding measurement models into one large model, 
over which full Bayesian inference can be performed 
(e.g., Weber et al.6). In a similar vein, it is possible to 
build complex hierarchical structures that allow us to 
simultaneously pool information across various groups, 
for example, patients, trials, or countries. We will study 
such an example in Part 2 of this tutorial.

•	 Using a sparsity inducing prior, such as a the Horseshoe 
prior,7,8 to fit models with a high-dimensional covariate. 
This approach has, for example, been used in oncology9 
and is a promising avenue in pharmacogenetics.10

•	 Incorporating a non-parametric regression, such as a 
Gaussian process, to build a translational model for pe-
diatric studies (e.g., Siivola et al.11).

 Stan's expressive language plays a crucial part here be-
cause more specialized software do not readily handle the 
relatively complex structures and priors the previous exam-
ples require.

In addition, Stan supports state-of-the-art inference al-
gorithms, most notably an adaptive Hamiltonian Monte 
Carlo (HMC) sampler, a gradient-based MCMC algo-
rithm12 based on the No U-Turn sampler (NUTS),13 auto-
matic differentiation variational inference (ADVI),14 and 
penalized maximum likelihood estimators. Stan's infer-
ence algorithms are supported by a modern automatic dif-
ferentiation library that efficiently generates the requisite 
derivatives.15 It is worth pointing out that algorithms such 
as NUTS and ADVI were first developed and implemented 
in Stan before being widely adopted by the applied statistics 
and modeling communities. As of the writing of this arti-
cle, new inference algorithms continue to be prototyped in 
Stan. Recent such examples include adjoint-differentiated 
Laplace approximations,16 cross-chain warmup,17 and 
path finding for improved chain initialization.18 Some of 

Stan's algorithms are now available in specialized phar-
macometrics software. NONMEM® supports an HMC 
sampler, although certain diagnostics required to assess 
the quality of HMC, notably for population models, are 
still missing.

Stan indeed provides a rich set of diagnostics, includ-
ing the detection of divergent transitions during HMC 
sampling,12 and the improved computation of effective 
sample sizes and scale reduction factors, R̂,

19 as well as 
detailed warning messages based on these diagnostics. 
The automated running of these diagnostics makes the 
platform more user friendly and provides much guidance 
when troubleshooting our model and our inference.

Last but not least, both Stan and Torsten are open-
source projects, meaning they are free and their source 
code can be examined and, if needed, scrutinized. The 
projects are under active development with new features 
being added regularly.

Bayesian inference: notation, goals,  
and comments

Given the observed data  and latent variables � from 
the parameter space Θ, a Bayesian model is defined by 
the joint distribution p(, �). The latent variables can in-
clude model parameters, missing data, and more. In this 
tutorial, we are mostly concerned with estimating model 
parameters.

The joint distribution observes a convenient 
decomposition,

with p(�) the prior distribution and p(|�) the likeli-
hood. The prior encodes information about the parame-
ters, usually based on scientific expertise or results from 
previous analysis. The likelihood tells us how the data 
are distributed for a fixed parameter value and, per one 
interpretation, can be thought of as a “story of how the 
data is generated.”20 The Bayesian proposition is to base 
our inference on the posterior distribution of the param-
eters, p(�|), and more generally the posterior distribu-
tion of any derived quantity of interest, p(f (�)|).

For typical pharmacometric applications, the full joint 
posterior density of the model parameters is an unfathom-
able object that lives in a high-dimensional space. Usually 
we cannot even numerically evaluate the posterior den-
sity at any particular point! Instead, we must probe the 
posterior distribution and learn the characteristics that 
interest us the most. In our experience, this often includes 
a measure of a central tendency and a quantification of 
uncertainty, for example, the mean and the variance, or 

p(, �) = p(�)p( |�),



      |  1153BAYESIAN MODELING USING STAN AND TORSTEN, PART I

the median and the 5th and 95th quantiles for any quan-
tity of interest. For skewed or multimodal distributions, 
we may want a more refined analysis that looks at many 
quantiles. What we compute are estimates of these quan-
tities. Most Bayesian inference involves calculations based 
on marginal posterior distributions. That typically re-
quires integration over a high number of dimensions—an 
integration that is rarely tractable by analytic or numer-
ical quadrature. One strategy is to generate approximate 
samples from the posterior distribution and then use the 
sample mean, sample variance, and sample quantiles as 
our estimators.

Bayes' rule teaches us that

Typically we can evaluate the joint density in the numerator 
but not the normalizing constant, p(), in the denominator. 
A useful method must therefore be able to generate samples 
from the posterior p(�|) using the unnormalized posterior 
density, p(, �). Once we generate a sample �, we can apply 
a transformation f  to obtain a sample from p(f (�)|).

Many MCMC algorithms are designed to generate sam-
ples from an unnormalized density. Starting at an initial 
point, these chains explore the parameter space Θ, one 
iteration at a time, to produce the desired samples. The 
first iterations of MCMC are used to find and explore the 
region in the parameter space where the posterior prob-
ability mass concentrates. Only after this initial warmup 
phase do we begin the sampling phase.

HMC is an MCMC method that uses the gradi-
ent to efficiently move across the parameter space.12,21 
Computationally, running HMC requires evaluating 
log p(, �) and ∇�log p(, �) many times across Θ, that is, 
for varying values of � but fixed values of . For this pro-
cedure to be well defined, � must be a continuous variable, 
else the requisite gradient does not exist. Discrete parame-
ters require a special treatment, which we will not discuss 
in this tutorial.

A Stan program specifies a method to evaluate 
log p(, �). Thanks to automatic differentiation, this im-
plicitly defines a procedure to compute ∇�log p(, �).22–24 
Together, these two objects provide all the relevant infor-
mation about our model to run HMC sampling and other 
gradient-based inference algorithms.

Bayesian workflow

Bayesian inference is only one step of a broader modeling 
process, which we might call the Bayesian workflow.12,25,26 
Once we fit the model, we need to check the inference and, 

if needed, fine tune our algorithm, or potentially change 
method. And once we trust the inference, we naturally need 
to check the fitted model. Our goal is to understand the 
shortcomings of our model and motivate useful revisions. 
During the early stages of model development, this mostly 
comes down to troubleshooting our implementation, and 
later this “criticism” step can lead to deeper insights.

All through the tutorial, we demonstrate how Stan and 
Torsten can be used to check our inference and our fitted 
model.

Setting up Stan and Torsten

Detailed instructions on installing Stan and Torsten can 
be found on https://github.com/metru​mrese​archg​roup/
Torsten. At its core, Stan is a C++ library, but it can be 
interfaced with one of many scripting languages, includ-
ing R, Python, and Julia. Running Stan requires a modern 
C++ compiler such as g++ 8.1 provided by RTools 4.0 on 
Windows and the GNU-Make utility program on Mac or the 
Windows equivalent mingw32-make. More details of setting 
up work environment can be found in the CmdStan User's 
Guide.27 We will use cmdStanR, which is a lightweight 
wrapper of Stan in R, and in addition, the packages poste-
rior,28 bayesplot,29 and loo.30 We generate most of the figures 
in this article using BayesPlot, although at times we trade 
convenience for flexibility and fall back to ggplot2.31

The R and Stan code for all examples are available at 
https://github.com/metru​mrese​archg​roup/torst​en_​tutor​ial​_1_
suppl​ementary.

Resources

Helpful reads include the Stan User Manual32 and 
the Torsten User Manual.33Statistical Rethinking by 
McElreath34 provides an excellent tutorial on Bayesian 
analysis that may be used for self-learning. A compre-
hensive textbook on Bayesian modeling is Bayesian Data 
Analysis by Gelman et al.,20 with more recent insights 
on the Bayesian workflow provided by Gelman et al.26 
Betancourt12 offers an accessible discussion on MCMC 
methods with an emphasis on HMC.

TWO - COMPARTMENT MODEL

As a starting example, we demonstrate the analysis of longi-
tudinal plasma drug concentration data from a single indi-
vidual using a linear two-compartment model with first-order 
absorption. The individual receives multiple doses at regular 
time intervals, and the plasma drug concentration is recorded 

p(� |) =
p(, �)
p()

=
p( |�)p(�)

p()
.

https://github.com/metrumresearchgroup/Torsten
https://github.com/metrumresearchgroup/Torsten
https://github.com/metrumresearchgroup/torsten_tutorial_1_supplementary
https://github.com/metrumresearchgroup/torsten_tutorial_1_supplementary
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over time. Our goal is to estimate the posterior distribution of 
the parameters of the model describing the time course of the 
plasma drug concentrations in this individual.

PK model and clinical event schedule

Let us assume an individual receives a drug treatment of 
1200 mg boluses q12h × 14 doses. Drug concentrations are 
measured in plasma obtained from blood sampled at 0.083, 
0.167, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, and 8 hours following 
the first, second, and final doses. In addition, we take meas-
urements before each drug intake as well as 12, 18, and 24 h 
following the last dose. We analyze that data using a two-
compartment model with first-order absorption: 

 

 

 with

•	 u(t): drug amount in each compartment (mg),
•	 ka: absorption rate constant (h−1),
•	 CL: elimination clearance from the central compart-

ment (L/h),
•	Q: intercompartmental clearance (L/h),
•	Vcent: volume of the central compartment (L),
•	Vperi: volume of the peripheral compartment (L).

Both intervention and measurement events are described 
by the event schedule. Stan does not have any reserved vari-
able names, but in this tutorial, we follow the NONMEM con-
vention to specify events using the variable names in Table 1. 
More details can be found in the Torsten User Manual.

Statistical model

Given a treatment, x, and the PK parameters {
ka,Q, CL,Vcent,Vperi

}
, we compute the drug amounts u 

by solving the two-compartment ODE. We use y to denote 
the measured drug concentration and ĉ

(
= u∕Vcent

)
 the 

model-predicted drug concentration. We model the resid-
ual error from y to ĉ  using a lognormal distribution

where � is a scale parameter we wish to estimate. The de-
terministic computation of ĉ  along with the measurement 
model define our likelihood function p(y|�, x), where 
� =

{
ka, CL,Q,Vcent,Vperi, �

}
 and x are input data, that is, 

the clinical event schedule. Note that we are not limited to 
the above simple model. Stan is capable of many distribu-
tions35 as well as encoding more complex residual models 
such as the proportional and additive error variance.

It remains to define a prior distribution, p(�). Our prior 
should allocate probability mass to every plausible param-
eter value and exclude patently absurd values. For example, 
the volume of the central compartment is on the order of 10 
L, but it cannot be the size of the sun. In this simulated ex-
ample, our priors for the individual parameters are based on 
population estimates from previous (hypothetical) studies.

Suggestions for building priors can be found in Gabry et al.25 
and Betancourt36 and at https://github.com/stan-dev/stan/
wiki/Prior​-Choic​e-Recom​menda​tions.

Specifying a model in Stan

We can now specify our statistical model using a Stan file, 
which is divided into coding blocks, each with a specific 
role. From R, we then run inference algorithms that take 
this Stan file as an input.

Data and parameters block

To define a model, we need a procedure that returns the 
log joint distribution, log p(, �). Our first task is to declare 

(1a)
dugut

dt
= − kaugut

(1b)
ducent
dt

= kaugut −

(
CL

Vcent
+

Q

Vcent

)
ucent +

Q

Vperi
uperi

(1c)
duperi

dt
=

Q

Vcent
ucent −

Q

Vperi
uperi

y ∣ ĉ, � ∼ logNormal
(
log ĉ, �

)
,

CL ∼ logNormal(log(10), 0.25);

Q ∼ logNormal(log(15), 0.5);

Vcent ∼ logNormal(log(35), 0.25);

Vperi ∼ logNormal(log(105), 0.5);

ka ∼ logNormal(log(2.5), 1);

� ∼ Half−Normal(0, 1);

T A B L E  1   Variables used specify an event schedule

Variable Description

cmt Compartment in which event occurs

evid Type of event: (0) measurement, (1) dosing

addl For dosing events, number of additional doses

ss Steady state indicator: (0) no, (1) yes

amt Amount of drug administered

time Time of the event

rate For dosing by infusion, rate of infusion

ii For events with multiple dosing, interdose interval

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
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the data, , and the parameters, �, using the coding blocks 
data and parameters. It is important to distinguish the 
two. The data are fixed. By contrast, the parameter values 
change as HMC explores the parameter space, and gradi-
ents of the joint density are computed with respect to �, 
but not .

For each variable we introduce, we must declare a type 
and, for containers such as arrays, vectors, and matrices, the 
size of the container (Chapter 5 in the Stan User's Guide37). 
In addition, each statement ends with a semicolon. It is 
possible to specify constraints on the parameters using the 
keywords lower and upper. If one of these constraints is 
violated, Stan returns an error message. More important, 
constrained parameters are transformed into unconstrained 
parameters—for instance, positive variables are put on the 
log scale—which greatly improves computation.

Model block

Next, the model block allows us to modify the variable 
target, which Stan recognizes as the log joint distribu-
tion. The following statement increments target using 
the prior on �, which is a normal density, truncated at 0 to 
only put mass on positive values.

The truncation is implied by the fact � is declared as lower 
bounded by 0 in the parameters block. An alternative syntax 
is the following:

This statement now looks like our statistical formulation 
and makes the code more readable. We should be mindful 
that this is not a sampling statement but, rather, instructions 
on how to increment target. We now give the full model 
block:

The likelihood statement involves a crucial term we have 
not defined yet: concentrationHat. Additional vari-
ables can be created using the transformed data and 
transformed parameters blocks. We will take ad-
vantage of these to compute the drug concentration in the 
central compartment for each event. Note that for the like-
lihood, we only use the concentration during observation 
events, hence the indexing [iObs].

Transformed data and transformed 
parameters block

In transformed data, we can construct variables that 
only depend on the data. For this model, we simply specify 
the number of compartments in our model (including the 
gut), nCmt, and the numbers of PK parameters, nTheta, 
two variables that will come in handy shortly.

Because the data are fixed, this operation is only computed 
once. By contrast, operations in the transformed pa-
rameters block need to be performed (and differentiated) 
for each new parameter value.

To compute concentrationHat we need to solve 
the relevant ODE within the clinical event schedule. 
Torsten provides a function that returns the drug mass 
in each compartment at each timepoint of the event 
schedule.
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The first eight arguments define the event schedule and the 
last argument, theta, is an array containing the PK param-
eters, and defined as follows:

It is also possible to have theta change between events and 
specify lag times and bioavailability fractions, although we 
will not take advantage of these features in the example at 
hand.

The Torsten function we have chosen to use solves the 
ODEs analytically. Other routines use a matrix exponen-
tial, a numerical solver, or a combination of analytical and 
numerical methods.38 It now remains to compute the con-
centration in the central compartment at the relevant times. 
The full transformed parameters block is as follows:

The Stan file contains all the coding blocks in the following 
order: data, transformed data, parameters, 
transformed parameters, model. The full Stan 
code can be found in the https://github.com/metru​mrese​
archg​roup/torst​en_tutor​ial_1_suppl​ementary.

Calling Stan from R

The R package cmdstanr allows us to run a number of al-
gorithms on a model defined in a Stan file. An excellent 
place to get started with the package is https://mc-stan.
org/cmdst​anr/artic​les/cmdst​anr.html.

The first step is to “transpile” the file—call it twocpt.
stan—that is, translate the file into C++ and then compile it.

We can then run Stan's HMC sampler by passing in the 
requisite data and providing other tuning parameters; 
in this case the specified tuning parameters are (i) the 
number of Markov chains (which we run in parallel), 
(ii) the initial value for each chain, (iii) the number of 
warmup iterations, and (iv) the number of sampling 
iterations.

By default, Stan uses 1000 warmup iterations and 1000 sam-
pling iterations. Empirically these defaults work well across a 
broad range of models when running an adaptive HMC sam-
pler. For relatively simple models, we may even use shorter 
warmup and sampling phases, as we have done previously. 
This should be contrasted with random walk MCMC, such as 
the Gibbs sampler in BUGS, where it is typical to run 5000 or 
even 10,000 iterations per phase. Random walk MCMC tends 
to generate Markov chains with a higher autocorrelation than 
HMC, hence the need to run more iterations. In the next two 
sections, we discuss diagnostics that can be used to adjust the 
length of the warmup and sampling phases.

There are several other arguments we can pass to the 
sampler and that we will take advantage of throughout 
the tutorial. For applications in pharmacometrics, we rec-
ommend specifying the initial starting points via the init 
argument, as the defaults may not be appropriate. In this 
tutorial, we draw the initial points from their priors by de-
fining an appropriate R function.

The resulting fit object stores the samples generated 
by HMC from which we can deduce the sample mean, 
sample variance, and sample quantiles of our posterior 
distribution. This information is readily accessible using 
fit$summary() and summarized in Table 2. We could 
also extract the samples and perform any number of oper-
ations on them.

Checking our inference

Unfortunately there is no guarantee that a particular al-
gorithm will work across all the applications we will 
encounter. We can, however, make sure that certain nec-
essary conditions are met.

Much of the MCMC literature focuses on estimating 
expectation values for quantities of interest f ,

using sample estimators

for some samples �(1), �(2), ⋯ , �(n). When constructing 
such estimators using MCMC samples, rather than with 
exact independent samples, we must account for the fact 
that our samples are correlated and biased.

�f = ∫
Θ

f (�)p(�|y)d�,

�̂f =
1

n

n∑

i=1

f
(
�(i)

)
,

https://github.com/metrumresearchgroup/torsten_tutorial_1_supplementary
https://github.com/metrumresearchgroup/torsten_tutorial_1_supplementary
https://mc-stan.org/cmdstanr/articles/cmdstanr.html
https://mc-stan.org/cmdstanr/articles/cmdstanr.html
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Checking for convergence with R̂

MCMC samples are biased because Markov chains gen-
erate correlated samples, meaning any sample has some 
correlation with the initial point. If we run the algorithm 
for enough iterations, the correlation to the initial point 
becomes negligible and the chain “forgets” its starting 
point. But what constitutes enough iterations?

To monitor bias, we run multiple Markov chains, each 
started at different points, and check that they all con-
verge to the same region of the parameter space. One way 
to check this is to compute the R̂ statistics, for which we 
provide an intuitive definition:

If the chains are mixing properly, both the numerator and 
denominator measure the posterior variance, and R̂ con-
verges to 1.0, as n increases. Moreover, we want R̂ ≈ 1.0, 
as is the case in Table 2. Stan uses an improved R̂ statistics 
described in a recent article by Vehtari et al.19 We can also 
visually check that the chains are properly mixing using a 
trace plot (Figure 1).

If �R≫ 1 and, more generally, if the chains were not 
mixing, this would be cause for concern and an invitation 
to adjust our inference method. One potential solution 
is to increase the warmup length. Even when R̂ ≈ 1, we 
should entertain the possibility that all the chains suffer 
from the same bias.

Controlling the variance of our estimator

Let us assume that our warmup phase is long enough and 
the bias negligible. The expected error of our sample esti-
mator is now determined by the variance. Under certain 
regularity conditions, our estimator follows an MCMC 
central limit theorem,

where neff is the effective sample size, denoted ESSbulk in 
Table  2. Deviations from this approximation have order 
(1∕n2

eff

)
. In the limiting case where we generate indepen-

dent samples, neff = n; however, when samples exhibit cor-
relation, neff < n and the variance of our sample estimator 
increases. For CL, we have 2000 samples, but the effective 
sample size is 1580 (Table 2). If neff is low, our estimator may 
not be precise enough, and we should increase the sampling 
phase to generate more samples.

Achieving neff ≈ 100 is, in our experience, usually suffi-
cient in an applied setting. This means that the variance of 
the sample estimator is 1% that of the posterior, as can be seen 
from Equation (2). At this point, the uncertainty is dominated 
by the intrinsic posterior variance rather than the error in our 
inference procedure. If the effective sample size is below 100 
for certain quantities, Stan issues a warning message.

The effective sample size is only formally defined in 
the context of estimators for expectation values. We may 
also be interested in tail quantities, such as extreme quan-
tiles, which are more difficult to estimate and require 
many more samples to achieve a desired precision. Vehtari 
et al.19 propose a generalization of the effective sample size 
for such quantities and introduce the tail effective sample 
size. This is to be distinguished from the traditional effec-
tive sample size, henceforth the bulk effective sample size. 
Both quantities are reported by Stan.

Checking the model: posterior 
predictive checks

Once we develop enough confidence in our inference, we 
still want to check our fitted model. There are many ways 
of doing this. We may look at the posterior distribution of 
an interpretable parameter and see if it suggests implau-
sible values. Or we may evaluate the model's ability to 

R̂
intuitively

=

√
Total variance across all chains

Average within chain variance
.

(2)�̂f
approx
∼ Normal

�
�f ,

�f
√
neff

�

T A B L E  2   Summary of results when fitting a two-compartment model

Mean Median sd mad q5 q95 R̂ ESSbulk ESStail

CL 10.0 10.0 0.378 0.367 9. 39 10.6 1.00 1580 1348

Q 19.8 19.5 4.00 4.01 13.8 26.8 1.00 985 1235

Vcent 41.2 40.8 9.71 9.96 25.6 57.7 1.00 732 1120

Vperi 124 123 18.0 18.0 97.1 155 1.00 1877 1279

ka 1.73 1.67 0.523 0.522 1.01 2.68 1.00 762 1108

� 0.224 0.222 0.0244 0.0232 0.187 0.269 1.01 1549 1083

Note: The first columns return sample estimates of the posterior mean, median, standard deviation, median absolute deviation, 5th and 95th quantiles, based 
on our approximate samples. The next three columns return the R̂ statistics and the effective sample size for bulk and tail estimates, and can be used to identify 
problems with our inference.
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perform a certain task, for example, classification or pre-
diction, as is often done in machine learning. In practice, 
we find it useful to do posterior predictive checks (PPCs), 
that is, simulate data from the fitted model and compare 
the simulation to the observed data (Chapter 6 in Gelman 
et al.39). Mechanically, the procedure is straightforward: 

1.	 Draw the parameters from their posterior, �̃ ∼ p(�|y).
2.	 Draw the predicted observations from the likelihood, 

conditional on the drawn parameters, ỹ ∼ p
(
y | �̃

)
.

This amounts to drawing observations from their pos-
terior distribution, that is, ỹ ∼ p(ỹ |y). Both the uncertainty 
due to our estimation and the uncertainty due to our mea-
surement model propagate to our predictions.

Stan provides a generated quantities block, which 
allows us to compute values, based on sampled parameters. 
In our two-compartment model example, the following 
code draws predicted observations from the likelihood:

We generate predictions at the observed points for each 
sampled point, �(i). This gives us a sample of predictions, 
and we can use the 5th and 95th quantiles to construct 
a credible interval. We may then plot the observations 
and the credible intervals (Figure 2) and see that, indeed, 
the data generated by the model are consistent with the 
observations.

Comparing models: leave-one-out  
cross-validation

Beyond model criticism, we may be interested in model 
comparison. Continuing our running example, we com-
pare our two-compartment model to a one-compartment 
model, which is also supported by Torsten via the pmx_
solve_onecpt routine. The corresponding PPCs are 
shown in Figure 3.

There are several ways of comparing models, and which 
method is appropriate crucially depends on the insights 
we wish to gain. If our goal is to assess a model's ability 
to make good out-of-sample predictions, we may consider 
Bayesian leave-one-out (LOO) cross-validation. The prem-
ise of cross-validation is to exclude a point, 

(
yi, xi

)
, from 

the training set, that is, the set of data to which we fit the 
model. Here, xi denotes the covariate, and in our example, 
the relevant row in the event schedule. We denote the re-
duced data set, y−i. We then generate a prediction 

(
ỹi, xi

)
 

using the fitted model and compare ỹi to yi. A classic met-
ric to make this comparison is the squared error, 

(
ỹi−yi

)2.
Another approach is to use the LOO estimate of out-of-

sample predictive fit:

Here, no prediction is made. Instead, we examine how con-
sistent an “unobserved” data point is with our fitted model. 
Computing this estimator is expensive because it requires 

elpdloo: =

n∑

i

log p(yi | y−i).

F I G U R E  1   Trace plots. The sampled values for each parameters are plotted against the iterations during the sampling phase. Multiple 
Markov chains were initialized at different points. However, once in the sampling phase, we cannot distinguish the chains.
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fitting the model to n different training sets in order to eval-
uate each term in the sum.

Vehtari et al.40 propose an estimator of elpdloo, which 
uses Pareto smooth importance sampling and only re-
quires a single model fit. The premise is to compute 

and correct this value, using importance sampling, to esti-
mate log p

(
yi |y−i

)
. Naturally this estimator may be inaccu-

rate. What makes this tool so useful is that we can use the 
Pareto shape parameter, k̂, to assess how reliable the esti-
mate is. In particular, if �k > 0.7, then the estimate should not 
be trusted. The estimator is implemented in the R package 
loo. See Gabry et al.30 for more details, including its connec-
tion and comparison to the widely applicable information 
criterion.

Conveniently, we can compute log p
(
yi |y

)
 in Stan's 

generated quantities block. 

 These results can then be extracted and fed into Loo to 
compute elpdloo. The file twoCpt.r in https://github.com/
metru​mrese​archg​roup/torst​en_tutor​ial_1_suppl​ementary 
shows exactly how to do this. Figure 4 plots the estimated 
elpdloo, along with a standard deviation, and shows the two-
compartment model has better out-of-sample predictive 
capabilities.

TWO - COMPARTMENT POPULATION  
MODEL

We now consider the scenario where we have data from 
multiple patients and fit a population model. Population 
models are a powerful tool to capture the heterogeneity 
between patients while recognizing similarities. Building 
the right prior allows us to pool information between pa-
tients, the idea being that what we learn from one patient 
teaches us something—although not everything—about 
the other patients. In practice, such models can frustrate 
inference algorithms and need to be implemented with 
care.41 We start with an example where the interaction be-
tween the model and our MCMC sampler is well behaved. 
In Part 2 of this tutorial, we examine a more difficult case 

log p(yi|y)

F I G U R E  2   Posterior predictive 
checks for two-compartment model. The 
circles represent the observed data (y) 
and the shaded areas the 50th and 90th 
credible intervals based on posterior 
draws (yrep).
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F I G U R E  3   Posterior predictive 
checks for a one-compartment model. 
The circles represent the observed data 
(y) and the shaded areas the 50th and 
90th credible intervals based on posterior 
draws (yrep). A graphical inspection 
suggests that the credible intervals are 
wider for the one-compartment model 
than they are for the two-compartment 
model.
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for which we leverage Stan's diagnostic capabilities in 
order to run reliable inference.

Statistical model

Let � be the two-dimensional array of body weight–
normalized PK parameters for each patient, with

the parameters for the jth patient. We construct a population 
model by introducing random variation to describe other-
wise unexplained interindividual variability. In a Bayesian 
context, this is sometimes referred to as a prior distribution 
for the individual parameters,

As before, we work on the log scale to account for the 
fact the PK parameters are constrained to be positive. 
�pop=

(
CLpop, Qpop, Vcent,pop, Vperi,pop, ka,pop

)
 is the popu-

lation mean (on the logarithmic scale) and Ω the population 
covariance matrix. Both �pop and Ω are estimated. In this ex-
ample, we start with the simple case where Ω is diagonal. For 
our example, we will also use conventional allometric scaling 
to adjust the clearance and volume parameters for body weight.

The likelihood remains mostly unchanged, with the caveat 
that it must now be computed for each patient. Putting this 

all together, we have the following model, as specified by the 
joint distribution,

Specifying the model in Stan

We begin by adjusting our parameters block:

The declaration for ka,pop illustrates that constraints may be 
expressions including other variables in the model. In this 
case, ka,pop is constrained to avoid identifiability problems 
due to “flip-flop.”

The variable, �pop is introduced in transformed pa-
rameters, mostly for convenience purposes:

The model block reflects our statistical formulation:

�j=
(
CLnorm, j,Qnorm, j,Vcent,norm, j,Vperi,norm, j, ka, j

)
,

�j ∼ LogNormal
(
log �pop,Ω

)
.

CLj=CLnorm,j

(
weight

70

)0.75

=�1j

(
weight

70

)0.75

Qj=Qnorm,j

(
weight

70

)0.75

=�2j

(
weight

70

)0.75

Vcent,j=Vcent,norm,j
weight

70
=�3j

weight

70

Vperi,j=Vperi,norm,j
weight

70
=�4j

weight

70

�pop ∼ p
(
�pop

)
, (prior on pharmacokinetic parameters)

Ω ∼ p(Ω), (prior on population covariance)

� ∼ p(�)

� ∣�pop,Ω ∼ logNormal
(
log �pop,Ω

)
,

y ∣ c, � ∼ LogNormal(log c, �).

F I G U R E  4   Leave-one-out estimate of out-of-sample predictive 
fit. Plotted is the estimate, elpdloo, for the one- and two-compartment 
models as well as the difference in elpdloo for the two models. Clearly, 
the two-compartment model has superior predictive capabilities.
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In the transformed parameters block, we also declare 
and calculate the individual parameters given �j and any rel-
evant covariates—body weight in this case.

It remains to compute concentrationObs. There are 
several ways to do this and, depending on the computational 
resources available, we may either compute the concentra-
tion for each patient sequentially or in parallel. For now, we 
do the simpler sequential approach. In the upcoming Part 2 
of this tutorial, we examine how Torsten offers easy-to-use 
parallelization for population models.

Sequentially computing the concentration is a simple 
matter of bookkeeping. In transformed parameters, 
we loop through the patients using a for loop. The code 
is identical to what we used in the “Transformed Data and 
Transformed Parameters Block” section with the caveat that 
the arguments to pmx_solve_twocpt are now indexed to 
indicate for which patient we compute the drug mass. For 
example, assuming the time schedule is ordered by patient, 
the event times corresponding to the jth patient are given by

where start[j] and end[j] contain the indices of 
the first and last events for the jth patient and the syntax for 
indexing is as in R. The full for loop is then

Note that the last vector argument in pmx_solve_twocpt 
is generated using {} syntax.

Once we have written our Stan model, we can apply the 
same methods for inference and diagnostics as we did in the 
previous section.

Posterior predictive checks

We follow the exact same procedure as in the “Checking 
the Model: Posterior Predictive Checks” section—using 
even the same line of code—to simulate new observations 
for the same patients we analyzed. Figure 5 plots posterior 
predictions for each individual patient. In addition, we 
simulate new observations for hypothetical new patients 
by (i) drawing PK parameters from our population distri-
bution, (ii) solving the ODEs with these simulated param-
eters, and (iii) using our measurement model to simulate 
new observations. Those predictions are also shown in 
Figure 5 for each individual. Figure 6 depicts a compos-
ite PPC for all individuals. The generated quantities block 
then looks as follows:

It is worth noting that the computational cost of running 
operations in the generated quantities is rela-
tively small. Although these operations are executed once 
per iteration, in order to generate posterior samples of the 
generated quantities, operations in the transformed 
parameters and model blocks are run and differentiate 
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multiple times per iterations, meaning they amply domi-
nate the computation. Hence the cost of doing PPCs, even 
when it involves solving ODEs, is marginal. The compu-
tational scaling of Stan, notably for ODE-based models, is 
discussed in the article by Grinsztajn et al.42

For this simple population PK modeling example with 
a uniform study design for all individuals, the PPCs shown 
in Figures  5 and 6 are arguably sufficient model diagnos-
tics. In cases where the study design and patient popula-
tions are more heterogeneous, methods that adjust for such 

heterogeneity are desirable. Normalized prediction distribu-
tion errors (NPDEs)43 are commonly used in the maximum 
likelihood context and could be applied to point predictions 
from Bayesian models, for example, posterior mean or median 
predictions. A similar approach termed probability integral 
transforms (PIT) are used for Bayesian model checking.25,26

Standard PPCs that use the same data for model fitting and 
model checking may be overoptimistic, particularly when ap-
plied to highly flexible or overparameterized models. This may 
be remedied by using out-of-sample predictions for PPCs and 

F I G U R E  5   Population two-compartment model: posterior predictive checks for each individual. Black dots = observed data, red curve 
and shaded area = posterior median and 90% credible intervals for the prediction of new observations in the same individual, and blue curve 
and shaded area = posterior median and 90% credible intervals for the prediction of new observations in a hypothetical new individual with 
the same body weight.
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PITs. In the context of population models, this means fitting 
the model to data from a subset of individuals and predicting 
outcomes for the remaining individuals. This may be done for 
an entire data set using cross-validation. However, generating 
a cross-validation predictive distribution is computationally 
expensive and may often be impractical.

NONLINEAR PK/PD MODEL

Now let us consider a PK/PD model described in terms of 
a nonlinear ODE system that requires the use of a numeri-
cal solver. The patient receives multiple doses at regular 
time intervals, and the drug plasma concentration is re-
corded over time.

Nonlinear ODE model in PK/PD

In this the last example, we go back to the single-patient, 
two-compartment model and append it with a PD model. 
Specifically, we examine the Friberg–Karlsson semimecha-
nistic model for drug-induced myelosuppression44–49 with 
the goal to model the relation between neutrophil counts 
and drug exposure. The model describes a delayed feedback 
mechanism that keeps the absolute neutrophil count (ANC) 
at the baseline (Circ0) in a circulatory compartment (ycirc) 
as well as the drug effect that perturbs this mechanism. The 
delay between proliferative cells (yprol) and ycirc is modeled 
by three transit compartments with mean transit time

where ktr is the transit rate constant. Figure 7 summarizes 
the model (see also fig. 2 in Friberg et al.44).

The PD likelihood is

where ĉ = ycent∕Vcent is the drug concentration calculated 
from the PK model, and fFK solves the nonlinear ODE:

We use

to model the linear effect of the drug once it has been ab-
sorbed in the central compartment. This effect reduces the 
proliferation rate and induces a reduction in neutrophil 
count. The upper bound of 1 on Edrug excludes the scenario 
where the feedback loop is flipped if ĉ becomes too large. 
Although we expect that for any reasonable parameter val-
ues, Edrug < 1, we should anticipate the possibility that our 
Markov chains may encounter less well-behaved values as it 
explores the parameter space. Encoding such constraints can 
lead to improved numerical stability when solving the ODE.

We obtain the complete ODE system for the PK/PD 
model by coupling Equations (1) and (4). Because the 
equation is nonlinear, we can no longer resort to analyt-
ical solutions as we have done in the previous sections.

(3)MTT = (3 + 1)∕ktr

ANC ∼ logNormal
(
log

(
ycirc

)
, �ANC

)
,

ycirc= fFK
(
MTT,Circ0, �, � , ĉ

)
,

(4a)
dyprol

dt
= kprolyprol

(
1 − Edrug

)(Circ0
ycirc

)�

− ktryprol,

(4b)dytrans1
dt

= ktryprol − ktrytrans1,

(4c)dytrans2
dt

= ktrytrans1 − ktrytrans2,

(4d)dytrans3
dt

= ktrytrans2 − ktrytrans3,

(4e)dycirc
dt

= ktrytrans3 − ktrycirc,

Edrug =min
(
�ĉ, 1

)

F I G U R E  6   Population two-
compartment model: posterior predictive 
checks for all individuals. Gray 
circles = observed data, blue curve and 
shaded areas = posterior median and 
80% credible intervals for the population 
median, and red curve and shaded 
area = posterior median and 80% credible 
intervals for the 10th and 90th population 
percentiles intervals.
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Numerically solving ODEs

To solve an ODE numerically in Stan we first need to define 
a function that returns a right-hand side of the ODE, that 
is, the derivative of the solution, in the functions block. 
The functions block allows users to define functions and 
is written at the top of the Stan file before the data block.

This function is an almost direct translation of Equations (1) 
and (4). The first three components of dydt describe the PK. 

The next five components of dydt describe the PD minus 
the baseline Circ0. Writing the ODE as a difference from the 
baseline means the initial PD conditions is 0, as opposed to 
a parameter dependent value. This results in better compu-
tation because derivatives of the ODE solution with respect 
to the initial conditions no longer need to be computed; for 
more details, see section 5.2 in Grinsztajn et al.42 In addition, 
we encode a constraint on the circulatory compartment

where � is the machine precision and can be interpreted as 
the smallest nonzero number the computer can handle. This 
is to improve numerical stability, especially during the early 
stages of MCMC exploration when we may need to handle 
somewhat implausible parameter values.

Stan and Torsten provide several numerical solvers. In this 
example, we use the Runge–Kutta solver pmx_solve_rk45 
(section 3.4 in Zhang et al.33). The signature of pmx_solve_
rk45 is a bit more sophisticated than that of pmx_solve_
twocpt and requires the following arguments: 

1.	 the name of the user-defined ODE function 
(twoCptNeutModelODE)

2.	 the number of states/compartments in the ODE
3.	 the event schedule
4.	 the bioavailability fraction, F, and the dosing lag time, 
tlag for each compartment (optional)

5.	 the tuning parameters for the ODE solver (optional)

Because arguments are nameless in Stan, we can only 
pass the ODE tuning parameters if we also pass F and tlag.  
By setting F to 1 and tlag to 0 for each compartment, we es-
sentially ignore their effect. This is best done in the trans-
formed data block: 

ycirc > 𝜀 > 0,

F I G U R E  7   Friberg–Karlsson 
semimechanistic model.
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 Numerical solvers in Stan and Torsten admit three tuning 
parameters:

•	 rtol: relative tolerance to determine solution 
convergence,

•	 atol: absolute tolerance to determine solution 
convergence,

•	 max_num_step: maximum number of steps 
allowed. 

Although Stan and Torsten provide default values, we 
highly recommend that the user define the ODE solver 
control parameters in the data block: 

 Users should make problem-dependent decisions on rtol 
and atol, according to the expected scale of the unknowns, 
so that the error does not affect our inference. For example, 
when an unknown can be neglected below a certain thresh-
old without affecting the rest of the dynamic system, setting 
atol greater than that threshold avoids spurious and error-
prone computation. For more details, see Chapter 13 in the 
Stan User's Guide37 and section 3.7.5 in Zhang et al.33 and 
references therein.

As before, we solve the ODE within the event schedule in 
the transformed parameters block:

Solving PK/PD ODEs as a coupled system

The approach in the last section applies to all models that 
involve ODE solutions, but we will not use it here. An 
acute observer may have noticed the PK/PD model here 
exhibits a particular one-way coupling structure. That is, 

the PK (Equation 1) and PD (Equation 4) are coupled 
through the proliferation cell count yprol and Edrug, such 
that the PK can be solved independently from the PD. This 
is what motivates Torsten's coupled solvers that analyti-
cally solve the PK ODEs before passing the PK solution to 
the PD ODE. The PD ODE is then solved numerically. 
Because the dimension of the numerical ODE solution is 
reduced, in general this coupled strategy is more efficient 
than the last section's approach of numerically solving a 
full ODE system. To see it in action, let us apply the cou-
pled solver pmx_solve_twocpt_rk45 (section 3.5 in 
Zhang et al.33) to the same model. We need only make two 
changes. First, we modify the ODE function to reflect that 
only the PD states are to be solved.

Note that we pass in PD and PK states as separate argu-
ments, y and yPK, respectively. The above function only 
returns dy∕dt, while yPK is solved internally using an ana-
lytical solution, meaning users do not need to explicitly call 
pmx_solve_twocpt.

Then we replace pmx_solve_rk45 with pmx_solve_
twocpt_rk45 call.

Building the remaining coding blocks

We omit the data block but note that it is similar to 
the one we constructed in previous sections. The key 
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difference is we now include measurements for the abso-
lute neutrophil count. The parameters block now con-
tains the PD variables:

The model block is similar to that in “PK Model and 
Clinical Event Schedule” section:

Posterior predictive checks

We hope by now the reader has developed the habit of per-
forming PPCs on every model. Because we have both PK 
(drug concentration) and PD (neutrophil count) observa-
tions, the PPC should be conducted on both.

It is possible to only run the generated quantities block 
based on a fitted model using cmdstanr's generate_
quantities routine. This is useful when we change the 

generated quantities, but not the rest of a model we have al-
ready fitted. The compiled model and the fit are respectively 
stored in the mod and fit objects in R. We then run:

and use the results for a PPC (Figure 8).

DISCUSSION

Stan provides an expressive language to build models, 
state-of-the-art algorithms to fit these models, and a host 
of easy-to-use diagnostics. Torsten complements Stan 
with a suite of routines that solve ODEs within the context 
of clinical event schedules. Together, Stan and Torsten are 
potent tools when working through the tangled steps of a 
Bayesian workflow for PK/PD modeling.

Current and potential role for Stan and 
Torsten for pharmacometrics applications

We can apply Stan/Torsten to a large palette of generative 
models, both for inference and simulation. Applications 
range from simple linear regression to complex mul-
tiscale quantitative systems pharmacology models. 
Compared with specialized pharmacometrics tools such 
as NONMEM®, Stan/Torsten is particularly well suited 
for cases where more flexibility is desired. This includes 
models with

•	 random-effects distributions other than normal,
•	 prior distributions other than the limited set available 

in existing pharmacometrics tools,
•	 multiple submodels with different random-effect 

structures.

It is important to recognize that MCMC, including the 
HMC scheme used by Stan/Torsten, can be computation-
ally intensive, notably when fitting hierarchical models 
that require us to numerically solve ODEs. This can be 
especially frustrating during the initial model exploration 
stage of a project. For such exploratory analyses, access 
to a rapid approximate Bayesian inference engine may 
be desirable. Stan/Torsten includes two optimization-
based inference engines, one for estimation of posterior 
modes and one for variational inference. These algo-
rithms attempt to simultaneously optimize over the en-
tire joint posterior distribution of all model parameters. 
This process can be relatively slow and error prone when 
trying to optimize over the large number of population 
and individual-level parameters of a typical population 
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pharmacometrics model. This contrasts with typical 
mixed-effects modeling programs that use algorithms 
specialized for a more limited range of models—usually 
employing an alternating sequence of lower dimensional 
optimization problems.

For applications that may be implemented with typi-
cal pharmacometrics tools, the choice between those and 
Stan/Torsten comes down to the trade-offs between flex-
ibility, doing accurate Bayesian inference, and computa-
tion time.

We would also like to point out that Stan is not the only 
probabilistic programing language that is actively under 
development. PyMC3,50 TensorFlow Probability,51,52 and 
Turing,53 among others, provide similar modeling capa-
bilities. A full review and comparison of these languages 
is, however, beyond the scope of this article.

Preview of Part 2

In Part 2 of this tutorial, we plan to build on the material 
we have covered thus far and tackle more advanced top-
ics, including:

•	 Improving the performance of HMC, using within-
chain parallelization for population models and 
Torsten's dedicated group solvers.

•	 Advanced diagnostic tools, namely, divergent transi-
tions that can flag bias in our posterior samples. Stan 
makes these diagnostics readily available.

•	 Fake data simulation and analysis, in particular 
prior predictive checks as a way to understand 
and build priors, fitting the model to fake data as 
an imperfect tool to troubleshoot Bayesian infer-
ence, and an overview of the more sophisticated 
but computationally demanding simulation-based 
calibration.54

•	 Performance tuning of ODE models, such as solver se-
lection and accuracy control as well as stability issues.

We will dive into these subjects by examining more 
advanced models and using techniques such as rep-
arameterization, within-chain parallelization, and 
pooling multiple data sources. We will also discuss 
ongoing developments with Stan and Torsten, such as 
tools to handle larger scale ODEs and plans to leverage 
parallelization.
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F I G U R E  8   Posterior predictive 
checks for the pharmacokinetic/
pharmacodynamic model. The circles 
represent the observed data (y) and the 
shaded areas the 50th and 90th credible 
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