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In silicomodels of biomolecular regulation in cancer, annotated with patient-specific gene
expression data, can aid in the development of novel personalized cancer therapeutic
strategies. Drosophila melanogaster is a well-established animal model that is increasingly
being employed to evaluate such preclinical personalized cancer therapies. Here, we
report five Boolean network models of biomolecular regulation in cells lining the Drosophila
midgut epithelium and annotate them with colorectal cancer patient-specific mutation
data to develop an in silico Drosophila Patient Model (DPM). We employed cell-type-
specific RNA-seq gene expression data from the FlyGut-seq database to annotate and
then validate these networks. Next, we developed three literature-based colorectal cancer
case studies to evaluate cell fate outcomes from the model. Results obtained from
analyses of the proposed DPM help: (i) elucidate cell fate evolution in colorectal
tumorigenesis, (ii) validate cytotoxicity of nine FDA-approved CRC drugs, and (iii) devise
optimal personalized treatment combinations. The personalized network models helped
identify synergistic combinations of paclitaxel-regorafenib, paclitaxel-bortezomib,
docetaxel-bortezomib, and paclitaxel-imatinib for treating different colorectal cancer
patients. Follow-on therapeutic screening of six colorectal cancer patients from
cBioPortal using this drug combination demonstrated a 100% increase in apoptosis
and a 100% decrease in proliferation. In conclusion, this work outlines a novel roadmap for
decoding colorectal tumorigenesis along with the development of personalized
combinatorial therapeutics for preclinical translational studies.

Keywords: personalized in silico cancer models, Boolean network models, cancer systems biology, preclinical in
silico drug screening, combinatorial therapeutics
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INTRODUCTION

Cancer development is a multistep process that is driven by a
heterogeneous combination of somatic mutations at the genetic
and epigenetic levels (1, 2). Specific mutations in oncogenes
(3) and tumor suppressor genes (4), that result in their activation
and inactivation, respectively, manifest themselves at the tissue
level in the form of polyps, multi-layering, and metastasis
(1, 5, 6). These system-level properties resulting from
heterogeneous biomolecular aberrations and dysregulated
cellular processes are abstracted as “hallmarks of cancer” (1, 6).
The heterogeneity exhibited by cancer cells stems from factors
such as genomic instability, clonal evolution, and variations in
the microenvironment (7, 8). This fosters plasticity in cancer
cells which lead to drug resistance – a leading impediment in the
treatment of the disease (7–9). As a result, despite major research
initiatives and resultant advancements in decoding the molecular
basis of cancer, a comprehensive treatment for the disease still
alludes researchers. The limited therapeutic regimens approved
by the Food and Drug Administration (FDA) (10–12) exhibit
variable efficacies across patients besides a multitude of toxic side
effects and, multi-drug resistance (13). Towards designing
efficacious personalized cancer therapeutics, recent advances in
high-throughput omics-based approaches complemented by
patient-specific gene expression data can provide significant
assistance (14, 15). Several online databases and portals
including cBioPortal (16), The Cancer Genome Atlas (TCGA)
(17), and International Cancer Genome Consortium (ICGC)
(18) amongst others (19, 20) provide such freely available
datasets. However, effective and seamless utilization of such
patient-specific genomic data to design personalized cancer
therapies is still a fledgling area.

Researchers are increasingly employing whole-animal models
(21–24) such a mouse, zebrafish, and fruit fly for preclinical in
vivo validation of therapeutic hypotheses generated from
personalized preclinical studies. Amongst the animal models,
Drosophila melanogaster has become a popular platform for gene
manipulation, investigating site-specific changes in the genome,
and high-throughput whole-animal screening (14, 25).
Importantly, a comparative study of the human and fly
genome showed around 75% of disease-causing genes in
humans are conserved in Drosophila (24, 26). Additionally,
ease of handling and significantly lower genetic redundancy
imparts further advantage to the employment of fly models
(27). As a result, over 50 different data repositories, and tools
are now available for hosting data on the fly genome, RNAi
screens, and expression data including FlyGut-seq (28), and
FlyAtlas (29) databases. Specifically in the case of cancer,
several in vivo studies have been designed to elicit novel
therapeutic targets using the Drosophila model system (30–33).
One salient example is the validation of indomethacin, which is
reported to enhance human Adenomatous Polyposis Coli
(hAPC) induced phenotype in Drosophila eye (34) and
therefore, employed for treating colorectal cancer (CRC).
Vandetanib, another approved targeted therapy that was also
validated by using theDrosophila system, suppressed Ret activity,
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and was later approved for medullary thyroid carcinoma (MTC)
(30). However, a major shortcoming of using such mono-
therapeutic agents for cancer treatment stems from the tumor
heterogeneity which results in the selection of resistant cells (35,
36) besides acting specifically on singular pathways. To
overcome these issues, multiple therapeutic agents acting on
multiple pathways in synergy can significantly increase drug
efficacy, besides lowering the therapeutic dosage (36). To
evaluate high-efficacy synergistic drug combinations,
researchers have employed the Drosophila model in preclinical
studies to elicit optimal drug combinations (32, 33). The
Drosophila Lung Cancer Model by Levine et al. (32) helped
identify trametinib and fluvastatin as combinatorial drug therapy
for lung cancer. Further, an EGFR induced lung tumor model
was also designed in Drosophila which assisted in providing an
alternative combination of drugs for lung cancer treatment
through screening an FDA-approved compound library (33).
However, combinatorial therapies pose unique challenges such
as multidrug resistance in chemotherapy (13) and cross drug
resistance (37, 38) besides the continuing need for higher
therapeutic efficacies (39). Towards tackling these issues,
researchers are now ‘personalizing’ live animal platforms for
employment in preclinical studies to design efficacious
therapeutic regimens. For instance, a comprehensive state-of-
the-art in vivo Drosophila Patient Model (DPM) using a
personalized therapeutics approach was described in flies (40).
This particular study involved genetic manipulation of the fly
genome to induce mutations specific to KRAS-mutant metastatic
colorectal cancer. Combinatorial therapies were then given to the
transgenic flies, harboring mutations that were identified in the
patient, to discover high-efficacy synergistic drug combinations.

Here, we propose a novel computational framework in the
form of an in silico Drosophila Patient Model (DPM), for
developing personalized drug combinations for CRC patients.
This framework is designed such that it can facilitate the
modeling and analysis of patient-specified CRC network
models along with evaluation of combinatorial therapeutic
strategies (41, 42). We have constructed five biomolecular
network models of cells regulating the maintenance of adult
Drosophila midgut epithelium lining. These include multipotent
intestinal stem cells (ISCs) (43–47), enteroblasts (EBs) (48),
enterocytes (ECs), enteroendocrine cells (EEs) (49–53), and
visceral muscle (VM) cells (54). Next, we evaluated each
network’s ability to program cell fates under normal conditions
as well as under minor perturbations. The ISCs are under the
regulation of two sub-regions at the time of division; Apical and
Basal (52). In our study, we have incorporated this information
and analyzed ISC network under Apical and Basal regulation by
changing inputs to the network. The networks including ISC’s
under Apical and Basal regulation, EB, and EC, were then
subjected to three types of inputs including physiological
inputs (referred to as “normal”), aberrant inputs such that the
fly homeostatic midgut regulation is perturbed (referred to as
“stress”), and oncogenic inputs (referred to as “cancer”). The cell
fate outcomes under normal and cancer conditions were
validated against published literature. The individual output
July 2021 | Volume 11 | Article 692592
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node propensities for the normal case were also validated against
RNA-seq gene expression values taken from the FlyGut-seq (28)
database. Additionally, three literature-based case studies were
constructed to further validate the proposed in silico DPM. The
first case study replicates colorectal tumorigenesis under
progressive mutations using Martorell et al.’s CRC model (55).
In the second case study, we employed Markstein et al.’s (56)
model to perform therapeutic interventions to validate the
cytotoxicity of nine FDA-approved drugs. Finally, in the third
case study, we reproduced Bangi et al.’s KRAS-mutant CRC
model (40) for evaluating optimal personalized drug treatment
combinations by incorporating key patient-specific mutations
into our model followed by combinatorial therapeutic
screening. Building on these case studies, we devised a novel
synergistic combination of a chemotherapeutic agent and a
targeted therapy i.e., paclitaxel-regorafenib, paclitaxel-
bortezomib, docetaxel-bortezomib, and paclitaxel-imatinib for
treating six CRC patients taken from cBioPortal (16), while
four patients were treated with only targeted therapy. The
results obtained from combinatorial chemo- and targeted
therapies show up to a 100% increase in anti-cancerous cell
fates such as apoptosis and a 100% reduction in tumorigenesis
promoting cell fates such as hyper-proliferation.

Taken together, we propose a computational framework in
the form of an in silico DPM to provide personalized CRC
therapeutics. This approach can help reduce the overall cancer
treatment cost by facilitating the development of higher efficacy
combinatorial therapies for colorectal cancer.
RESULTS

Network Construction and Robustness
Analysis of Regulatory Homeostasis in
Drosophila melanogaster Midgut
To investigate the biomolecular signaling regulating the
homeostasis in Drosophila melanogaster midgut (Supplementary
Figure 1), we undertook an extensive literature survey and
constructed five cell-type-specific rules-based network models
(details in Supplementary Tables 1–5). Each model corresponds
to one of the five cellular phenotypes lining the Drosophilamidgut
including intestinal stem cells (ISCs) (43–47), enteroblasts (EBs)
(48), enterocytes (ECs), enteroendocrine cells (EEs) (49–53), and
visceral muscle (VM) (54). The schematic of pathway integration
in each networkmodel is provided in Supplementary Figures 2–6.
ISC network contains 48 nodes and 70 edges, EB consists of 45
nodes and 65 edges, EC and EE comprise 39 nodes and 55 edges,
and VM contains 42 nodes and 57 edges (Figures 1A–D).

Next, to evaluate the biological plausibility of each network,
we assessed the network response under normal input node
values taken from the FlyGut-seq database (28) (see Materials
and Methods). Our results show that the biomolecular network
of ISC cells programmed apoptosis (with a propensity of 0.332),
extrusion (0.188), proliferation (0.131), and differentiation/EB
fate (0.131). EB network exhibited apoptosis (0.379), and
Frontiers in Oncology | www.frontiersin.org 3
extrusion (0.230). In the case of the EC network, apoptosis and
dpp production were both programmed with propensities of
0.331, while for VM network apoptosis and dpp production cell
fate program with 0.398 propensity (Figure 1E).

To determine the robustness of cell fate programming by each
type of cell, we induced a 10%perturbation in the input stimuli and
observed the network response. The highest variation in cell fates
was exhibited in apoptosis (SEM 0.0006), delta production (SEM
0.0012),multilayering (0.0014), andWNT target genes (0.0009) for
ISC, EB, EC, and VM, respectively (Supplementary Figure 7). The
robust cell fate programming results indicate that all five networks
are biologically plausible as they exhibited robustness against
random perturbations and are hence feasible for employment in
onward analyses (57, 58) (Supplementary Table 6).

Evaluation and Validation of Biomolecular
Network Models Under Normal, Stress
and Colon Cancer Conditions
To investigate and evaluate the proposed normal networks under
normal, stress, and cancerous conditions (construed as a
combination of inputs), Deterministic Analysis (DA) was
performed (59) (Supplementary Table 7). Results from our
analyses (Figure 2) revealed that under normal conditions,
ISC’s Apical regulation programmed apoptosis, extrusion,
proliferation, and differentiation (or EB fate) with propensities
of 0.295, 0.178, 0.130, and 0.130, respectively (Supplementary
Table 8) (see Materials and Methods). Under stress conditions,
the propensity for proliferation, delta production, apoptosis, and
differentiation increased to 0.141, 0.074 (from 0.062 in normal
conditions), 0.344, and 0.141, respectively. Lastly, in cancerous
conditions, propensities for multi-layering increased to 0.207,
while proliferation, delta production decreased to 0.089 and
0.014, respectively. The results were again validated from the
literature which supports that normal ISCs in stress conditions are
known to undergo higher proliferation (60–62) and since delta is
a marker for proliferation, its value increases as well (63–65).
However, in the case of cancer conditions such as nutrient
deprivation, etc., normal cells exhibit lowered proliferation (66,
67). Literature reports also that ISCs upon encountering extreme
stress, exhibit epithelium multi-layering, augmented by
overgrowth (68, 69) (Supplementary Figures 8–10).

For the ISC network under Basal regulation and in normal
conditions (Supplementary Table 7), the cell fate outcomes
included apoptosis, differentiation (or EE fate), and extrusion,
with propensities of 0.353, 0.303, and 0.094, respectively
(Supplementary Table 8). Under stress, apoptosis, proliferation,
and delta production increased to 0.375, 0.069 (from 0.045 in
normal conditions), and 0.102 (from 0.089 in normal conditions),
respectively. For cancer conditions, the propensity of apoptosis,
proliferation, and delta production decreased to 0.353, 0.017, and
0.000, respectively, whereas multi-layering increased to 0.353.
Stressful cellular environments are known to increase the
apoptosis rate (70–72). In absence of mutations, normal cells
residing in toxic and oncogenic environments reduce their
proliferation rate and delta production (63–67). Cell division
rate, moreover, needs to be balanced with cell turnover and
July 2021 | Volume 11 | Article 692592
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apoptosis so when proliferation slows down so does cell death (70,
71) (Supplementary Figures 11–13).

Next, we evaluated cell fate programming of the EB network
under normal conditions (Supplementary Table 7). The results
showed apoptosis, extrusion, and differentiation (or EC fate) cell
fates with propensities of 0.381, 0.229, and 0.133, respectively
(Supplementary Table 8). However, under stress conditions, the
propensity for apoptosis and multi-layering increased to 0.450
and 0.109, respectively, whereas, extrusion and differentiation
Frontiers in Oncology | www.frontiersin.org 4
(or EC fate) decreased to 0.166, and 0.080, respectively. Under
cancerous conditions, the salient cell fates programmed included
multi-layering, apoptosis, and extrusion with propensities of
0.351, 0.394, and 0.124, respectively. Also, differentiation was
suppressed to 0.000 due to toxic cellular environments. The trend
in cell fate propensities under cancerous conditions also exhibited
multi-layering (68, 69) along with low delta production and
extrusion (Supplementary Figures 14–16). This corroborates
with published literature stating that delta is a known marker
A B

C D

E

FIGURE 1 | Regulatory schema of networks for the five cell types present in Drosophila melanogaster midgut. (A–D) The mapping between inputs, processing, and
output nodes present in the biomolecular network models of five cell types i.e. ISC, EB, EC/EE, and VM. (E) Cellular fate propensities for ISC, EBs, ECs, and VM,
along with their respective SEMs.
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for ISC and in the case of ISC proliferation, is reduced along with
delta production (63–67) in cancer conditions.

Moreover, the EC network was also analyzed for response
under normal conditions (Supplementary Table 7). The
emergent cell fates included dpp production, apoptosis, and
extrusion with propensities of 0.331, 0.331, and 0.189,
respectively (Supplementary Table 8). Under stress, the
extrusion rate decreased to 0.078, while dpp production and
apoptosis both increased to 0.406, respectively. Dpp signaling is
also known to increase under stress conditions to promote cell
division (73). Under cancer conditions, however, an increase in
propensities of multi-layering (0.284) was observed which is in
agreement with published studies (68, 69) (Supplementary
Figures 17–19).

Lastly, a comparison of output node values for ISC, EB, and
EC networks under normal conditions was performed against
experimental RNA-seq data from the FlyGut-seq database (28).
Note that due to the paucity of regulatory dynamics in the
literature on EE and VM, we could not evaluate their networks
further. The output node propensities for ISC, EB, and EC were
found to be comparable with values from the FlyGut-seq database
(28) (Figure 3 and Supplementary Table 9). The full names of
nodes in the network are mentioned in Supplementary Table 10.

Case Study 1 – Investigating Colorectal
Tumorigenesis Under Progressive
Mutations in Drosophila Midgut
To decode the emergent cell fates during initiation and
progression of colorectal cancer (CRC) in the adult Drosophila
Frontiers in Oncology | www.frontiersin.org 5
midgut, two salient driver mutations (55) in adenomatous
polyposis coli (Apc, in WNT pathway) (74) and Ras (in the
EGFR pathway) (75) were incorporated into the ISC network.
These mutations were initially incorporated to act individually
and later simultaneously (Supplementary Figure 20). The
emergent cell fates in the control case (without mutations)
included apoptosis, proliferation, and differentiation, along
with loss of polarity, multi-layering, and extrusion with
propensities of 0.296, 0.130, 0.130, 0.00, 0.077, and 0.179,
respectively. Upon incorporation of Apc mutation into the ISC
network, a slight decrease in apoptosis and proliferation was
observed as their propensities decreased to 0.256 and 0.112,
respectively. Differentiation and extrusion also got reduced to
0.112 and 0.151, respectively, while multi-layering increased to
0.256, and loss of polarity remained unaffected. Next, upon
introducing Ras mutation, a decrease in apoptosis (0.210) and
an increase in proliferation (0.148) was observed, which
indicated cellular overgrowth. Furthermore, in line with
Martorell et al. (55), loss of polarity and extrusion increased to
0.080 and 0.210, respectively.

On the other hand, the concurrent incorporation of Apc and
Ras mutations resulted in hyper-proliferation and overgrowth as
apoptosis decreased to 0.173 and proliferation increased to 0.173.
The differentiation rate was observed to be 0.112 and loss of
polarity, multi-layering and extrusion increased to 0.061, 0.173,
and 0.173, respectively. Hence, with concurrent mutations in
Apc and Ras, the emergent cell fates started exhibiting the
hallmarks of cancer including abnormal proliferation and loss
of differentiation, etc. (76). These results were also coherent with
FIGURE 2 | Cell fate propensities for intestinal stem cells (ISCs) under Apical and Basal regulation, enteroblasts (EBs), and enterocytes (ECs) in normal, stress, and
cancer conditions. (A) ISC’s under Apical regulation adopt eight different cell fates in three ambient conditions. In normal conditions, the highest propensity was
observed for apoptosis followed by extrusion, proliferation, and EB fate, in order. In the case of stress, the highest propensity is that of apoptosis, followed by
extrusion, EB fate, and proliferation. In cancer, the highest propensity is that of apologies followed by multi-layering and extrusion. (B) ISCs under Basal regulation
program eight different cell fates with the highest propensity being for apoptosis fate in normal, stress, and cancer conditions. (C) Six cellular fates in EB, with the
highest propensity for apoptosis in normal, stress, and cancer conditions. (D) Five cellular fates in EC, with the highest propensity for dpp production and apoptosis
in normal, stress, and cancer conditions. Uncharacterized cell fate has a 0.000 propensity in all conditions and every network.
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both the experimental findings reported by Martorell et al. (55)
(Figure 4 and Supplementary Table 11) and differential gene
expression data (Supplementary Table 12).

Case Study 2 – Therapeutic Evaluation of
Raf-Mutation in Drosophila Midgut Using
Targets From the Literature
Introduction of gain-of-function Raf-specific driver mutations in
our ISC network enabled the replication of Markstein et al.’s (56)
therapeutic screen towards a comparative cancer recurrence
evaluation of nine FDA-approved drugs. In their gain-of-
Frontiers in Oncology | www.frontiersin.org 6
function Raf tumor model, Markstein and colleagues had
classified FDA-approved drugs into class I and II drugs.
According to the study class, I drugs induced cancer reversal
in mutated cells without affecting the wild-type cells, in contrast,
class II drugs induced cancerous phenotype in wild-type cells
(Supplementary Table 13). The result of our network analysis of
the control case exhibited proliferation and apoptosis with
propensities of 0.157 and 0.286, respectively. However, after
the induction of Raf mutations, the proliferation (0.162) rate
increased along with a decrease in apoptosis (0.175). Treatment
of a Raf-mutated network using class I drugs led to a decrease in
A

B

C

FIGURE 3 | TISON output nodes propensities (in silico results) validation from FlyGut-seq database (in vivo results). (A) Comparison of ten output nodes
propensities in ISC network: adenomatous polyposis coli (Apc2), cdc42 (Cdc42), head involution defective (hid), suppressor of hairless (Su(H)), prospero (pros), discs
large 1 (dlg1), signal-transducer and activator of transcription protein at 92E (Stat92E), rolled (rl), pangolin (pan), and dMyc (myc). (B) Comparison of nine output
nodes propensities in EB network: adenomatous polyposis coli (Apc2), cdc42 (Cdc42), discs large 1 (dlg1), head involution defective (hid), rolled (rl), signal-
transducer, and activator of transcription protein at 92E (Stat92E), suppressor of hairless (Su(H)), pangolin (pan), and dMyc (myc). (C) Comparison of eight output
nodes propensities in EC network: adenomatous polyposis coli (Apc2), cdc42 (Cdc42), discs large 1 (dlg1), head involution defective (hid), rolled (rl), suppressor of
hairless (Su(H)), pangolin (pan) and dMyc (myc) (Supplementary Table 10).
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proliferation (0.089) and an increase in apoptosis (0.263). For the
wild type in comparison with the control, almost no effect was
observed on apoptosis, which remained steady at 0.283 whereas a
slight decrease was observed in proliferation (0.130). This
confirmed the action of class I drugs which act to substantially
reduce cancerous fates in cancer without having a major impact
on wild-type cells.

Alternatively, in the case of class II drugs, the wild type also
exhibited hyper-proliferation after therapy with its propensity
reaching up to 0.191, and apoptosis increased to 0.336.
Importantly, for the mutated network, drug action continued its
activities with the propensity of proliferation reaching 0.175 and
apoptosis at 0.306. These results suggest that class II drugs are
indeed associated with drug cytotoxicity as they induced
malignancy in normal cells under therapy. This confirms
Markstein et al.’s study which hypothesized that the extracellular
environment in animal models is crucial in drug delivery and
cytotoxicity (Figure 5 and Supplementary Table 14).

Case Study 3 – Employing the In Silico
Drosophila Patient Model (DPM) for
Personalized Therapeutics
Towards developing aDrosophila-based platform for employment
in orchestrating patient-centric cancer therapeutics, we adopted
Bangi et al.’s (40) in vivo Drosophila Patient Model (DPM).
The in vivo model was first translated into an in silico DPM
which incorporated patient-specific mutations from Bangi et al.’s
study. These mutations included eight tumor suppressors: Apc,
Tp53, Fbxw7, Tgfbr2, Smarca4, Fat4, Mapk14, and Cdh1, along
with one oncogenic mutation in Kras (Supplementary Table
15). After inducing these patient-specific mutations into the ISC
network (through direct and indirect target identification), we
administered trametinib and zoledronate in different
combinations to observe the most efficacious therapeutic effect.
Frontiers in Oncology | www.frontiersin.org 7
Our results showed that in control (i.e. healthy cells), the cell fate
propensities for proliferation and apoptosis came out to be 0.130
and 0.294, respectively. Upon induction of mutations,
proliferation increased to 0.200 and apoptosis decreased to
0.200, respectively. Next, with the administration of trametinib,
an inhibitor of MEK kinase (mitogen-activated protein kinase
kinase), used to treat patients with Kras mutation, the
propensities for proliferation decreased to 0.000, whereas
apoptosis increased to 0.386 (Figure 6A). With the
administration of zoledronate, the cell fate propensities came
out to be 0.130 for proliferation and 0.324 in the case of apoptosis
(Figure 6B). Next, with the induction of zoledronate in
combination with trametinib, a decrease in proliferation to
0.000 and an increase in apoptosis to 0.386 was observed
(Figure 6C). Interestingly, augmentation of therapy with in
tandem administration of trametinib, zoledronate, and
trametinib with zoledronate showed proliferation to decrease to
0.000 and apoptosis to increase to 0.400 propensities
(Figure 6D). These results exhibited cancer reversion on the
administration of the drug combination and corroborate with
Bangi et al.’s findings.

Identification and Evaluation of
Personalized Therapeutics for CRC
Patients Using In Silico DPM
Towards developing personalized combinatorial therapies for
treating colorectal cancer patients, we coupled our in silico DPM
with patient-specific gene expression data from cBioPortal (16)
(Supplementary Table 16). Patient-specific potential druggable
targets were identified (from the 48 nodes in the ISC network)
and their oncogenic cell fate (“apoptosis” and “proliferation”
rates) propensities were obtained using the DA pipeline
(Supplementary Table 17). Next, we employed PanDrugs
(77) - an online database that prioritizes direct and indirect
FIGURE 4 | Cell fate outcomes after the introduction of progressive CRC mutations and their validation against Martorell et al.‘s Drosophila CRC model. A high rate
of extrusion and loss of polarity was observed in Apc-Ras as well as Ras clones. Alongside, an increased proliferation rate with a decreased apoptosis and
differentiation is also highlighted by Martorell et al. in their in vivo model.
July 2021 | Volume 11 | Article 692592

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gondal et al. In Silico Drosophila Patient Model
A B

C D

FIGURE 5 | Evaluating cell fates under therapeutic screens taken from Markstein et al.‘s Drosophila model. (A) The effect of class I drugs on cell proliferation in wild
type and mutated networks, (B) The effect of class II drugs on cell proliferation in wild type and mutated networks, (C) The effect of class I drugs on apoptosis in wild
type and mutated networks, (D) The effect of class II drugs on apoptosis in wild type and mutated network.
A B

C D

FIGURE 6 | Cell fate propensities were obtained from the in vivo Drosophila Patient Model using Bangi et al.'s study. Cell fate propensities under (A) control, mutated,
and therapy (Trametinib), (B) control, mutated, and therapy (Zoledronate), (C) control, mutated, and therapy (Trametinib + Zoledronate), (D) control, mutated, and
therapy (Trametinib, Zoledronate, and Trametinib + Zoledronate).
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targeting of genomic mutations, to search for “druggable genes”
in our networks. Each node was then queried in the database
to find out the drugs that targeted them directly or indirectly
(Supplementary Tables 18, 19). The results from this exercise
elicited chemotherapy (paclitaxel/docetaxel) and targeted
therapies (regorafenib, bortezomib, imatinib) depending on
patient-specific mutations (Supplementary Table 20). Follow
up literature review showed that these drugs and their
combinations are currently being used in several studies and
clinical trials (78–86). Specifically, the combination of the
paclitaxel-regorafenib was evaluated for treating advanced
esophagogastric cancer (78), and the paclitaxel-bortezomib
combination was used in metastatic solid tumors (87). While
the docetaxel-bortezomib combination was evaluated for
metastatic breast cancer (79), Non-Small Cell Lung Cancer
(NSCLC) (80, 81), and prostate cancer (82). Paclitaxel-imatinib
combination was tested in metastatic solid tumors (83), NSCLC
(84), and ovarian cancer (85).

To test the efficacy of these drug combinations in CRC
patients, we administered these therapies using the proposed in
silico DPMs to ten patients with colorectal adenocarcinoma
obtained from cBioPortal (16). To implement the simultaneous
action of chemotherapy wherein the drug introduces widespread
inhibition of mitosis by stabilizing polymerized microtubules
and not allowing them to function during cell division for that,
we surveyed the existing literature on microtubule targeting
(Supplementary Table 21, Supplementary Figure 21) and
embedded it into ISC network (Supplementary Table 22) to
study the behavior of microtubule stabilization-induced cell fates
in chemotherapy. The resultant network consists of 54 nodes and
83 edges (Supplementary Figure 22). Our results from
combinatorial chemo- and targeted therapy using an extended
Frontiers in Oncology | www.frontiersin.org 9
network showed up to a 100% increase in apoptosis cell fate
and a 100% decrease in proliferation rate (Figure 7 and
Supplementary Table 23).
MATERIALS AND METHODS

The following sub-sections provide details of the methodology
employed at each step of the study. The overall workflow of the
study is outlined in Supplementary Figure 23.
Data Collection and Boolean Modeling of
Five Cell-Type-Specific Networks in
Drosophila Midgut
To construct the biomolecular network models involved in the
cellular regulationofDrosophilamidgut, a comprehensive reviewof
the existing literature and databases was undertaken. The databases
employed included the Kyoto Encyclopedia ofGenes andGenomes
(KEGG) (88), Drosophila Interactions Database (DroID) (89), and
data repositories such as FlyGut-seq (28). Alongside, network
models of Drosophila by Giot et al. (90), Formstecher et al. (91),
and Toku et al. were used to construct five rule-based Boolean
biomolecular networks of the conserved signaling pathways in
intestinal stem cells (ISCs) (43–47), enteroblasts (EBs) (48),
enterocytes (ECs), enteroendocrine cells (EEs) (49–53), and
visceral muscle (VM) cells (54). Nine major pathways involved in
maintaining the overall homeostatic nature of the fly midgut were
selected from the available literature. These included Notch (92),
BMP (92), EGFR (93), WNT (94), JAK-STAT (94, 95), JNK (96),
HIPPO (97), Insulin (63), and/or Robo (98) pathways for each cell
type lining the midgut. The network steady states were used to
FIGURE 7 | Comparison of oncogenic cell fate propensities obtained from personalized screening. Personalized screening of ten colorectal cancer patients. Patient
ID and mutation data were extracted from cBioPortal and cell fates for apoptosis and proliferation were plotted to observe before and after therapy results.
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program cell fate outcomes such as cellular differentiation,
proliferation, apoptosis, EC fate determination, etc. Boolean
equations (59) were used to model the regulation of each node in
the biomolecular network. TISON (99), an in-house theatre for in
silico systems oncology was used to translate Boolean rules into
network models (see Supplementary Data, Supplementary Table
24 for video tutorial).

Robustness Analysis
To validate the biological plausibility of the proposed networks, a
robustness analysis was performed (see Supplementary Table 24
for video tutorial). Physiological conditions were maintained
during this process and the input node values were taken from
the FlyGut-seq database (28). The normal node states for ISC, EB,
EC, and VM were perturbed by ±10%. Bootstrapping was
employed on 10,000 network states. The means and standard
deviations of the emergent cell fates were then calculated and the
standard error of means (SEM) was plotted for each cell fate to
determine the biological plausibility of the scale-free networks
(100) (see Supplementary Data 1).

Deterministic Analysis
The Boolean networks have been analyzed using the Deterministic
Analysis (DA) (59) pipeline reported in ATLANTIS (101) and
TISON (99) (see Supplementary Table 24 for video tutorial).
The results from DA were used to program “cell fate attractors”
which are biological states that a cell can take, along with
computation of their propensities (probability of their
occurrence). Three different input files are used in this process
which includes (i) network file, (ii) fixed node states file, and
(iii) cell fate classification file. The network file contains the
Boolean rules defining the biomolecular networks. The fixed node
states file contained fixed values for generating environmental
conditions such as normal, stress, or cancer conditions. The cell
fate classification file is used to map network states onto the
biological cell fates in the light of particular cell fate markers (101)
(Supplementary Table 25). For network analysis, the DA
pipeline starts with a set of initial network states. To achieve a
steady state, logical rules, and state transition functions are
employed. Upon reaching a steady-state a cell fate attractor is
formed. This attractor can represent a specific cell fate with a cell
fate propensity or basin size ratio. Bootstrapping was employed
on 10,000 network states. TISON’s Therapeutics Editor (TE) was
used to undertake therapeutic evaluation on the network using
the DA pipeline, with mutation and drug data integrated (see
Supplementary Table 24 for video tutorial). Fixed node states for
normal conditions were obtained from the FlyGut-seq database
while for cancer conditions, literature was surveyed to find out if
the pathway is up or downregulated. For stress, abnormal values
were abstracted by perturbing the stimuli from normal conditions
(see Supplementary Data 2).

Network Annotation Using
Flygut-seq Database
Towards annotating networks with experimental values, the
FlyGut-seq database was employed. For that, an RNA-seq
dataset consisting of rpkm values was exported from the
Frontiers in Oncology | www.frontiersin.org 10
database. Data were extracted for the relevant genes present in
our networks (ISC, EB, and EC) using their biological names
(Supplementary Table 10). Expression data across the five
regions of the midgut (i.e. R1, R2, R3, R4, and R5) (102) was
normalized for each gene in specific cells. The normalized values
were taken as normal input fixed node states for onward
analyses. The normalized values were also used to compare
the output node propensities from DA that was performed
under normal input conditions (Supplementary Table 9, for
details, see Supplementary Data 2).

Cell Fate Data Collection for Case Studies
and Their Validation
To validate and exemplify our network models, we used three
literature-based case studies on colorectal tumorigenesis in
Drosophila melanogaster. For case study 1, data including cell
fates under Apc and Ras single and simultaneous mutations were
obtained from Martorell et al.’s model (55). The differential gene
expression screens and data were also obtained from Martorell
et al. (see Supplementary Data 3). TISON’s TE was used to
implement the mutations in our network using TE’s horizontal
therapy pipeline. For case study 2, therapeutic screens including
the existing list of FDA-approved drugs for targeting ISC in
Drosophila were adapted from Markstein et al.’s (56) study.
Existing databases on drugs and drug-gene interactions such as
PharmacoDB (103), PanDrugs (77), OncoKB (104), and DGIdb
(105), etc (106, 107) were then used to identify target nodes in
our ISC network, which were also mentioned in Markstein et al.’s
study. TE was employed to deliver drug data into the CRC
mutated network using TE’s vertical therapy pipeline (see
Supplementary Data 4). For case study 3, patient-specific
mutations, along with combinatorial therapy drug candidates
were taken from Bangi et al.’s (40) study. Drug databases were
used to identify target nodes in the ISC network mentioned in
Bangi et al.’s study. Drugs that did not have direct targets in the
network were implemented indirectly using literature-based
mechanisms (see Supplementary Data 5).

Development of an In Silico Drosophila
Patient Model (DPM) and Its Validation
Towards devising a novel drug combination for the treatment of
colorectal tumorigenesis, we performed an exhaustive evaluation
of each node in our ISC network using TISON’s TE. For that, we
started with the sensitivity analysis of both tumor suppressor
genes and oncogenes involved in CRC using data from existing
databases and literature (55, 103, 106, 107) against patient-specific
mutations taken from cBioPortal (16). The therapeutic screening
was performed by upregulating the tumor suppressors and
downregulating the oncogenes (Supplementary Table 26), to
evaluate potential drug combination targets using the PanDrugs
(77) database, a platform that prioritizes direct and indirect
targeting of genomic mutations (see Supplementary Data 6).

Combination of Chemotherapy and
Targeted Therapy to Treat CRC Patients
To induce the effect of chemotherapy we carried an extensive
survey of the existing literature and constructed a microtubule
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network. The microtubule network was incorporated by
integrating 6 nodes and 13 interactions to the ISC network.
The resultant network contained 54 nodes and 83 interactions.
This integrated network was then utilized for chemotherapeutic
screening. The combinatorial personalized therapy was used to
treat the CRC patients, in a vertical therapy scheme through
targeting specific nodes in our ISC network in light of patient-
specific mutations. DA pipeline was used to carry out the
therapeutic evaluation (see Supplementary Data 6).
DISCUSSION

Combinatorial therapies have created avenues for enhanced
treatment of colorectal cancer (CRC) through drug synergy
(108). Translational studies using omics-based data can help
develop efficacious drug combinations for individualized CRC
treatment. In particular, in silico Boolean models that utilize
omics datasets can facilitate the process of developing and
evaluating different drug combination therapies for the
treatment of CRC (109–111). In this work, we propose a novel
in silico Drosophila Patient Model (DPM), a computational
framework for devising personalized therapeutic combinations
for CRC patients. For that, we have constructed Boolean network
models offive cell types present inDrosophilamidgut: (i) intestinal
stem cell, (ii) enteroblast, (iii) enterocyte, (iv) enteroendocrine,
and (iv) visceral muscles (Figures 1A–D). We have used
these networks to systematically induct tumorigenesis in
Drosophila midgut tissue followed by therapeutic interventions
for tumor reversion and restoration of physiological homeostasis
(Figure 2). We then employed the ISC networks to create an
in silico DPM for identifying optimal combinatorial therapeutics
to treat CRC in humans. Our modeling pipeline provides a
novel roadmap to annotate Boolean network models with
patient data towards developing personalized medicine for
CRC patients.

Several network models of biomolecular regulation in
Drosophila have been reported for investigating the regulatory
dynamics in cancer (90, 91, 112–114). Specifically, such
applications of adult Drosophila midgut models are particularly
useful in investigating CRC due to cellular and organizational
similarities between Drosophila midgut and the human colon.
More so, the biomolecular signaling pathways involved in
maintaining homeostasis and differentiation are also conserved
in both. This has given impetus to the development and
utilization of Drosophila midgut models for investigating
human colorectal cancer (115, 116). As a result, fly-based
midgut models have been employed to investigate tissue
homeostasis (117), multi-step tumorigenesis (55), epithelium
renewal and regeneration upon bacterial infection or tissue
damage (118), and its effect on mature and undifferentiated
epithelial cells during intestinal cancer initiation (119). However,
the employment of Drosophila midgut networks has hitherto
remained unannotated with patient-specific mutation to study
tumorigenesis in CRC thus limiting their translational potential.
In this study, we have employed three literature-based case
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studies on in vivo Drosophila model to investigate CRC,
employing in silico approaches. In our first case study, we used
a fly-based network model to help investigate colorectal
tumorigenesis under progressive mutations; the results from
our analysis were validated against Martorell’s CRC model (55)
(Figure 4). The results from our second case study helped
elucidate cytotoxicity in nine FDA-approved drugs (Figure 5)
and conformed with Markstein et al.’s (56) hypothesis that the
extracellular environment plays a crucial role in animal models
for evaluating drug delivery and cytotoxicity. Next, for the third
case study, we used Bangi et al.’s in vivo DPM to perform
personalized therapy for KRAS-mutant metastatic colorectal
cancer patient (40) (Figure 6), which re-confirmed the
potential of combinatorial treatment; trametinib, zoledronate
followed by trametinib in combination with zoledronate.

Onwards, we have performed personalized therapeutics by
incorporating patient-specific mutation data into our model
towards devising novel combinatorial treatments. For that, we
took patient-specific data on ten patients with colorectal
adenocarcinoma obtained from cBioPortal (16) to annotate our
network model (Supplementary Table 16). We then undertook
an exhaustive screening towards identifying efficacious target
nodes for each patient which was based on the node’s pro-
apoptotic and anti-proliferation cell fate propensities after
therapy (Supplementary Table 17). We used the PanDrugs
database (77) to identify these target nodes in existing drugs.
In light of our personalized screening step, we discovered that
four patients can respond well to targeted therapy (imatinib,
regorafenib, and everolimus), whereas for the rest a synergistic
combination of chemotherapy (paclitaxel/docetaxel) and
targeted therapy (imatinib, regorafenib, and bortezomib) was
a more efficacious treatment (Supplementary Table 20).
Literature also supports our finding that CRC treatment using
a combination of chemo- and targeted therapy can provide
efficacious results compared to conventional chemotherapy
alone (119, 120). Specifically, the combination of the
paclitaxel-regorafenib was evaluated for treating advanced
esophagogastric cancer (78), and the paclitaxel-bortezomib
combination was used in metastatic solid tumors (87). While
the docetaxel-bortezomib combination was evaluated for
metastatic breast cancer (79), Non-Small Cell Lung Cancer
(NSCLC) (80, 81), and prostate cancer (82). Paclitaxel-imatinib
combination was tested in metastatic solid tumor (83), NSCLC
(84), and ovarian cancer (85, 86). However, further validation of
these prognostic drug combinations in large-scale clinical
cohorts will be required to test these drug combinations
suggested by our study. In unison, our findings suggest that
the proposed translational approach is effective in optimizing
existing therapies.

Limitations of this study include utilizing abstracted in silico
Boolean models (59) which are only qualitative. Moreover,
analysis of EE and VM networks remained limited due to a
lack of substantive literature. In this work, to overcome
exponential computational complexity due to network size, we
pruned each network to a minimum while maintaining
biological cell fate outcomes. Additionally, ISC-EB-EC
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interplay is pivotal in determining cell fates, especially for
intestinal stem cells in Drosophila midgut, however, due to
network-level analysis strategy employed in the study, we are
currently unable to investigate cellular interplays as well as
continuous lineage tracking for various cell types. Since our
networks are independent of each other we can only elucidate
individual cell fates programmed by each network at a time.

Several assumptions have been made for constructing this
model. Firstly, since Drosophila midgut comprises of several
regions with differential niches and context specific cellular
processes (42), for the sake of computational scalability, we
have not incorporated Drosophila midgut compartmentalization
in our model. In view of the exponential relation between
computational complexity and network size, we have kept the
network size to a minimum by reducing path lengths between
critical nodes through removing intermediary nodes. Integrated
multi-omics information e.g., from genomics, transcriptomics,
and proteomics level was assumed to act on the same time-scale,
towards undertaking network analysis.

With regards to drugs, we search the nodes (genes) in our
network in PanDrugs database for selecting and prioritizing
potential drugs that can efficaciously target the selected nodes.
The assumptions made by PanDrugs for declaring a gene-drug
relationship, include: for targeted therapies, the genes-drug
relationship that PanDrugs provides is a direct relationship,
and that the targeted drugs acting directly on the nodes in the
network are without any off target pleotropic effects. PanDrugs’s
drug prioritization scheme can improve if it also takes into
account protein interaction networks, pathway activity, multi-
omics information, however, its search is limited to genome-level
information only. Moreover, each drug is able to act on all the
possible transcriptomic isoforms of a gene, where necessary.

Additionally, during the personalized screening of patients,
non-druggable nodes could not be evaluated further due to
unsubstantive literature on their employment as drugs.
Moreover, some of the genes present in the human genome do
not have exact homologs in Drosophila’s genes list, which can
limit the study’s translational capabilities.

Onwards, the proposed in silico DPM can be extended to
perform probabilistic analysis by converting rules to the weights-
based network which can also cater to external perturbations and
noise into the system. Further investigations need to be carried
out to predict novel druggable genes (direct targets, biomarkers,
and pathway members not available in PanDrugs database) for
employment in developing new drug combinations. The network
models developed can also be extended to multi-scale models
towards incorporating spatiotemporal regulations of colorectal
Frontiers in Oncology | www.frontiersin.org 12
cancer. Further verifications with a greater patient sample size
can help achieve a better understanding of the relationship
between patient-specific data in connection to therapeutic
combinations. Moreover, result verification can be enhanced
with wet lab validation of the proposed synergistic drug
combinations outlined by our computational framework.

Taken together, our preclinical in silico DPM not only
captures the regulatory homeostasis of fly midgut but also
presents a novel framework to personalize Boolean network
models towards their employment in personalized cancer
therapeutic interventions.
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K, Rodrıǵuez JM, et al. PanDrugs: A Novel Method to Prioritize Anticancer
Drug Treatments According to Individual Genomic Data. Genome Med
(2018) 10(1):1–11. doi: 10.1186/s13073-018-0546-1

78. Khurshed M, Stroes CI, Schokker S, van der Woude S, Mathôt R, Slingerland
M, et al. Regorafenib in Combination With Paclitaxel for Beyond First-Line
Treatment of Advanced Esophagogastric Cancer (REPEAT): A Phase Ib
Trial With Expansion Cohort. Ann Oncol (2019) 30(October):v307.
doi: 10.1093/annonc/mdz247.124

79. Awada A, Albanell J, Canney PA, Dirix LY, Gil T, Cardoso F, et al. Bortezomib/
Docetaxel Combination Therapy in Patients With Anthracycline-Pretreated
Advanced/Metastatic Breast Cancer: A Phase I/II Dose-Escalation Study. Br J
Cancer (2008) 98(9):1500–7. doi: 10.1038/sj.bjc.6604347

80. Lara PN, Koczywas M, Quinn DI, Lenz HJ, Davies AM, Lau DHM, et al.
Bortezomib Plus Docetaxel in Advanced Non-Small Cell Lung Cancer and
Other Solid Tumors: A Phase I California Cancer Consortium Trial. J Thorac
Oncol (2006) 1(2):126–34. doi: 10.1016/s1556-0864(15)31527-6

81. Fanucchi MP, Fossella FV, Belt R, Natale R, Fidias P, Carbone DP, et al.
Randomized Phase II Study of Bortezomib Alone and Bortezomib in
Combination With Docetaxel in Previously Treated Advanced non-Small-
Cell Lung Cancer. J Clin Oncol Off J Am Soc Clin Oncol (2006) 24(31):5025–
33. doi: 10.1200/JCO.2006.06.1853

82. Dreicer R, Petrylak D, Agus D, Webb I, Roth B. Phase I/II Study of
Bortezomib Plus Docetaxel in Patients With Advanced Androgen-
Independent Prostate Cancer. Clin Cancer Res An Off J Am Assoc Cancer
Res (2007) 13(4):1208–15. doi: 10.1158/1078-0432.CCR-06-2046

83. Pishvaian MJ, Slack R, Koh EY, Beumer JH, Hartley ML, Cotarla I, et al. A
Phase I Clinical Trial of the Combination of Imatinib and Paclitaxel in
Patients With Advanced or Metastatic Solid Tumors Refractory to Standard
Therapy. Cancer Chemother Pharmacol (2012) 70(6):843–53. doi: 10.1007/
s00280-012-1969-9

84. Bauman JE, Eaton KD,Wallace SG, Carr LL, Lee S-J, Jones DV, et al. A Phase
II Study of Pulse Dose Imatinib Mesylate and Weekly Paclitaxel in Patients
Aged 70 and Over With Advanced Non-Small Cell Lung Cancer. BMC
Cancer (2012) 12(1):1–8. doi: 10.1186/1471-2407-12-449

85. Safra T, Andreopoulou E, Levinson B, Borgato L, Pothuri B, Blank S, et al.
Weekly Paclitaxel With Intermittent Imatinib Mesylate (Gleevec): Tolerance
and Activity in Recurrent Epithelial Ovarian Cancer. Anticancer Res (2010)
30(9):3243–7.

86. Iqbal N, Iqbal N. Imatinib: A Breakthrough of Targeted Therapy in Cancer.
Chemother Res Pract (2014) 2014:357027. doi: 10.1155/2014/357027

87. Ramaswamy B, Bekaii-Saab T, Schaaf LJ, Lesinski GB, Lucas DM, Young
DC, et al. A Dose-Finding and Pharmacodynamic Study of Bortezomib in
Combination With Weekly Paclitaxel in Patients With Advanced Solid
Tumors. Cancer Chemother Pharmacol (2010) 66(1):151–8. doi: 10.1007/
s00280-009-1145-z

88. Kanehisa M. Kegg: Kyoto Encyclopedia of Genes and Genomes. Nucleic
Acids Res (2000) 28(1):27–30. doi: 10.1093/nar/28.1.27
July 2021 | Volume 11 | Article 692592

https://doi.org/10.1242/dev.113357
https://doi.org/10.1098/rstb.2013.0012
https://doi.org/10.1098/rstb.2013.0012
https://doi.org/10.1126/science.aab0988
https://doi.org/10.1016/j.micinf.2005.04.003
https://doi.org/10.1016/j.mod.2009.05.001
https://doi.org/10.1371/journal.pone.0088413
https://doi.org/10.1371/journal.pone.0088413
https://doi.org/10.1073/pnas.1401160111
https://doi.org/10.1038/s41598-018-26486-2
https://doi.org/10.1038/s41598-018-26486-2
https://doi.org/10.1093/bioinformatics/btn060
https://doi.org/10.1016/0022-5193(73)90208-7
https://doi.org/10.1002/jcp.21808
https://doi.org/10.1002/jcp.21808
https://doi.org/10.1371/journal.pgen.1005220
https://doi.org/10.1038/s41467-019-08982-9
https://doi.org/10.1016/j.stem.2008.10.016
https://doi.org/10.1016/j.stem.2008.10.016
https://doi.org/10.1016/j.cell.2009.05.014
https://doi.org/10.1016/j.cell.2009.05.014
https://doi.org/10.1242/dev.078261
https://doi.org/10.1242/dev.078261
https://doi.org/10.1016/j.cub.2010.10.038
https://doi.org/10.1016/j.cub.2010.10.038
https://doi.org/10.1007/BF02889852
https://doi.org/10.1038/ncb3593
https://doi.org/10.1038/ncb3593
https://doi.org/10.1371/journal.pgen.1008553
https://doi.org/10.1371/journal.pgen.1008553
https://doi.org/10.1038/s41467-018-06941-4
https://doi.org/10.1002/wdev.56
https://doi.org/10.1093/carcin/21.3.469
https://doi.org/10.1073/pnas.0508966102
https://doi.org/10.1073/pnas.0508966102
https://doi.org/10.1146/annurev.cellbio.20.010403.092805
https://doi.org/10.1146/annurev.cellbio.20.010403.092805
https://doi.org/10.1371/journal.pone.0062175
https://doi.org/10.1016/0306-9877(80)90123-1
https://doi.org/10.1186/s13073-018-0546-1
https://doi.org/10.1093/annonc/mdz247.124
https://doi.org/10.1038/sj.bjc.6604347
https://doi.org/10.1016/s1556-0864(15)31527-6
https://doi.org/10.1200/JCO.2006.06.1853
https://doi.org/10.1158/1078-0432.CCR-06-2046
https://doi.org/10.1007/s00280-012-1969-9
https://doi.org/10.1007/s00280-012-1969-9
https://doi.org/10.1186/1471-2407-12-449
https://doi.org/10.1155/2014/357027
https://doi.org/10.1007/s00280-009-1145-z
https://doi.org/10.1007/s00280-009-1145-z
https://doi.org/10.1093/nar/28.1.27
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gondal et al. In Silico Drosophila Patient Model
89. Yu J, Pacifico S, Liu G, Finley RL. DroID: The Drosophila Interactions
Database, a Comprehensive Resource for Annotated Gene and Protein
Interactions. BMC Genomics (2008) 9(1):1–9. doi: 10.1186/1471-2164-9-461

90. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, et al. A Protein
Interaction Map of Drosophila Melanogaster. Science (2003) 302
(5651):1727–36. doi: 10.1126/science.1090289

91. Formstecher E, Aresta S, Collura V, Hamburger A, Meil A, Trehin A, et al.
Protein Interaction Mapping: A Drosophila Case Study. Genome Res (2005)
15(3):376–84. doi: 10.1101/gr.2659105

92. Vinson KE, George DC, Fender AW, Bertrand FE, Sigounas G. The Notch
Pathway in Colorectal Cancer. Int J Cancer (2016) 138(8):1835–42.
doi: 10.1002/ijc.29800

93. Buchon N, Broderick NA, Kuraishi T, Lemaitre B. Drosophila EGFR
Pathway Coordinates Stem Cell Proliferation and Gut Remodeling
Following Infection. BMC Biol (2010) 8(1):1–19. doi: 10.1186/1741-7007-
8-152

94. Xu N, Wang SQ, Tan D, Gao Y, Lin G, Xi R. Egfr, Wingless and JAK/STAT
Signaling Cooperatively Maintain Drosophila Intestinal Stem Cells. Dev Biol
(2011) 354(1):31–43. doi: 10.1016/j.ydbio.2011.03.018

95. Slattery ML, Lundgreen A, Kadlubar SA, Bondurant KL, Wolff RK. JAK/
STAT/SOCS-Signaling Pathway and Colon and Rectal Cancer.Mol Carcinog
(2013) 52(2):155–66. doi: 10.1002/mc.21841

96. Tamamouna V, Panagi M, Theophanous A, Demosthenous M, Michail M,
Papadopoulou M, et al. Evidence of Two Types of Balance Between Stem
Cell Mitosis and Enterocyte Nucleus Growth in the Drosophila Midgut.
Development (2020) 147(11):dev189472. doi: 10.1242/dev.189472

97. Karpowicz P, Perez J, Perrimon N. The Hippo Tumor Suppressor Pathway
Regulates Intestinal Stem Cell Regeneration. Development (2010) 137
(24):4135–45. doi: 10.1242/dev.060483

98. Huang T, KangW, Cheng ASL, Yu J, To KF. The Emerging Role of Slit-Robo
Pathway in Gastric and Other Gastro Intestinal Cancers. BMC Cancer (2015)
15(1):1–9. doi: 10.1186/s12885-015-1984-4

99. Gondal MN, Sultan MU, Arif A, Rehman A, Awan HA, Arshad Z, et al.
TISON: A Next-Generation Multi-Scale Modeling Theatre for in Silico
Systems Oncology. BioRxiv (2021). doi: 10.1101/2021.05.04.442539

100. Darabos C, Cunto F, Tomassini M, Moore JH, Provero P. Additive Functions
in Boolean Models of Gene Regulatory Network Modules. PloS One (2011) 6
(11):e25110. doi: 10.1371/journal.pone.0025110

101. Shah OS, Chaudhary MFA, Awan HA, Fatima F, Arshad Z, Amina B, et al.
Atlantis - Attractor Landscape Analysis Toolbox for Cell Fate Discovery
and Reprogramming. Sci Rep (2018) 8(1):1–11. doi: 10.1038/s41598-018-
22031-3

102. Buchon N, Osman D, David FPA, Yu Fang H, Boquete J-P, Deplancke B,
et al. Morphological and Molecular Characterization of Adult Midgut
Compartmentalization in Drosophila. Cell Rep (2013) 3(5):1725–38.
doi: 10.1016/j.celrep.2013.04.001

103. Smirnov P, Kofia V, Maru A, Freeman M, Ho C, El-Hachem N, et al.
PharmacoDB: An Integrative Database for Mining In Vitro Anticancer Drug
Screening Studies. Nucleic Acids Res (2018) 46(D1):D994–1002. doi: 10.1093/
nar/gkx911

104. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, et al.
Oncokb: A Precision Oncology Knowledge Base. JCO Precis Oncol (2017)
1:1–16. doi: 10.1200/PO.17.00011

105. Griffith M, Griffith OL, Coffman AC, Weible JV, McMichael JF, Spies NC,
et al. Dgidb: Mining the Druggable Genome. Nat Methods (2013) 10
(12):1209–10. doi: 10.1038/nmeth.2689

106. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al.
Genomics of Drug Sensitivity in Cancer (Gdsc): A Resource for Therapeutic
Biomarker Discovery in Cancer Cells. Nucleic Acids Res (2013) 41(D1):955–
61. doi: 10.1093/nar/gks1111
Frontiers in Oncology | www.frontiersin.org 15
107. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al.
DrugBank 5.0: A Major Update to the DrugBank Database for 2018.
Nucleic Acids Res (2018) 46(D1):D1074–82. doi: 10.1093/nar/gkx1037

108. Wang Z, Wei Y, Fang G, Hong D, An L, Jiao T, et al. Colorectal Cancer
Combination Therapy Using Drug and Gene Co-Delivered, Targeted Poly
(Ethylene Glycol)-ϵ-Poly(Caprolactone) Nanocarriers. Drug Des Devel Ther
(2018) 12:3171–80. doi: 10.2147/DDDT.S175614

109. Arshad OA, Datta A. Towards Targeted Combinatorial Therapy Design for
the Treatment of Castration-Resistant Prostate Cancer. BMC Bioinf (2017)
18(4):5–15. doi: 10.1186/s12859-017-1522-2

110. Steinway SN, Zañudo JGT, Michel PJ, Feith DJ, Loughran TP, Albert R.
Combinatorial Interventions Inhibit Tgfb-Driven Epithelial-to-
Mesenchymal Transition and Support Hybrid Cellular Phenotypes. NPJ
Syst Biol Appl (2015) 1(1):1–12. doi: 10.1038/npjsba.2015.14

111. Cho S-H, Park S-M, Lee H-S, Lee H-Y, Cho K-H. Attractor Landscape
Analysis of Colorectal Tumorigenesis and Its Reversion. BMC Syst Biol
(2016) 10(1):96. doi: 10.1186/s12918-016-0341-9

112. Liu J, Ghanim M, Xue L, Brown CD, Iossifov I, Angeletti C, et al. Analysis of
Drosophila Segmentation Network Identifies a JNK Pathway Factor
Overexpressed in Kidney Cancer. Science (2009) 323(5918):1218–22.
doi: 10.1126/science.1157669

113. Toku AE, Tekir SD, Özbayraktar FBK, Ülgen Ö. Reconstruction and
Crosstalk of Protein-Protein Interaction Networks of Wnt and Hedgehog
Signaling in Drosophila Melanogaster. Comput Biol Chem (2011) 35(5):282–
92. doi: 10.1016/j.compbiolchem.2011.07.002

114. Schönborn JW, Jehrke L, Mettler-Altmann T, Beller M. Flysilico: Flux
Balance Modeling of Drosophila Larval Growth and Resource Allocation.
Sci Rep (2019) 9(1):1–16. doi: 10.1038/s41598-019-53532-4

115. Jiang H, Grenley MO, Bravo M-J, Blumhagen RZ, Edgar BA. EGFR/Ras/
MAPK Signaling Mediates Adult Midgut Epithelial Homeostasis and
Regeneration in Drosophila. Cell Stem Cell (2011) 8(1):84–95.
doi: 10.1016/j.stem.2010.11.026

116. Casali A, Batlle E. Intestinal Stem Cells in Mammals and Drosophila. Cell
Stem Cell (2009) 4(2):124–7. doi: 10.1016/j.stem.2009.01.009

117. Lucchetta EM, Ohlstein B. The Drosophila Midgut: A Model for Stem Cell
Driven Tissue Regeneration.Wiley Interdiscip Rev Dev Biol (2012) 1(5):781–
8. doi: 10.1002/wdev.51

118. Buchon N, Broderick NA, Chakrabarti S, Lemaitre B. Invasive and
Indigenous Microbiota Impact Intestinal Stem Cell Activity Through
Multiple Pathways in Drosophila. Genes Dev (2009) 23(19):2333–44.
doi: 10.1101/gad.1827009

119. Apidianakis Y, Pitsouli C, Perrimon N, Rahme L. Synergy Between Bacterial
Infection and Genetic Predisposition in Intestinal Dysplasia. Proc Natl Acad
Sci USA (2009) 106(49):20883–8. doi: 10.1073/pnas.0911797106

120. Rodriguez J, Zarate R, Bandres E, Viudez A, Chopitea A, Garcia-Foncillas J,
et al. Combining Chemotherapy and Targeted Therapies in Metastatic
Colorectal Cancer. World J Gastroenterol WJG (2007) 13(44):5867.
doi: 10.3748/wjg.v13.i44.5867

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Gondal, Butt, Shah, Sultan, Mustafa, Nasir, Hussain, Khawar,
Qazi, Tariq, Faisal and Chaudhary. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
July 2021 | Volume 11 | Article 692592

https://doi.org/10.1186/1471-2164-9-461
https://doi.org/10.1126/science.1090289
https://doi.org/10.1101/gr.2659105
https://doi.org/10.1002/ijc.29800
https://doi.org/10.1186/1741-7007-8-152
https://doi.org/10.1186/1741-7007-8-152
https://doi.org/10.1016/j.ydbio.2011.03.018
https://doi.org/10.1002/mc.21841
https://doi.org/10.1242/dev.189472
https://doi.org/10.1242/dev.060483
https://doi.org/10.1186/s12885-015-1984-4
https://doi.org/10.1101/2021.05.04.442539
https://doi.org/10.1371/journal.pone.0025110
https://doi.org/10.1038/s41598-018-22031-3
https://doi.org/10.1038/s41598-018-22031-3
https://doi.org/10.1016/j.celrep.2013.04.001
https://doi.org/10.1093/nar/gkx911
https://doi.org/10.1093/nar/gkx911
https://doi.org/10.1200/PO.17.00011
https://doi.org/10.1038/nmeth.2689
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.2147/DDDT.S175614
https://doi.org/10.1186/s12859-017-1522-2
https://doi.org/10.1038/npjsba.2015.14
https://doi.org/10.1186/s12918-016-0341-9
https://doi.org/10.1126/science.1157669
https://doi.org/10.1016/j.compbiolchem.2011.07.002
https://doi.org/10.1038/s41598-019-53532-4
https://doi.org/10.1016/j.stem.2010.11.026
https://doi.org/10.1016/j.stem.2009.01.009
https://doi.org/10.1002/wdev.51
https://doi.org/10.1101/gad.1827009
https://doi.org/10.1073/pnas.0911797106
https://doi.org/10.3748/wjg.v13.i44.5867
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	A Personalized Therapeutics Approach Using an In Silico Drosophila Patient Model Reveals Optimal Chemo- and Targeted Therapy Combinations for Colorectal Cancer
	Introduction
	Results
	Network Construction and Robustness Analysis of Regulatory Homeostasis in Drosophila melanogaster Midgut
	Evaluation and Validation of Biomolecular Network Models Under Normal, Stress and Colon Cancer Conditions
	Case Study 1 – Investigating Colorectal Tumorigenesis Under Progressive Mutations in Drosophila Midgut
	Case Study 2 – Therapeutic Evaluation of Raf-Mutation in Drosophila Midgut Using Targets From the Literature
	Case Study 3 – Employing the In Silico Drosophila Patient Model (DPM) for Personalized Therapeutics
	Identification and Evaluation of Personalized Therapeutics for CRC Patients Using In Silico DPM

	Materials and Methods
	Data Collection and Boolean Modeling of Five Cell-Type-Specific Networks in Drosophila Midgut
	Robustness Analysis
	Deterministic Analysis
	Network Annotation Using Flygut-seq Database
	Cell Fate Data Collection for Case Studies and Their Validation
	Development of an In Silico Drosophila Patient Model (DPM) and Its Validation
	Combination of Chemotherapy and Targeted Therapy to Treat CRC Patients

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


