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ABSTRACT: An iron-catalyzed selective N�S coupling of N-methoxy amides and sulfoxides has been developed and was found to
be a highly efficient method for the synthesis of N-acyl sulfoximines. Electron-donating as well as electron-withdrawing groups on the
phenyl ring are tolerated, and even sensitive substituents are compatible. The current catalytic transformation was conducted under
an air atmosphere and can be easily scaled up to a gram scale with a catalyst loading of only 1 mol %. In this case, both coupling
partners are used in their native forms, thus obviating prior functionalization and activation.

1. INTRODUCTION
Sulfur-containing functional groups are pervasive across
disciplines from materials science to pharmaceutical chem-
istry.1,2 Sulfoximines, the monoaza N�S variants of sulfones,
have frequently been found in the frameworks of diverse
pharmaceuticals, agrochemicals, organocatalysts, and li-
gands.3−5 For example, the growing interest in the
physicochemical properties of sulfoximines has resulted in a
significant surge in their utilization for enhancing pharmaco-
kinetic and pharmacodynamic characteristics during lead
optimization studies.6,7 Recently, the sulfoximines can be
synthesized through various strategies, including sulfur
imidation, sulfilimine oxidation, and nitrene-transfer reac-
tions.8−12 However, despite the proliferation of methodologies
for accessing sulfonimidoyl-containing compounds, there has
been limited progress in the direct synthesis of N-acyl
sulfoximine derivatives. For a long time, the synthesis of N-
acyl sulfoximines has been traditionally achieved through
oxidation of sulfilimines or N−H acylation of sulfoximines
(Scheme 1a).13−17 Nevertheless, the N�S bond existed in the
starting materials required to be presynthesized, limiting the
availability of the raw materials.
As a versatile synthon, acyl nitrene is widely applied in the

reactions such as C−H bond insertion, aziridination, and
nitrene/alkyne metalation, incorporating nitrogen-containing
building blocks into complex structural motifs.18−20 A series of

well-documented nitrene precursors, including dioxazole,
hydroxylamines, azides, etc., have been developed so far.21,22

Surprisingly, the construction of N-acyl sulfoximines via the
acyl nitrene intermediate appears to be rare (Scheme 1b).
Dioxazolones can serve as acyl nitrene precursors, undergoing
N�S bond coupling with dimethyl sulfoxide (DMSO) at 150
°C under harsh conditions.23 An alternative transformation
pathway from dioxazolone to N-acyl sulfoximines is transition
metal-catalyzed imidization of sulfoxides combined with light-
induced chemical reaction, which necessitates an inert
atmosphere and anhydrous solvent conditions.24,25 Recently,
the Xia group developed N-pivaloyloxybenzamide as the N-
acyl nitrene precursor to efficiently construct the N-acyl
sulfoximines through the nitrene-transfer reaction, while a
divalent iron catalyst and the L-phenylalanine ligand are crucial
for the reaction.26 Simultaneously, the Qiu group also utilized
N-pivaloyloxybenzamide as a highly active acyl nitrene
precursor under photoredox/iron dual catalysis and inves-
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Scheme 1. Strategies for the Synthesis of N-Acyl Sulfoximines

Table 1. Screening of Different Catalysts, Bases, Solvents, and Conditions for the N-Methoxybenzamide 1aab

aReaction scale: 1a (0.2 mmol), VDMSO + Vsolvent = 2.0 mL, catalyst (10 mol %), base (0.2 mmol), air, 90 °C, 12 h. bIsolated yield based on 1a. c2.0
equiv of Et3N. ND = not detected.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c03569
ACS Omega 2024, 9, 37044−37051

37045

https://pubs.acs.org/doi/10.1021/acsomega.4c03569?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c03569?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c03569?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c03569?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c03569?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c03569?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c03569?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c03569?fig=tbl1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c03569?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


tigated one example of the N�S coupling with
(methylsulfinyl)benzene.27 Although dioxazolone and N-
pivaloyloxybenzamide could be compatible for N�S bond
coupling, exploring simple acyl nitrene precursors to promote
further transformation of acyl nitrene and sulfoxide under facile
and manipulable conditions remains a challenging pursuit in
the synthesis of N-acyl sulfoximines.
N-Methoxy arylamides, which can be easily prepared from

acyl chlorides and methoxyamine, are widely used as the
directing group in the transition metal-catalyzed C−H
activation reactions and play an extremely important role in
the construction of C−N or C−O bonds.28−33 To the best of
our knowledge, the wealth of literature in which N-methoxy
arylamides serve as acyl nitrene precursors to construct N�S
bonds is not observed. On the basis of our previous works on
the N-arylation of N-methoxy benzamides34,35 and iron-
catalyzed oxidative cross-couplings,36−39 and inspired by the
mechanism investigation on the generation of the ferric acyl
nitrene intermediate,19,20,40,41 we questioned whether the
amide group that is linked to a methoxy substituent could be
strategically employed to accomplish N�S bond cross-
coupling. To our delight, an envisioned N�S coupling of N-
methoxy amides with sulfoxides proceeded smoothly in the
presence of an iron salt (Scheme 1c).

2. RESULTS AND DISCUSSION
Our research commenced with the assessment of reliable
reaction conditions for the coupling of N-methoxybenzamide

(1a) and DMSO (2a) (Table 1). Initially, various catalysts and
bases were optimized. The model reaction without either the
iron catalyst or the base did not take place (entries 1 and 2).
Transition metal or rare-earth catalysts such as Pd(dppf)Cl2,
Ni(dppf)Cl2, and CeCl3·7H2O were examined and proved to
be ineffective (Table S1, entries 1−5, Supporting Information).
When FeCl3 was employed as the catalyst and K2CO3 as the
base, the reaction conducted at 90 °C provided the N�S
coupling product 3a in moderate yield (entry 3). Screening of
various iron catalysts did not give better outcomes (entries 4−
6). As we were encouraged by this preliminary result, various
bases were tested (entries 7−12). Common inorganic bases
such as Na2CO3 and Cs2CO3 suppressed the reaction, as did
NaOAc and KOtBu (entries 7−10). Fortunately, when the
organic bases vinylmagnesium bromide and triethylamine were
utilized, the reaction was significantly enhanced, affording 3a in
moderate to good yields (entries 11 and 12). Considering the
stability and cost, Et3N was selected as the base. The impact of
the amount of iron catalyst and Et3N on the reaction was
examined. It was found that higher catalyst loading did not lead
to substantially higher yields, while decreasing the iron loading
to 7.5 or 5 mol % was not favorable for the reaction, and the
reaction efficiency was suppressed obviously (Table S1, entries
6−8). Gratifyingly, increasing the amount of Et3N to 2.0 equiv.
gave the satisfactory yield (Table S1, entry 9). Interestingly,
the solvent system had a significant effect on the reaction.
EtOH had a deleterious effect on the N�S bond cross-
coupling, while other solvents provided a lower yield of N�S

Scheme 2. Scope of the N-Methoxy-Substituted Amides 1 in Iron(III)-Catalyzed N�S Cross-Couplingab

aReaction conditions: 1 (0.2 mmol), 2a (0.5 mL), FeCl3 (10 mol %), Et3N(2.0 equiv), THF (1.5 mL), air, 90 °C, 12 h. bIsolated yield based on 1.
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coupling product than THF (entries 13−17). Adjusting the
ratio of mixed solvents on the reaction was also investigated,
and it was discovered that a DMSO/THF ratio of 1:3 was the
most suitable solvent system (entry 18 and Table S1, entries 10
and 11). After considerable preliminary experimentation, we
defined our best reaction conditions as follows: using 10 mol %
FeCl3 and 2 equiv. of Et3N as the catalyst and base,
respectively, the reaction of 1a (0.2 mmol) with DMSO/
THF (1:3, total volume = 2.0 mL) at 90 °C under an air
atmosphere for 12 h efficiently delivered the desired N-acyl
sulfoximine product 3a in 95% yield (entry 18).
Evaluation of the N�S bond cross-coupling strategy was

first examined by screening a range of electronically and
sterically distorted N-methoxy amides (1) (Scheme 2).
Substituents with a variety of electron-donating and electron-
withdrawing groups including alkyl, methoxyl, amino, ester,
cyano, nitro, and halogen at the para-position of the phenyl
ring were examined, and a wide range of N-acyl sulfoximine
products were obtained in yields ranging from 35 to 95% (3b−
3k). The para-substituted electron-donating groups are more

beneficial to the N�S coupling of amide substrates than the
electron-withdrawing group is. Notably, sensitive functional
groups such as trifluoromethyl, ester, cyano, and nitro groups
were compatible under the standard conditions, providing
synthetic handles for further functionalization (3e−3h).
Moreover, under the present iron-catalyzed coupling con-
ditions, C−X bonds were tolerated, as well (3i−3k).
Especially, when the R group was amino, the corresponding
N-acyl sulfoximine product 3d could also be prepared in a 61%
yield. The sterically hindered 2- and 3-substituented N-
methoxy benzamides, as well as the naphthalamides, were
able to participate in the reactions successfully to give the
corresponding products in moderate to excellent yields (3l−
3q). Interestingly, the introduction of a strong electron-
withdrawing trifluoromethyl group in the ortho-position led to
a surprisingly high yield of up to 99% (3o). In addition,
heterocyclic substrates were competent substrates for this
catalytic system (3r).
In addition, various sulfoxides containing bulky alkyl groups

or phenyl were tested, and a slight temperature elevation is

Scheme 3. Scope of the Sulfoxides 2 in Iron(III)-Catalyzed N�S Cross-Coupling of N-Methoxy Amidesab

aReaction conditions: 1 (0.2 mmol), 2 (2.5 equiv), FeCl3 (0.1 equiv), Et3N (2.0 equiv), THF (2.0 mL), air, 100 °C, 12 h. bIsolated yield based on
1. ND = not detected.

Scheme 4. Application of the N�S Coupling Reaction for the Gram-Scale Synthesis
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helpful to overcome the high energy barrier caused by
increasing spatial hindrance, resulting in the synthetically
useful yields of 3s, 3t, and 3u (Scheme 3). Fortunately,
attempts to explore the alkylated substrates of the N-methoxy
amides were also successful (3v−3x), implying that the
reaction was compatible with the alkyl groups as well.
However, when both N-methoxy amides and sulfoxide were
endowed with sterically hindered groups, the yields of the
reaction were reduced or even impossible (3y and 3z). The
sulfoxide 2a used previously is liquid, but most of the
sulfoxides here are solid; we set the amount of sulfoxide at 2.5
equiv to maximize the yield.
The potential synthetic application of this transformation

was subsequently evaluated (Scheme 4). With a catalyst
loading as low as 1 mol % and a reduced amount of base to 0.1
equiv, a gram-scale reaction was carried out smoothly, and the
S,S-dimethyl-N-benzoylsulfoximine was obtained in 93% yield.
This successful example highlights the promising potential of
the novel N�S bond coupling method for industrial
applications.
To gain an insight into the reaction mechanism, a number of

control experiments were carried out. Benzamide substrates
with different groups at the N atom, including benzamide, N-
methyl-benzamide, and N-ethoxy-benzamide, are not appli-
cable to the iron-catalyzed nitrene-transfer reaction (Scheme
5a−c), which implied that the methoxy group on the nitrogen
atom was indispensable.

In light of the above results and the previous literature
reports,26,42−44 a plausible reaction mechanism for the iron-
catalyzed nitrene-transfer reaction of sulfoxides with N-
methoxy amides has been proposed (Figure 1). First, N-
methoxy amide coordinates to an iron(III) catalyst, followed
by deprotonation of the N−H bond to form intermediate A.
Subsequently, it quickly transforms into Fe−nitrenoid complex
B. B is captured by dimethyl sulfoxide to yield species C
through a nucleophilic addition process. Finally, Fe−N bond
cleavage of C occurs along with the elimination of the methoxy
group to produce the desired N-acyl sulfoximine product and
to regenerate the iron(III) catalyst.

3. CONCLUSIONS
In conclusion, we have developed a new method for the
synthesis of N-acyl sulfoximine derivatives. The method
involves the iron-catalyzed N�S bond coupling reaction of
different substituted N-methoxy amides and sulfoxides in the
presence under the condition of triethylamine as a base,

efficiently affording the N-acyl sulfoximines with high func-
tional group tolerance. Featuring readily available starting
materials and a cheap and environmentally benign iron(III)
catalyst, this method offers operational simplicity and high
yield, and at the same time, it is in line with the concept of
green chemistry, which opens up a new approach for the
preparation and synthesis of sulfoximines.

4. EXPERIMENTAL DETAILS
4.1. General Information. Unless otherwise noted, all of

the reagents were purchased from Shanghai Aladdin Bio-Chem
Technology (Shanghai, China) and used without purification.
Purification of products was conducted by flash chromatog-
raphy on silica gel (200−300 mesh). Nuclear magnetic
resonance (NMR) spectra were measured on a Bruker Avance
III 400 (Bruker, Billerica, MA, USA). The 1H NMR (400
MHz) chemical shifts were obtained relative to CDCl3 as the
internal reference (CDCl3: δ 7.26 ppm). The 13C NMR (101
MHz) chemical shifts were given using CDCl3 as the internal
standard (CDCl3: δ 77.16 ppm). The 1H NMR (400 MHz)
chemical shifts were obtained relative to DMSO-d6 as the
internal reference (DMSO-d6: δ 2.50 ppm). The 13C NMR
(101 MHz) chemical shifts were given by using DMSO-d6 as
the internal standard (DMSO-d6: δ 39.9 ppm). Chemical shifts
are reported in ppm using tetramethylsilane as the internal
standard (s = singlet, d = doublet, t = triplet, q = quartet, dd =
doublet of doublets, and m = multiplet). The model of mass
spectrometer used: Thermo Scientific Q Exactive, Orbitrap,
USA.
4.2. Subsection General Procedure for the Iron-

Catalyzed N�S Coupling of N-Methoxy Amides. N-
methoxy amide 1 (0.2 mmol), sulfoxides 2, tetrahydrofuran
(THF), FeCl3 (10 mol %), and Et3N (0.4 mmol) were added
to a sealed tube. Then, the mixture was stirred at 90 °C in air
for 12 h. After the disappearance of the substrate as indicated
by the TLC, the reaction mixture was diluted with DCM (10
mL) and washed with water (5 mL × 3). The organic phase
was dried over anhydrous Na2SO4, filtered, and concentrated

Scheme 5. Control Experiments of the Iron(III)-Catalyzed
N�S Cross-Coupling Reaction

Figure 1. Plausible reaction mechanism of iron(III)-catalyzed N�S
cross-coupling.
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under reduced pressure. The resulting residue was purified by
flash column chromatography on silica gel DCM/MeOH to
give the desired product 3.
4.3. Characterization Data for Products 3a−3y. The

following characterization data are shown in the Supporting
Information.

4.3.1. S,S-Dimethyl-N-benzoylsulfoximine (3a).17 1H
NMR (400 MHz, CDCl3) δ: 8.10−8.04 (m, 2H), 7.49−7.43
(m, 1H), 7.36 (t, J = 7.5 Hz, 2H), 3.33 (s, 6H). 13C NMR (101
MHz, CDCl3) δ: 174.19, 135.45, 132.22, 129.22, 128.10,
41.73.

4.3.2. 4-Methyl(oxo)-λ6-sulfaneylidene-4-methylbenza-
mide (3b).11 1H NMR (400 MHz, CDCl3) δ: 8.04−7.98 (m,
2H), 7.21 (d, J = 7.9 Hz, 2H), 3.39 (s, 6H), 2.40 (s, 3H). 13C
NMR (101 MHz, CDCl3) δ: 174.22, 142.78, 132.71, 129.33,
128.81, 41.79, 21.65.

4.3.3. N-(Dimethyl(oxo)-λ6-sulfaneylidene)-4-methoxy-
benzamide (3c).26 1H NMR (400 MHz, DMSO-d6) δ: 7.93
(d, J = 8.9 Hz, 2H), 6.96 (d, J = 8.9 Hz, 2H), 3.80 (s, 3H),
3.43 (s, 6H). 13C NMR (101 MHz, DMSO-d6) δ: 172.36,
162.24, 130.78, 128.36, 113.36, 55.40, 41.20.

4.3.4. 4-Amino-N-(dimethyl(oxo)-λ6-sulfaneylidene)-
benzamide (3d).45 1H NMR (400 MHz, DMSO-d6) δ: 7.68
(d, J = 8.7 Hz, 2H), 6.50 (d, J = 8.7 Hz, 2H), 5.72 (s, 2H),
3.38 (s, 6H). 13C NMR (101 MHz, DMSO-d6) δ: 173.26,
152.85, 131.15, 123.27, 112.75, 41.77.

4 .3 .5 . N- (Dimethy l (oxo) -λ 6 - su l faney l idene) -4-
(trifluoromethyl)benzamide (3e).46 1H NMR (400 MHz,
CDCl3) δ: 8.22 (d, J = 8.2 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H),
3.42 (s, 6H). 13C NMR (101 MHz, CDCl3) δ: 172.80, 138.60,
133.67, 133.35, 129.60, 125.44−124.91 (m), 41.73. 19F NMR
(377 MHz, CDCl3) δ: −62.83.

4.3.6. N-(Dimethyl(oxo)-λ6-sulfaneylidene)-[1,1′-biphen-
yl]-4-carboxamide (3f).26 1H NMR (400 MHz, DMSO-d6)
δ: 8.10 (d, J = 8.6 Hz, 2H), 8.02 (d, J = 8.6 Hz, 2H), 3.87 (s,
3H), 3.49 (s, 6H). 13C NMR (101 MHz, DMSO-d6) δ: 172.18,
166.29, 140.31, 132.73, 129.47 (d, J = 12.3 Hz), 52.84, 41.45.

4.3.7. 4-Cyano-N-(dimethyl(oxo)-λ6-sulfaneylidene)-
benzamide (3g).17 1H NMR (400 MHz, DMSO-d6) δ: 8.12
(dd, J = 7.4, 1.2 Hz, 2H), 7.96−7.92 (m, 2H), 3.50 (s, 6H).
13C NMR (101 MHz, DMSO-d6) δ: 171.51, 140.23, 132.82,
129.75, 118.94, 114.53, 41.42.

4.3.8. N-(Dimethyl(oxo)-λ6-sulfaneylidene)-4-nitrobenza-
mide (3h).11 1H NMR (400 MHz, DMSO-d6) δ: 8.30 (d, J
= 8.8 Hz, 2H), 8.19 (d, J = 8.8 Hz, 2H), 3.51 (s, 6H). 13C
NMR (101 MHz, DMSO-d6) δ: 170.87, 149.53, 141.41,
130.05, 123.55, 41.00.

4.3.9. N-(Dimethyl(oxo)-λ6-sulfaneylidene)-4-fluorobenza-
mide (3i).47 1H NMR (400 MHz, DMSO-d6) δ: 8.07−8.01
(m, 2H), 7.30−7.23 (m, 2H), 3.46 (s, 6H). 13C NMR (101
MHz, DMSO-d6) δ: 172.00, 166.13, 163.65, 132.85 (d, J = 2.7
Hz), 131.83 (d, J = 9.3 Hz), 115.64, 115.43, 41.50. 19F NMR
(377 MHz, DMSO) δ: −108.57.

4.3.10. 4-Chloro-N-(dimethyl(oxo)-λ6-sulfaneylidene)-
benzamide (3j).26 1H NMR (400 MHz, DMSO-d6) δ:
8.04−7.92 (m, 2H), 7.52 (dd, J = 8.5, 1.9 Hz, 2H), 3.47 (d,
J = 2.0 Hz, 6H). 13C NMR (101 MHz, DMSO-d6) δ: 172.03,
137.22, 135.11, 131.01, 128.75, 41.47.

4.3.11. 4-Bromo-N-(dimethyl(oxo)-λ6-sulfaneylidene)-
benzamide (3k).47 1H NMR (400 MHz, DMSO-d6) δ:
7.93−7.88 (m, 2H), 7.68−7.63 (m, 2H), 3.46 (s, 6H). 13C
NMR (101 MHz, DMSO-d6) δ: 172.18, 135.47, 131.70,
131.21, 126.31, 41.48.

4.3.12. N-[2-(Methyl)-benzoyl]-S,S-dimethylsulfoximine
(3l).17 1H NMR (400 MHz, CDCl3) δ: 7.87 (d, J = 8.0 Hz,
1H), 7.22 (dd, J = 8.8, 4.3 Hz, 1H), 7.12 (t, J = 7.1 Hz, 2H),
3.26 (d, J = 0.7 Hz, 6H), 2.52 (s, 3H). 13C NMR (101 MHz,
CDCl3) δ: 176.65, 138.84, 135.32, 131.53, 130.92, 130.38,
125.48, 41.76, 21.66.

4.3.13. N-(Dimethyl(oxo)-λ6-sulfaneylidene)-3-methylben-
zamide (3m).17 1H NMR (400 MHz, DMSO-d6) δ: 7.85−7.73
(m, 2H), 7.37−7.30 (m, 2H), 3.45 (s, 6H), 2.35 (s, 3H). 13C
NMR (101 MHz, DMSO-d6) δ: 172.82, 137.29, 135.83,
132.48, 129.24, 128.02, 125.92, 41.10, 20.94.

4.3.14. 3-Chloro-N-(dimethyl(oxo)-λ6-sulfaneylidene)-
benzamide (3n).26 1H NMR (400 MHz, DMSO-d6) δ:
8.01−7.87 (m, 2H), 7.63 (ddd, J = 8.0, 2.2, 1.1 Hz, 1H), 7.50
(t, J = 7.8 Hz, 1H), 3.49 (s, 6H). 13C NMR (101 MHz,
DMSO-d6) δ: 171.13, 137.95, 132.99, 131.70, 130.24, 128.36,
127.23, 41.02.

4.3.15. N-(Dimethyl(oxo)-λ6 -sul faneyl idene)-2-
(trifluoromethyl)benzamide (3o). 1H NMR (400 MHz,
DMSO-d6) δ: 8.12 (t, J = 8.0 Hz, 2H), 8.06 (t, J = 7.3 Hz,
1H), 8.00 (d, J = 7.5 Hz, 1H), 3.85 (d, J = 1.0 Hz, 6H). 13C
NMR (101 MHz, DMSO-d6) δ: 174.66, 138.42 (d, J = 1.9
Hz), 132.59, 130.23, 129.48, 126.65 (dd, J = 10.5, 5.3 Hz),
126.25, 125.71, 122.99, 42.51, 41.10. 19F NMR (377 MHz,
DMSO-d6) δ: −57.47. HR-MS (ESI-TOF) m/z: [M + K]+
calcd for C10H10F3NO2S + K, 304.0021; found, 304.00159.

4.3.16. N-(Dimethyl(oxo)-λ6-sulfaneylidene)-1-naphtha-
mide (3p).26 1H NMR (400 MHz, DMSO-d6) δ: 8.85 (dd, J
= 8.3, 0.7 Hz, 1H), 8.12−8.02 (m, 2H), 7.96 (d, J = 7.8 Hz,
1H), 7.56 (tdd, J = 15.2, 7.0, 1.5 Hz, 3H), 3.52 (s, 6H). 13C
NMR (101 MHz, DMSO-d6) δ: 175.86, 134.88−134.46 (m),
134.07 (d, J = 35.6 Hz), 131.86, 130.88, 129.10, 128.82,
127.35, 126.42 (d, J = 9.3 Hz), 125.22, 41.55.

4.3.17. N-(Dimethyl(oxo)-λ6-sulfaneylidene)-2-naphtha-
mide (3q).26 1H NMR (400 MHz, DMSO-d6) δ: 8.61 (s,
1H), 8.07 (dd, J = 8.6, 1.6 Hz, 2H), 7.96 (dd, J = 8.1, 4.9 Hz,
2H), 7.60 (ddd, J = 15.4, 10.1, 6.2 Hz, 2H), 3.51 (s, 6H). 13C
NMR (101 MHz, DMSO-d6) δ: 173.17, 135.07, 133.70,
132.63, 129.91, 129.64, 128.46−127.97 (m), 127.05, 125.66,
41.59.

4.3.18. N-(Dimethyl(oxo)-λ6-sulfaneylidene)thiophene-2-
carboxamide (3r).26 1H NMR (400 MHz, DMSO-d6) δ:
7.76 (dd, J = 5.0, 1.2 Hz, 1H), 7.63 (dd, J = 3.7, 1.2 Hz, 1H),
7.12 (dd, J = 4.9, 3.7 Hz, 1H), 3.45 (s, 6H). 13C NMR (101
MHz, DMSO-d6) δ: 168.25, 141.81, 132.45, 131.79, 128.36,
41.63.

4.3.19. N-(Dibutyl(oxo)-λ6-sulfaneylidene)benzamide
(3s).46 1H NMR (400 MHz, DMSO-d6) δ: 8.02 (d, J = 7.9
Hz, 2H), 7.51 (d, J = 6.8 Hz, 1H), 7.43 (t, J = 7.5 Hz, 2H),
3.66−3.51 (m, 4H), 1.82−1.67 (m, 4H), 1.43 (dd, J = 14.7, 7.4
Hz, 4H), 0.90 (t, J = 7.3 Hz, 6H). 13C NMR (101 MHz,
DMSO-d6) δ: 172.91, 136.38, 132.26, 129.18, 128.51, 50.85,
23.93, 21.43, 13.88.

4.3.20. N-(Methyl(oxo)(phenyl)-λ6-sulfaneylidene)-
benzamide (3t).17 1H NMR (400 MHz, CDCl3) δ: 8.12 (dt,
J = 8.5, 1.7 Hz, 2H), 7.53−7.46 (m, 1H), 7.43−7.36 (m, 2H),
3.75−3.65 (m, 2H), 3.33 (ddd, J = 14.4, 7.1, 2.4 Hz, 2H),
2.40−2.25 (m, 4H). 13C NMR (101 MHz, CDCl3) δ: 175.06,
135.23, 132.20, 129.31, 128.07, 52.72, 23.78.

4.3.21. N-(Methyl(oxo)(phenyl)-λ6-sulfaneylidene)-
benzamide (3u).46 1H NMR (400 MHz, DMSO-d6) δ:
8.06−8.02 (m, 4H), 7.77 (dd, J = 8.4, 6.3 Hz, 1H), 7.70 (dd, J
= 10.3, 4.7 Hz, 2H), 7.57 (t, J = 7.3 Hz, 1H), 7.47 (t, J = 7.6

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c03569
ACS Omega 2024, 9, 37044−37051

37049

https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c03569/suppl_file/ao4c03569_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c03569/suppl_file/ao4c03569_si_001.pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c03569?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Hz, 2H), 3.62 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ:
173.09, 139.20, 136.03, 134.17, 132.63, 130.08, 129.32, 128.70,
127.57, 43.72.

4.3.22. N-Acetyl Methylphenylsulfoximine (3v).48 1H
NMR (400 MHz, DMSO-d6) δ: 7.95 (d, J = 7.8 Hz, 2H),
7.70 (ddd, J = 15.2, 10.9, 3.9 Hz, 3H), 3.43 (s, 3H), 1.98 (s,
3H). 13C NMR (101 MHz, DMSO-d6) δ: 178.89, 139.15,
133.98, 129.97, 127.48, 43.52, 26.91.

4.3.23. N-Acetyl Diphenylsulfoximine (3w).49 1H NMR
(400 MHz, DMSO-d6) δ: 8.03−7.98 (m, 4H), 7.69−7.60 (m,
6H), 2.14 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ: 179.15,
139.80, 134.03, 130.34, 127.74, 27.24.

4.3.24. N-Butyryl Methylphenylsulfoximine (3x). 1H NMR
(400 MHz, DMSO-d6) δ: 8.07−8.01 (m, 2H), 7.30−7.23 (m,
2H), 3.46 (s, 6H). 13C NMR (101 MHz, DMSO-d6) δ: 181.34,
139.34, 134.00 (d, J = 13.6 Hz), 129.91 (d, J = 5.8 Hz), 127.40
(d, J = 8.8 Hz), 43.60, 41.25, 19.05, 14.11. HR-MS (ESI-TOF)
m/z: [M + K]+ calcd for C10H10F3NO2S + K, 264.0461; found,
264.04504.

4.3.25. N-Benzoyl-S,S-diphenyl Sulfoximine (3y).50 1H
NMR (400 MHz, DMSO-d6) δ: 8.13 (dd, J = 21.4, 7.9 Hz,
6H), 7.76−7.60 (m, 7H), 7.52 (t, J = 7.4 Hz, 2H). 13C NMR
(101 MHz, DMSO-d6) δ: 173.16, 139.79, 135.80, 134.24,
132.99, 130.50, 129.54, 128.88, 127.84.
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