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1  |   INTRODUCTION

Lung cancer is a leading cause of death for modern humans. 
Early detection allows complete surgical resection to offer 
the most effective treatment, but 40% of early‐stage patients 
relapse within 5 years of surgery. Adjuvant chemotherapies 
(ACTs), target therapies and immunotherapies have ex-
panded treatment options, especially for nonsmall cell lung 
cancer (NSCLC).1 However, the 5‐year survival rate for pa-
tients with nonlocalized lung cancer remains dismal, with 
less than 30% for patients with regional disease and less than 
5% for those with metastatic disease (https​://seer.cancer.gov/
statf​acts/html/lungb.html).

Randomized trials have shown that patients with stage 
II or stage III lung cancer can benefit from ACT,2 and as 
such ACT following surgery is recommended for stage II‐
III NSCLC patients by the National Comprehensive Cancer 
Network.1 However, current clinical staging and treatment 
guidelines cannot precisely distinguish between patients who 
would benefit from ACT and those who would not.

Target therapies require identifying patients whose cancer 
cells carry certain molecular markers that can be effectively 
targeted by specific drugs. For example, tyrosine kinase in-
hibitors (TKIs) such as osimertinib and erlotinib are typically 
used to treat patients with a TKI‐sensitive mutant epidermal 
growth factor receptor (EGFR). For patients with wild‐type 
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EGFR, additional molecular tests are required to determine 
further treatments.1 But making treatment decisions based on 
EGFR mutation status is not straightforward because of the 
observations that not all patients with mutant EGFR experi-
enced the expected better outcome with TKI treatment, and 
also that TKI treatment can help some patients with wild‐
type EGFR,3 although there are reports to the contrary.4

TP53 plays a pivotal role in regulating cancer development 
and is therefore a potential biomarker and drug target for can-
cer treatment. Various small‐molecule compounds can sup-
press the oncogenic functions of mutant TP53 or restore the 
tumor suppressor activities of wild‐type TP53, and although 
they are not the current standard of care for NSCLC patients 
they are being tested in some clinical trials.5,6 However, as 
for EGFR, effective treatments may require knowledge of 
the type of patients, with mutant or wild‐type TP53, who can 
benefit from the targeted therapy.

More recently, compounds that target immune check-
points, such as the programmed death‐1 (PD‐1) or pro-
grammed death ligand‐1 (PD‐L1),7 are infusing optimism 
to the fight against cancers. For example, Pembrolizumab, 
a type of anti‐PD‐1 immunotherapy drug, is recommended 
for treating advanced patients without a mutation in EGFR 
and anaplastic lymphoma kinase (ALK) and with high PD‐L1 
expression.1 But for NSCLC at least, while durable responses 
have been observed in some patients, checkpoint inhibition 

does not have the same effect for all the patients.7 Additional 
biomarkers besides PD‐L1 expression are needed to achieve 
improved efficacy of immunotherapies.

These results and the fact that chemotherapies, target ther-
apies, and immunotherapies can cause serious adverse effects 
provide an impetus to advance precision medicine. To that 
end, prognostic biomarkers for identifying at‐risk patients 
under different genetic and clinical conditions are urgently 
needed to enable effective while avoiding ineffective, poten-
tially harmful, therapies.

Most cancer prognostic biomarkers, including those for 
lung cancer, are genes with a prognostic expression profile. 
These so‐called gene signatures (GSs) are usually derived by 
correlating patients’ survival data with gene expression data 
through Cox proportional hazards modeling.8 Many such 
GSs for lung cancer have been reported,9 but most have not 
been examined for their prognostic effectiveness with regard 
to the aforementioned ACT, TP53 and EGFR mutation sta-
tus, and PD‐L1 expression, or have been examined for one or 
more but not all of these conditions.

Here, we report a new GS for LUAD that can identify 
at‐risk patients for all these conditions. The new GS is com-
posed of five genes and is referred to as SDGS owing to 
the use of Stage‐Differential gene expression in its deriva-
tion. Unlike most other GSs, SDGS was not derived from 
patients’ survival data; such data merely served to test the 

F I G U R E  1   Flowchart of this study. 
SDGS was derived from analyzing stage‐
dependent gene expression data of 443 
LUAD patients from dataset GSE68465. 
The five top‐ranked differentially expressed 
genes were chosen to form SDGS, which 
was then undergone PPI and GO functional 
analysis and comparisons to several known 
lung cancer GSs on survival prognosis and 
risk stratification. The various datasets used 
in these analyses and the figures/tables in 
which the results are presented are indicated
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signature's prognostic power. Below, we describe the deri-
vation of SDGS, functional analyses of its five constituent 
genes, and stratification of at‐risk patients based on SDGS 
vs several other lung cancer GSs (see Figure 1 for a flow-
chart of this study). SDGS represents a novel prognostic GS 
for lung cancer. To the best of our knowledge, none of its 
five genes has appeared in previously identified lung cancer 
GSs. The five genes of SDGS are therefore potential novel 
targets for developing new target therapy drugs against 
LUAD.

2  |   MATERIALS AND METHODS

2.1  |  Datasets and stage‐differential gene 
expression
SDGS was derived from GSE68465, a gene expression data-
set of 443 patients with LUAD (often denoted as ADC), with 
clinical and pathological annotations from the National Cancer 
Institute Director's Challenge Consortium for the Molecular 
Cancer of Lung Adenocarcinoma.10 This dataset and others 
used in this study for survival analysis (see Figure 1) are all 
freely available at SurvExpress (http://23.96.106.14:8080/
Bioma​tec/Survi​vaX.jsp) and Gene Expression Omnibus 
(GEO; https​://www.ncbi.nlm.nih.gov/geo/).

Based on clinical information for the state of tumor (T), 
node (N), and metastasis (M), the 443 patients of GSE68465 
were classified into stages I (T1‐T2 N0 M0), II (T1‐T2 
N1 M0), IIIA (T3 N0‐1 M0, T1‐3 N2 M0), IIIB (any T4 
or any N3 M0), and IV (any M1) according to Harrison's 
Principles of Internal Medicine.11 Differentially expressed 
microarray gene probes, hence genes through mapping, were 
identified by running R (http://cran.r-proje​ct.org) package 
‘limma’ based on the t‐statistic between two different stages. 
Specifically, in this study, differentiation was between stages 
I and II, II and IIIA, IIIA and IIIB, and, to complete a loop, 
between I and IIIB. (There were no stage IV patients in 
GSE68465.) Adjusted P‐values of the F‐statistic to account 
for the Benjamini‐Hochberg false discovery rate were then 
used to rank differentially expressed genes. SDGS is com-
posed of the five most differentially expressed genes. All sta-
tistical tests in this study are two‐sided.

2.2  |  Survival analysis and risk group 
stratification
Using the ‘coxph’ function in the ‘survival’ package of R, 
patients’ survival data were regressed against their expres-
sion levels of the five genes of SDGS to derive a Cox propor-
tional hazards model.8 With this model, a survival risk score, 
could be computed for each patient as follows: PI (prognostic 
index) = β1x1 + β2x2 +… + β5x5, where βi is the coefficient 
of the Cox model for the ith gene, and xi is a value indicating 

its expression level for the patient. The patients were then 
ordered by their PI values and split into two groups by the 
median of the ordered PI; that is, patients in the high‐risk 
group had a PI higher than the median and those in the low‐
risk group had a PI that was equal or lower than the median.

The performance of the resulting Cox model was eval-
uated by C‐index, a measure of concordance between pre-
dicted and actual survival status for any two patients. C‐index 
ranges from 0 to 1, with 1 being perfect prediction and 0.5 
being equivalent to a random guess. In addition, the survival 
probabilities of patients from the date of the trial start until 
the last follow‐up contact or death were investigated by draw-
ing the Kaplan‐Meier survival curve for both the high‐ and 
the low‐risk groups, or for any two groups, such as those who 
received ACT and those who did not. The P‐values of log‐
rank tests were calculated to compare the survival differences 
between two groups.

In addition to GSE68465, SDGS‐based survival prognosis 
was evaluated for another GEO dataset (GSE13213) as well 
as RNA sequencing data of LUAD from the Cancer Genome 
Atlas (TCGA, https​://cance​rgeno​me.nih.gov/), which we 
refer to as TCGA_LUAD hereafter (see Table S2 for a sum-
mary of all datasets analyzed in this study). Additionally, 
the ability of SDGS to predict survival probabilities for 
high‐ and low‐risk patients with or without a mutation in 
TP53 or EGFR was evaluated with GSE13213, the dataset 
of LUAD patients with annotations of the mutation status 
for both genes. The ability of SDGS to predict the survival 
for LUAD patients with high or low expression level of PD‐
L1 was assessed for datasets GSE13213 and TCGA_LUAD 
in which information of PD‐L1 expression was available. 
In this evaluation, patients were split into high‐expression 
and low‐expression groups by the median of the PD‐L1 ex-
pression levels. Finally, given their inclusion of ACT status, 
GSE68465 and two additional GEO datasets (GSE14814 
and GSE42127) were used to evaluate the ability of SDGS to 
identify LUAD patients who could or could not benefit from 
ACT. For comparison purposes, these evaluations were also 
carried out where relevant for two other five‐gene GSs12,13 
and a 12‐gene GS14 reported in the literature. The same pro-
cedures described above were followed to derive the Cox 
models to evaluate these other GSs.

2.3  |  Functional analysis
To investigate whether and how the five genes of SDGS 
might be related to lung cancer, we first retrieved their inter-
acting proteins from a recently reported protein‐protein in-
teraction (PPI) dataset15 that was compiled from integrating 
widely used PPI databases. The set composed of SDGS’s five 
genes and their PPI partners was then subjected to gene on-
tology (GO) enrichment analysis on GO terms of Biological 
Process using the Cytoscape (https​://cytos​cape.org/) plug‐in 

http://23.96.106.14:8080/Biomatec/SurvivaX.jsp
http://23.96.106.14:8080/Biomatec/SurvivaX.jsp
https://www.ncbi.nlm.nih.gov/geo/
http://cran.r-project.org
https://cancergenome.nih.gov/
https://cytoscape.org/
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ClueGO. The enriched functions (adjusted P‐value  <  .05) 
were connected into networks for visual inspection of their 
relationships.

3  |   RESULTS

3.1  |  Derivation of SDGS
As described in Materials and Methods, SDGS was derived 
by finding genes that were differentially expressed in differ-
ent stages of GSE68465 patients who have been annotated 
with LUAD stage information. The analysis resulted in 477 
differentially expressed probes (for 13 unknown genes and 
412 known genes) with an adjusted P‐value of the F‐statis-
tic < .05, and these are provided in Table S1. The top five 
differentially expressed genes ranked by P‐value of signifi-
cance, MXD4, FAM117A, PICALM, BRD2, and AP2A2, were 
chosen to form SDGS by considering the balance between 
the number of top‐ranked genes selected and the resulting 
prognostic power, as shown in Figure S1.

3.2  |  Functions of the five genes of SDGS
We surveyed the literature to gather what is known about 
the functions of the five SDGS genes, particularly in rela-
tion to cancer. As described below, we found evidence to 
suggest that all five genes are likely associated with tumo-
rigenesis or tumor progression, and some specifically with 
lung cancer.

MXD4, also called MAD4, is a member of the MAD fam-
ily, which forms a transcriptional repression complex with 
MAX to increase cell differentiation and prevent prolifera-
tion.16 MXD4 can thus antagonize the oncoprotein MYC, 
which also interacts with MAX but with consequent induc-
tion of cell proliferation and tumorigenesis.16

FAM117A is a C/EBP‐induced protein.17 A recent study 
identified different populations of macrophages/monocytes 
from tumors at distinct stages of progression in a model of 
murine lung cancer.18 In that study, FAM117A was one of 
2458 differentially expressed genes identified from pairwise 
comparisons made at various time points and between sepa-
rate cell categories. FAM117A may therefore be associated 
with progression of lung cancer.

PICALM, phosphatidylinositol binding clathrin assembly 
protein, is also called CALM for clathrin assembly lymphoid 
myeloid leukemia protein.19 Somatic mutations of the splic-
ing factor U2AF1 are significantly associated with 30 RNA 
splicing alterations common in both acute myeloid leukemia 
and LUAD, and PICALM is among the genes found in those 
splicing alterations.20 Single‐nucleotide polymorphisms in 
PICALM are related to calcium channel blocker responses.21 
Since calcium signaling is associated with tumorigenesis, an-
giogenesis, and metastasis of cancer cells,22 PICALM is a 

potential anticancer target. Indeed, PICALM is listed in the 
Cancer Gene Census, a gene mutation database of cancers.20

BRD2 is a member of the bromodomains and extra‐ter-
minal domain (BET) family, which interacts with acetylated 
chromatin and transcription complexes to control transcrip-
tion, and can bind MYC to drive tumorigenesis in lung can-
cer.23 BRD2 interacts with Runx3 to form a complex, and 
inactivation of Runx3 is an important early event in the de-
velopment of LUAD.24

AP2A2 (adaptor‐related protein complex 2 (AP2) alpha 
2 subunit) positively controls hematopoietic stem cells for 
asymmetric segregation.25 Interestingly, activation of TP53 
also increases asymmetric division in breast cancer stem 
cells.26 Functioning like TP53 to influence the fate of cancer 
stem cells, AP2A2 may likewise play a tumor suppression 
role.

Among the five genes of SDGS, the functions of PICALM 
and AP2A2 are evidently linked. PICALM recruits AP2 and 
clathrin to cell membranes at the sites of coated‐pit forma-
tion to induce AP2‐dependent clathrin‐mediated endocytosis 
and clathrin‐vesicle assembly, thereby regulating cell pro-
liferation and survival.27 AP2 and clathrin form a complex 
to interact with EGFR and affect endocytic uptake.28 This 
function can explain the finding that treatment effectiveness 
of erlotinib‐resistant cells was positively correlated with the 
expression of clathrin‐associated AP2 proteins, including 
AP2A1, AP2A2, and AP2B1.29 These findings may suggest 
a role of PICALM and AP2A2 in tumorigenesis and/or tumor 
progression.

Proteins usually interact with other proteins. Functional 
modules can thus be deduced from PPI networks, which are 
useful for studying cancer genes.15 We retrieved 68 interact-
ing proteins for four of the five SDGS genes (no PPI infor-
mation for the fifth, FAM117A, in PPI databases). Analysis 
of the GO terms of Biological Process for the five SDGS 
genes and their 68 PPI partners revealed three main networks 
connecting the enriched functional terms. These networks 
respectively included three major functional categories: cell 
cycle, endocytosis, and regulation of EGFR (Figure 2). These 
generalized functional categories are in accord with the spe-
cific functions extracted from the literature for the five SDGS 
genes.

3.3  |  Survival prognosis with comparison to 
other five‐gene GSs
Two five‐gene GSs for lung cancer are described in the lit-
erature. Chen et al derived a GS from a microarray analysis 
of 672 genes based on the correlation between their expres-
sion and survival data of 125 NSCLC patients. The analy-
sis initially led to a 16‐gene GS and then, aided by further 
RT‐PCR analysis, the five‐gene GS.12 Kadara et al identi-
fied 584 genes that were differentially and progressively 
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expressed within cells of a human in vitro lung carcinogen-
esis model. From those genes and an analysis of functional 
pathways, they derived a six‐gene GS that was later reduced 
to the five‐gene GS for LUAD prognosis, using data from the 
GSE68465 dataset.13

As shown in Figure 3A, for the three datasets evaluated 
(GSE68465, GSE13213, and TCGA_LUAD), the three five‐
gene GSs were mostly comparable to each other with regard 
to their performance for survival prognosis as measured by 
C‐index. SDGS appeared to be more consistent, however, and 
slightly better than the other two GSs for datasets GSE68465 
and TCGA_LUAD. The C‐index values achieved were gen-
erally around 0.65, which is similar to those reported in a 
benchmark assessment on multiple tumor types using a large 
set of diverse genomic and proteomic molecular data.30 The 
three GSs had comparable ability to stratify high‐ and low‐
risk LUAD patients in these three datasets, as indicated by 
Figure 3B for the results on GSE68465 and Figure S2 for the 
results on GSE13213 and TCGA_LUAD.

3.4  |  Stratifying at‐risk patients with and 
without EGFR or TP53 mutation
EGFR mutation is a marker for target therapy of NSCLC, 
but its prognostic value is debated.31 We, and others,31 found 
that for the LUAD patients of GSE13213 who did not receive 

ACT, their overall survival outcomes were similar whether 
or not their EGFR harbored a mutation (Figure S3A). 
Nevertheless, identifying at‐risk patients of either EGFR 
wild type or mutation can facilitate clinical decisions on dif-
ferential treatment plans. As shown in Figure 4A, all three 
five‐gene GSs generally possessed this ability, although the 
GS of Kadara et al13 was not as capable as SDGS or the GS 
of Chen et al12 of stratifying patients with wild‐type EGFR 
because its survival model could not separate the high‐risk 
and low‐risk patients with statistical significance.

Similarly, the TP53 mutation had no significant effect 
on overall survival for lung cancer32 (see Figure S3B for 
GSE13213 patients). However, it was encouraging that SDGS 
could consistently identify at‐risk patients with or without a 
TP53 mutation. In comparison, the other two GSs did not 
distinguish for patients with a TP53 mutation with statistical 
significance (log rank P < .05; Figure 4B). Identifying at‐risk 
patients with and without a TP53 mutation could help inter-
pret clinical trial results of TP53 target therapies.

Although some studies have shown that some patients 
with wild‐type EGFR could benefit from TKI target ther-
apy,3 other studies have indicated otherwise for certain 
subgroup of patients.4 Among such patients at an advanced 
stage, those without ALK mutation and with high PD‐L1 
expression can be treated with anti‐PD‐L1 immunother-
apy.1 The patients with wild‐type EGFR from the high‐risk 

F I G U R E  2   Functional characterization of SDGS genes and their protein‐protein interaction partners. In these networks of related functions, 
the nodes represent the enriched functions (GO terms of Biological Process) for the set of the five SDGS genes and their PPI partners (see Materials 
and Methods), and lines indicate the connected GO terms that showed up for the same gene or genes. Different enriched functions are encoded by 
different colors, and node size is scaled roughly to the level of enrichment significance (adjusted P‐values < .05). Multi‐colored nodes are those 
connected to more than one functions. Note that the analysis resulted in three large connected networks, whose functions can be generalized into 
three main functional categories, namely, regulation of EGFR, cell cycle, and endocytosis
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group that can be identified by SDGS would be good can-
didates for further tests and consideration of appropriate 
therapies.

3.5  |  Stratifying at‐risk patients with 
low and high PD‐L1 expression
The overall survival probabilities of LUAD patients with 
low or high level of PD‐L1 expression appear to be similar33 
(also see Figure S4). However, as shown in Figure 5, SDGS 
is capable of separating high‐ and low‐risk patients from both 
groups of PD‐L1 expression for LUAD patients of two dif-
ferent datasets, GSE13213 and TCGA_LUAD. Further, the 
risk‐stratifying ability of SDGS for LUAD patients with re-
spect to PD‐L1 expression was better than the other two GSs 
compared (Figure S5). The ability to identify high‐, as well 
as low‐risk patients in these conditions can be very helpful in 
making immunotherapy recommendations.

3.6  |  Stratifying at‐risk patients for ACT
Most GSs reported for lung cancer are used for prognosis 
only and have not been evaluated on whether a patient would 

benefit from ACT, which is often recommended to supple-
ment surgical resection.1

Figure 6A shows that for high‐risk patients, SDGS could 
not distinguish the survival probabilities between patients 
who received ACT and those who did not for the three datasets 
(GSE68465, GSE14814, and GSE42127) that included data 
on LUAD patients and any ACT they had received. For low‐
risk patients, however, results of the SDGS model indicated 
that those receiving ACT fared better in datasets GSE14814 
(log rank P = .067) and GSE42127 (log rank P = .019), but 
worse in dataset GSE68465 (log rank P < .001) (Figure 6B). 
Largely similar results were obtained (Figure 6A,B) when 
the same modeling procedures and evaluations (see Materials 
and Methods) were applied to a previously reported 12‐gene 
GS,14 except that the 12‐gene GS model showed no signifi-
cant ACT benefit for low‐risk patients in datasets GSE14814 
(log rank P  =  .131) and GSE42127 (log rank P  =  .99). 
However, as reported by Tang et al,14 who used a somewhat 
different statistical model (a supervised principal component 
analysis model) for the 12‐gene GS, ACT could benefit high‐
risk patients with LUAD and lung squamous cell carcinoma 
(LUSC) in these two datasets. Using a 94‐gene malignancy‐
risk GS, another study also reported that high‐risk patients 

F I G U R E  3   The prognostic performance of SDGS in comparison with two five‐gene GSs. A, C‐index results for three independent datasets 
(GSE68465, GSE13213, and TCGA_LUAD) by three five‐gene GSs. Error bar indicates 95% confidence interval. B, Kaplan‐Meier survival curves 
for low‐risk (green) and high‐risk (red) LUAD patients of dataset GSE68465 (see Figure S2 for the same analysis on datasets GSE13213 and 
TCGA_LUAD)
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in dataset GSE14814 can benefit from ACT, but this GS did 
not predict an ACT benefit for low‐risk patients in the same 
dataset.34 For the GSE68465 dataset, results of the 94‐gene 
GS were similar to those shown in Figure 6A,B; that is, ACT 
was associated with a worse outcome for low‐risk patients 
and there was no difference for high‐risk patients.34

These results may appear confusing because different sta-
tistical models and different patients were used in these stud-
ies (eg, our analysis included only LUAD patients, whereas 
Tang et al14 and Chen et al34 analyzed both LUAD and LUSC 
patients). Nevertheless, with the exclusion of GSE68465, it 
seems that ACT can benefit a certain portion of both low‐
risk (Figure 6B, for SDGS) and high‐risk14,34 patients with 
LUAD. The seemingly opposite—that is, harmful effects of 
ACT for GSE68465 patients in both low‐risk (Figure 6B, for 
both SDGS and the 12‐gene GS) and high‐risk34 groups—
is likely due to GSE68465 patients (all LUAD) exhibiting a 
poorer survival rate than the LUAD patients in the GSE42127 
and GSE14814 datasets (Figure S6), despite patients’ staging 

data in these different datasets being not significantly differ-
ent overall. Notably, 76% of GSE68465 patients smoked in 
the past and an additional 8% of patients were current smok-
ers, suggesting a possible reason for their poorer survival 
rates.

4  |   DISCUSSION

Staging is a key clinical indicator of the progression of lung 
cancer and patients’ survival prospects. We showed that 
stage‐dependent gene expression data can be used to derive a 
very good prognostic GS for LUAD patients. In comparison 
with two other five‐gene GSs, the SDGS exhibited a more 
consistent survival prognosis for multiple independent data-
sets (Figure 3), as well as better performance in stratifying 
at‐risk patients under both low and high PD‐L1 expression 
(Figure 5), and with and without EGFR and TP53 mutations 
in both high‐ and low‐risk groups (Figure 4). Several other 

F I G U R E  4   Survival probabilities of high‐risk and low‐risk LUAD patients with and without EGFR and TP53 mutation by three five‐gene 
GSs. A, The 117 LUAD patients of dataset GSE13213 were divided into 58 high‐risk (red) and 59 low‐risk (green) patients based on their survival 
risk score computed by the respective Cox model of the three five‐gene GSs (see Materials and Methods, Figure 3B and Figure S2). Among those 
patients, 72 cases were EGFR‐WT and 45 were EGFR‐mutant. The patients’ survival probabilities in both the high‐risk and low‐risk groups were 
analyzed by Kaplan‐Meier curves to evaluate whether a statistically significant difference existed in the survival outcome between EGFR‐WT 
and EGFR‐mutant cases. B, Same as in A but for TP53, and among the 116 GSE13213 LUAD patients (removing one low‐risk patient with no 
information of TP53 mutation status), 78 cases were TP53‐WT and 38 TP53‐mutant
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GSs have shown a similar EGFR and/or TP53 stratifying 
prognosis,35,36 and risk stratification for ACT has also been 
studied with other GSs,14,34,37 but SDGS was additionally ca-
pable of identifying at‐risk LUAD patients with low and high 
PD‐L1 expression (Figure 5) as well as low‐risk patients who 
might benefit from ACT (Figure 6).

SDGS is a novel GS for LUAD. To our knowledge, no 
other lung cancer GS has used any of its five genes; further-
more, only 9 of its 68 known PPI partners have been included 
in the other GSs to provide a prognosis for lung cancer9 
(Figure 7; Table S3). However, given their functional activ-
ities (see Results) and the results of GO enrichment analysis 
(Figure 2), it is evident that the five genes of SDGS are lung 
cancer related.

In particular, of the five genes of SDGS, PICALM, 
AP2A2, and BRD2 are known to be involved in EGFR reg-
ulation and/or resistance. PICALM and AP2A2 interact 
with EGFR,28 and AP2 family is associated with EGFR re-
sistance to the TKI erlotinib through dysregulation of the 
endocytosis machinery.29 PICALM and AP2A2 are asso-
ciated with clathrin and are thus closely involved in endo-
cytosis, one of the three main functions enriched in SDGS 
genes and their PPI partners (Figure 2). EGFR endocyto-
sis can be a pathway from which to find novel therapeutic 
targets for lung cancer with wild‐type EGFR.38 An abnor-
mality in bypass signaling pathways is another of several 

mechanisms of EGFR resistance to TKIs,39 and one of those 
bypass pathways involves vascular endothelial growth fac-
tor (VEGF) and its receptor, VEGFR. BRD2 expression in 
endothelial cells was found to increase under VEGF stim-
ulation, and inhibition of BRD2 repressed VEGF‐induced 
cell migration, angiogenesis, and proliferation.40 These 
studies suggest BRD2 could be a target to battle EGFR re-
sistance to TKIs. Inhibition of BET proteins also increases 
the clinical efficacy of PI3K inhibitors.23 Since BRD2 is 
in a downstream pathway of EGFR signaling, its inhibi-
tion could affect EGFR resistance to TKIs. Interestingly, 
a PI3K inhibitor LY94002 not only blocks PI3K activity 
but also inhibits BET proteins BRD2‐4,41 suggesting that 
BRD2 could potentially have combined effects on EGFR 
resistance. Consistent with this notion, the combination 
of BET bromodomain inhibitor JQ1 and TKIs has been 
suggested to be a rational strategy for treating leukemia 
and lymphoma.42 Additionally, BRD2 was shown to pos-
itively control epithelial‐mesenchymal transition in breast 
cancer,43 and a GS for this histologic transformation could 
forecast the resistance to EGFR inhibitor erlotinib in both 
wild‐type EGFR and mutant EGFR lung cancer cases.44

SDGS also has three genes, MXD4, BRD2, and AP2A2 
that are known to be associated with TP53. As described 
in Results, the association of MXD4 and BRD2 with TP53 
is through direct or indirect interaction with the MYC 

F I G U R E  5   Survival probabilities 
of high‐risk and low‐risk LUAD patients 
with high and low PD‐L1 expression for 
two different datasets by SDGS. Same as in 
Figure 4A by the Cox model of the SDGS 
but for high and low PD‐L1 expression 
patient groups. A, Results for dataset 
GSE13213. B, Results for dataset TCGA_
LUAD. See Figure S5 for the performances 
of two other five‐gene GSs
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F I G U R E  6   Survival probabilities of high‐risk and low‐risk LUAD patients with and without adjuvant chemotherapy (ACT) in three different 
datasets by SDGS and a 12‐gene GS. Same as in Figure 4A but for with (yes) and without (no) ACT, and the comparison to SDGS was made with 
a 12‐gene GS14 Cox model derived using the procedures described in Materials and Methods. In addition to GSE68465, patients of GSE14814 and 
GSE42127 with ACT status were analyzed. A, High‐risk group; B, Low‐risk group
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family,16,23 which is influenced by TP53 mutation.45 In addi-
tion, both AP2A2 and TP53 enhance the asymmetric segre-
gation of cancer stem cells.25

EGFR and TP53 are related to PD‐1 and PD‐L1. EGFR 
can upregulate the PD‐L1 pathway to control immune es-
cape,7 and the combination of PD‐1/PD‐L1 inhibitors 
and EGFR TKIs is a good strategy to treat NSCLC with 
EGFR‐activating mutations.7 RAS/TP53 mutations are more 
constantly found in NSCLC patients who showed PD‐L1 ex-
pression, which may provide a means to predict clinical ef-
ficacy of PD‐1/PD‐L1 inhibitors.46 Indeed, TP53 and EGFR 
mutations are strong parameters to predict responses to anti‐
PD‐1 treatment in NSCLS.47

There is also a connection between PD‐1 and PD‐L1 and 
at least two of the five SDGS genes, PICALM and BRD2. PD‐
L1 was expressed in RET (rearranged during transfection)‐re-
arranged NSCLC,48 and kinase fusions, such as the fusion 
of PICALM and RET, are associated with tumorigenesis.48 
Inhibition of BRD2, which has a similar effect on STAT5, is an 
appealing therapeutic strategy for hematologic malignancies,42 
consistent with the finding that enhanced STAT5 phosphoryla-
tion can increase PD‐L1 expression to produce PD‐L1–medi-
ated immune escape.49 Inhibition of both BET bromodomain 
(eg, BRD2) and immune checkpoints (eg, PD‐1) is also a prom-
ising approach to treat solid tumors such as LUAD.50

FAM117A, the remaining SDGS gene not discussed 
above, has not yet been associated with EGFR or TP53 or 
immune checkpoints and is less studied; however, a recent 
report implicated it as having a role in lung cancer, albeit in 
a mouse model.18

In conclusion, given all available evidence, our analysis sug-
gests that SDGS can be more than just a prognostic biomarker 
for LUAD, and that the five genes of SDGS could provide 

ample possibilities in the development of new strategies for 
treating LUAD patients of different conditions relating to adju-
vant chemotherapy, target therapy and immunotherapy.
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