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Topological superconductivity and large
spin Hall effect in the kagome
family Ti6X4 (X = Bi, Sb, Pb, Tl, and In)

Xin-Wei Yi,1 Zheng-Wei Liao,1 Jing-Yang You,2,* Bo Gu,1,3,* and Gang Su1,3,4,*

SUMMARY

Topological superconductors (TSC) become a focus of research due to the accom-
panying Majorana fermions. However, the reported TSC are extremely rare.
Recent experiments reported kagome TSC AV3Sb5 (A = K, Rb, and Cs) exhibit
unique superconductivity, topological surface states (TSS), and Majorana bound
states. More recently, the first titanium-based kagome superconductor CsTi3Bi5
with nontrivial topologywas successfully synthesized as a perspective TSC. Given
that Cs contributes little to electronic structures of CsTi3Bi5 and binary com-
pounds may be easier to be synthesized, here, by first-principle calculations,
we predict five stable nonmagnetic kagome compounds Ti6X4 (X = Bi, Sb, Pb,
Tl, and In) which exhibit superconductivity with critical temperature Tc = 3.8 K
� 5.1 K, nontrivial Z2 band topology, and TSS close to the Fermi level. Addition-
ally, large intrinsic spin Hall effect is obtained in Ti6X4, which is caused by gapped
Dirac nodal lines due to a strong spin-orbit coupling. This work offers new plat-
forms for TSC and spintronic devices.

INTRODUCTION

Topological superconductor (TSC) with Majorana fermions becomes an important subject in condensed

matter physics.1 Their topological gapless excitations of linear dispersion and particle-hole symmetry

can naturally meet the two requirements of Majorana fermion, where excitations obey the Dirac equation

and particles are equal to their own anti-particles.2 The Majorana fermion in TSC following non-Abelian

statistics is promising for topological quantum computations without decoherence.3,4 Two possible ap-

proaches to achieve TSC are odd-parity superconductors with inherently strong topology5,6 and supercon-

ducting proximity effect.7–9 Experimental detection of surface Andreev bound states and theoretical anal-

ysis have given supporting information of the topological superconductivity in the odd-parity

superconductors CuxBi2Se3
10–12 and Sn1-xInxTe.

13 The proximity effect has focused on proximity-induced

coupling of s-wave superconductors with topological insulators7 or semiconductors with strong spin-orbit

coupling (SOC).8,9 Several artificially fabricated heterostructures and nanowires have revealed evidences of

the Majorana fermions along this route, including epitaxial Bi2Te3 films grown on NbSe2,
14–16 InAs nano-

wires segment with epitaxial Al,17 InSb nanowires contacted with NbTiN,18 and Fe atomic chains on the sur-

face of Pb.19 Additionally, some materials with both bulk superconductivity and surface topological Dirac

cones can also intrinsically establish this proximity effect.20–25 Majorana zero modes has been observed in

this kind of intrinsic TSC, including the iron-based superconductors � FeTe 1� x Sex,
26–30 CaKFe4As4,

31

LiFeAs,32,33 and van der Waals material 2M-WS2.
34 In terms of fabrication, the intrinsic TSC is more prom-

ising than the heterostructures and nanowires. Additionally, both experimental and predicted intrinsic TSC

are extremely rare and most of them can only achieve superconductivity or suitable topological surface

states (TSS) near the Fermi energy (EF) by doping. Finding more intrinsic TSC candidates with high Tc

and TSS in the vicinity of EF is highly urgent.

Recently, robust Majorana bound states were observed in a new kagome superconductor CsV3Sb5
35 as a

new paradigm of intrinsic TSC. This new superconductor family AV3Sb5 (A = K, Rb, and Cs) exhibit unique

superconductivity with superconducting transition temperatures (Tc) of 0.9 � 2.5 K at ambient pres-

sure,36–48 a nontrivial Z2 topology,
36,49 and other new quantum properties.50–55 Very recently, the first Ti-

based kagome CsTi3Bi5 with the AV3Sb5 prototype structure has also been synthesized experimentally56

following theoretical prediction,57 and it exhibits a Tc of about 4.8 K, which is much higher than that of
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AV3Sb5.
56 It was predicted that CsTi3Bi5 has nontrivial band topology and robust TSS, implying a possible

TSC similar to AV3Sb5. It is very intriguing to find more candidates of TSC with high Tc and intrinsic TSS in

similar Ti-based kagome systems. Considering that the density of states (DOS) in CsTi3Bi5 near EF is mainly

contributed by Ti atoms while Cs has almost no contribution and in general binary compounds are also

easier to be synthesized in experiments, it will be interesting and imperative to study the Ti-based binary

compounds.

In this paper, by density functional theory (DFT) calculations, we predicted kagome nonmagnetic family Ti6
X4 (X = Bi, Sb, Pb, Tl, and In). Ti6X4 are stacked by Ti-based kagome layers and X-based honeycomb layers

similar to CsTi3Bi5. The low Ehull in energy convex hull and phonon spectra without imaginary frequency of

Ti6X4 show the evidences of their thermodynamic and dynamic stability. The nontrivial Z2 index and corre-

sponding TSS near EF with spin-moment-locked spin textures demonstrate that they are ideal Z2 topolog-

ical metals. On the other hand, the calculated electron-phonon coupling (EPC) based on the Bardeen-

Cooper-Schrieffer (BCS) theory suggests that they have superconducting transitions with a transition

temperature Tc of 3.9� 5.1 K. The coexistence of superconductivity with high Tc and ideal TSS offers prom-

ising platforms for realizing TSC andMajorana fermions. Moreover, the band structures of Ti6X4 show abun-

dant Dirac nodes and Dirac nodal lines (DNLs), all of which have gaps in the presence of the strong SOC.

The calculated intrinsic spin Hall conductivity (SHC) shows that these gapped nodes and DNLs contribute

to a large SHC in Ti6X4, where SHC of Ti6Bi4 and Ti6Sb4 can reach 354 and 629 -$ (e$U$ cm)�1, respectively.

RESULTS FOR TI6BI4
Crystal structure of Ti6Bi4

CsTi3Bi5 is a layered material,56 consisting of Bi and Ti3Bi layers, as shown in Figure 1B. The structure of Ti6
Bi4 can be obtained by stacking these atomic layers as seen in Figure 1A, where different Ti3Bi layers

stacked in the ‘‘c’’ direction have in-plane sliding and the two Ti3Bi layers are sandwiched by Bi honeycomb

layers. It should be noticed that the Ti kagome nets have some breathing distortions, where the triangles of

kagome nets are divided into two unequal sizes. Ti6Bi4 has a rhombohedral structure with a space group of

R 3 m (No.166). Its Bravais and primitive lattices are represented by black solid and green dotted lines in

Figure 1A, respectively. The bulk Brillouin zone (BZ) and high symmetry points are plotted in Figure 1D,

where four inequivalent time-reversal invariant momenta (TRIM) points are labeled as G, T, F, and L.

By calculating the formation energies Ef of all Ti-Bi binary systems,58–60 we can draw the convex hull as

shown in Figure 1C. We can see that Ti6Bi4 is thermodynamically stable with Ehull = 0 meV. Among all these

binary Ti-Bi compounds listed in Figure 1C, only Ti6Bi4 has kagome nets. Its special structure similar to CsV3

Sb5 and CsTi3Bi5 makes Ti6Bi4 become promising materials to explore the possible intrinsic topological su-

perconductors. The experimental synthesis of a new phase of Ti3Bi2 was reported, where the elements ratio

of Ti:Bi = 3:2 was obtained by the energy dispersive X-ray spectroscopy but its exact structure has not been

determined.61 It indicates that our predicted Ti6Bi4 may already be fabricated in the experiment.

Electronic band structure and topological properties

The electronic band structure of Ti6Bi4 without SOC is plotted in Figure S1. Many degenerated points can

be seen and some of them are not isolated but formDNLs as seen in Figure S3. The electronic energy bands

and partial DOS with SOC for Ti6Bi4 are plotted in Figure 1A. Comparing the electronic band structure

without SOC in Figure S1, SOC lifts the degeneracy at the Dirac nodes and DNLs, which generates a contin-

uous bandgap between two adjacent energy bands in the whole BZ. The DOS exhibits an obvious valley

near the Fermi energy and the projected DOS of Ti atoms is much larger than that of Bi atoms. The

band structure with weights of projected different orbitals of Ti and Bi atoms is shown in Figure S2 in sup-

plemental information. The bands near the Fermi level are dominated by the 5d orbitals of Ti and the 3p

orbitals of Bi, while the s orbitals of Ti and Bi have little contributions. Experimental angle-resolved photo-

emission spectroscopy (ARPES) measurement and the DFT calculations of the V-based kagome structures

quantitatively give similar electronic band structures, indicating the validity of the calculated band struc-

tures by DFT in these types of systems.36

With the time-reversal and inversion symmetries of Ti6Bi4, its strong Z2 topological invariant can be calcu-

lated by the parity of wavefunctions at all TRIM points.62 Moreover, other three weak Z2 topological invari-

ants can also be calculated. It can be seen from Figure 2B that several energy bands, including bands 73, 75,

and 79 below the Fermi energy (EF) have a strong Z2 index, resulting in abundant clear Dirac cone TSS near
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the Fermi level in the surface spectrum functions as shown in Figure 2E. The nontrivial TSS and nontrivial Z2

index make Ti6Bi4 a Z2 topological metal.

Unlike most VSb-based kagome structures where the TSS are usually submerged in their bulk states, the

bulk states of Ti6Bi4 have a large bandgap at ‘‘G’’ point near EF, which makes its TSS clearly exist without

entanglement with bulk states as shown in Figure 2A. The 3D Fermi surface (FS) is plotted in Figures 2C

and 2D, where the electron pockets are concentrated near F, F1, F2, G, and T points. The electron pocket

centered on the G point shows an obvious cylindrical surface along the direction perpendicular to the ka-

gome net, which enables ARPES to easily measure the TSS near G. With calculated surface Green’s function

for a semi-infinite system and the surface spectrum function, the spin texture of surface states at fixed en-

ergy can be directly obtained. The detailed methods can be seen in supplemental information. Therefore,

we further draw the projected surface spectral functions and spin textures on (001) plane at EF in Figure 2F.

The TSS form multiple circles centered on the G point, which presents obvious spin-momentum locking,

showing the existence of robust TSS near EF again.

Superconductivity

Similar to CsV3Sb5 and CsTi3Bi5, the emergence of superconducting ground states in Ti6Bi4 is very prom-

ising. To study the superconductivity in Ti6Bi4, we first calculate its magnetic properties. We consider

several typical collinear and noncollinear magnetic configurations, including one nonmagnetic configura-

tion, three ferromagnetic, and three antiferromagnetic configurations along x, y, and z directions, respec-

tively, and three classical antiferromagnetic configurations of bilayer kagome net as shown in Figure S4. By

comparing the total energies and final magnetic moment per atom of thesemagnetic configurations, Ti6Bi4
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Figure 1. The crystal structure for Ti6Bi4 and the convex hull of TixBi1�x

(A) The crystal structure for Ti6Bi4 stacked by Ti3Bi and Bi layers. The black solid and green dotted lines represent the

Bravais and primitive lattices, respectively.

(B) Top view of Bi and Ti3Bi atomic layers.

(C) The convex hull of TixBi1�x.

(D) Brillouin zone (BZ) with high symmetry points. 3D and 2D BZ are drawn with blue and orange solid lines, respectively.
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can be identified as a nonmagnet. Furthermore, we calculate the Eliashberg spectral function a2 FðuÞ and
EPC l (u) (see Figure 3), then the EPC l (u =N) and Tc of Ti6Bi4 are estimated to be 0.586 and 3.8 K as listed

in Table 1, respectively, which are relatively high values among the recently discovered kagome supercon-

ductors. From Figure 3, we find that the phonon DOS (PhDOS) at high frequency (� 6 THz) and low fre-

quency (� 2 THz) is dominated by the contribution of Ti and Bi atoms, respectively. As a rough estimation,

the contribution of Ti atoms vibration accounts for more than half of the total EPC. Since themass of Ti atom

is smaller than that of V atom, this partially explains the enhanced EPC and Tc in Ti-based kagome

superconductors.

Spin Hall effect

The symmetry protected DNL in the energy band can serve as a source of various quantum phenomena,

such as the spin Hall effect (SHE). The large SOC mixing different spin components of wave functions pro-

duces a big numerator, and the small gap of DNL induced by SOC contributes a small denominator in

Equation 4 in supplemental information, so a large SHC may appear. Due to the large SOC and corre-

sponding gapped DNLs, a large SHC in Ti6Bi4 is expected. The crystal symmetry of Ti6Bi4 constraints three
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Figure 2. The electronic band structure and topological surface states of Ti6Bi4
(A) The electronic band structure and partial density of states (DOS) with spin-orbit coupling (SOC) for Ti6Bi4. Different

bands near the EF are drawn in different colors.

(B) Product of parity for four inequivalent TRIM points and Z2 index of bands near Fermi level.

(C and D) Three-dimensional Fermi surface of Ti6Bi4 in (C) side and (D) top views.

(E) The surface spectrum functions along M-G-M paths projected on (001) plane for Ti6Bi4.

(F) Spin texture of topological surface states (TSS) projected on (001) plane for Ti6Bi4 at E-EF = 0 meV.
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independent components of SHC tensor, i.e. szxy = � szyx ; s
y
zx = � sxzy ; s

x
yz = � syxz .

63 Therefore, we evaluate

three independent components szxy , s
y
zx , and sxyz as a function of chemical potential as plotted in Figure 4A.

It can be seen that the magnitudes of three components are around 160 � 354 -$ (e $U$ cm)�1 at EF. The

SHC changes drastically with the change of chemical potential, and szxy can reach 1168 -$ (e $U$ cm)�1 at

�0.55 eV.

To reveal the origin of large SHC, we plot the band structure of Ti6Bi4 colored by the magnitude of spin

Berry curvature Ux
n;yzðkÞ, as well as the k-resolved Ux

yzðkÞ at EF in Figures 4B and 4C. It is noted that

Ux
n;yzðkÞ strongly depends on wave vector k, and Ux

n;yzðkÞ shows prominent peaks at positions of gapped

nodes and DNLs, which mainly contribute to SHC. The reason for relatively isotropic SHC is that Dirac no-

des and DNLs are located at different energy levels. The large SHC of Ti6Bi4 provides promising applica-

tions for spintronics.

RESULTS FOR KAGOME FAMILY TI6X4 (X = SB, PB, TL, AND IN)

To our knowledge, CsTi3Bi5 exhibits many interesting properties and is the only superconductor with tita-

nium-based kagome net.56 Therefore, it is important to find more titanium-based kagome superconduc-

tors. In the Ti6Bi4, the electronic states near the EF are mainly contributed by Ti atoms, which indicate

that the substitution of Bi atoms may produce the family Ti6X4, similar to Ti6Bi4. We substitute Bi in Ti6
Bi4 with all elements of groups IIIA, IVA, VA, and VIA except radioactive polonium, and find four dynamically

stable compounds Ti6X4 (X = Sb, Pb, Tl, and In). Furthermore, DFT calculations show that Ti6Sb4, Ti6Pb4,

and Ti6Tl4 are all thermodynamically stable with Ehull = 0 eV, and Ti6In4 also has a relatively small Ehull =

Table 1. Electronic DOS at the Fermi energy N(EF) (states/(eV $ f.u.)), electron-phonon coupling EPC l (u = N),

logarithmically averaged phonon frequency ulog, and estimated Tc for Ti6X4

Structures N(EF) (states/(eV $ f.u.)) l ulog (K) Tc (K)

Ti6Bi4 5.707 0.586 177.3 3.8

Ti6Sb4 5.153 0.617 187.8 4.7

Ti6Pb4 5.836 0.642 172.0 4.8

Ti6In4 5.854 0.604 166.8 3.9

Ti6Tl4 6.225 0.666 166.0 5.1

Figure 3. The superconductivity of Ti6Bi4
The phonon spectrum, projected phonon DOS (PhDOS), Eliashberg spectral function a2 FðuÞ, and cumulative frequency-

dependent EPC l (u) for Ti6Bi4.
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0.121 eV, which may be synthesized experimentally. Their structural information, Ef and Ehull, are summa-

rized in Table S2.

Similar to the analysis of Ti6Bi4, we also calculate the topological properties, electronic structures, super-

conducting properties, and SHC of these Ti6X4 members. Ti6Sb4 has similar energy bands to that of Ti6Bi4.

The DOS of Ti6Sb4 and Ti6Pb4 maintains the valley characteristic near EF similar to that of Ti6Bi4, while the

DOS of Ti6Tl4 and Ti6In4 shows different behaviors. As plotted in Figures S5–S8, abundant TSS are obtained

in projected spectral functions for all members of Ti6X4, and the bands near Fermi level with a nonzero Z2
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Figure 4. The intrinsic spin Hall effect of Ti6Bi4
(A) Three independent components of spin Hall conductivity (SHC) tensor as a function of chemical potential for Ti6Bi4.

(B) The band structure of Ti6Bi4 weighted by spin Berry curvature Ux
n;yzðkÞ.

(C) The k-resolved Ux
yzðkÞ by integrating the spin Berry curvature of all occupied bands along the high-symmetry paths

at EF.
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index indicate that they are topologically nontrivial, which show that these compounds are also Z2 topo-

logical metals. To study the superconductivity of the members of Ti6X4, we calculate a2 F(u), ulog, EPC l,

and Tc at ambient pressure, as listed in Table 1. All other members of Ti6X4 have higher Tcs than Ti6Bi4,

among which Ti6Tl4 has the highest Tc of 5.1 K. Ti6Sb4 has a larger ulog due to the higher vibrational fre-

quency of lighter Sb atom, leading to a larger Tc. Ti6Pb4, Ti6In4, and Ti6Tl4 have higher Tcs mainly because

they are equivalent to hole doping of Ti6Bi4, resulting in higher DOS and EPC l. The energy bands of other

members of Ti6X4 in Figures S5–S8 also exhibit abundant gapped nodes and DNLs similar to Ti6Bi4, which

contribute the SHC around 34–629 -$ (e $U$ cm) �1 at EF as listed in Table 2. These values are comparable to

some reported compounds with high SHC, such as V6Sb4 [204–537 -$ (e $U$ cm)�1],64 Bi1�xSbx [474 -$ (e $U$

cm)�1],65 and (Mo/W)Te2 [18–361 -$ (e $U$ cm)�1].66 The excellent stability, high SHC, and the combination

of high Tc and nontrivial topology make kagome family Ti6X4 worth exploring experimentally.

DISCUSSIONS

We notice that a cousin material of AV3Sb5 � V6Sb4, which share the same protype structure with Ti6X4, has

also been synthesized recently.67,68 To explore the reason why in experiment V6Sb4 does not show signal of

superconducting transition under pressure of 0 � 80 GPa,67 we analyze the magnetic properties of V6Sb4

using the same calculation method for Ti6X4. We find that V6Sb4 is a ferromagnet with a small magnetic

moment of 0.35 mB/f.u., which may explain the disappearance of superconductivity. Consistent with our cal-

culations, the experimental magnetic susceptibility measurements showed that a small effective magnetic

moment can indeed be measured despite the presence of impurities in V6Sb4.
68 In contrast, the nonmag-

netic kagome family members Ti6X4 show high Tc, which deserves further experimental study.

To study the superconductivity in Ti6Bi4 as a function of pressure, we calculate its Tc at high pressures of 10

and 50 GPa and our results show that the pressure strongly suppresses its Tc (see Table S1). On the other

hand, it is expected that the Tc of Ti6Bi4 can be enhanced by doping. It is noteworthy that the electronic

DOS of Ti6Bi4 is located in a valley at the EF in Figure 2A. By either electron or hole doping, the DOS

can be greatly increased, and Tc may be improved correspondingly. So, the substitutional doping of Bi

with elements of adjacent IIIA, IVA, and VIA groups is a promising carrier dopant, which slightly changes

the kagome nets of Ti atoms and the band structure near the Fermi level. These predictions can be checked

by further experiments.

The coexistence of the superconducting ground state and clear TSS near EF in Ti6Bi4 is similar to the

behaviors of CsV3Sb5. Since the possible Majorana bound state is discussed in the experiment of CsV3

Sb5,
35 the Majorana bound state is also expected in Ti6Bi4 due to the proximity effect. On the other

hand, we notice that the Fermi surface of Ti6Bi4 encloses five TRIM of F, F1, F2, G, and T as shown in

Figures 2C and 2D, which shows a similar characteristic like odd-parity superconductors Sn1�xInxTe
13

and CuxBi2Se3.
10,11 A concise theorem shows that an odd-parity superconductor with inversion symmetry

is a TSC if its Fermi surface encloses an odd number of TRIM in the BZ.5,6,11 Although we only calculate su-

perconductivity based on the traditional s-wave-paired BCS theory, Ti6Bi4 is likely to have an odd-parity

pairing potential beyond traditional s-wave pairing due to its strong SOC like Sn1�xInxTe
13 and CuxBi2

Se3.
11,12 Under this presumption of odd-parity superconductor, although Tc of Ti6Bi4 may be changed,

the characteristic of the Fermi surface indicates that Ti6Bi4 is a strong TSC. Therefore, Ti6Bi4 can serve as

a promising platform for investigating Majorana zero-modes and TSC.

Conclusions

To summarize, we predict a promising kagome family� Ti6X4 (X = Bi, Sb, Pd, Tl, and In) by DFT calculations.

The thermodynamic and dynamic stability of these compounds is corroborated by the calculations of

energy and phonon spectra. All members of Ti6X4 produce a superconducting transition with a Tc of 3.8

Table 2. Three independent components of SHC (-$ (e $U$ cm)�1) at the Fermi energy for Ti6X4

SHC (-$ (e $U$ cm)�1) Ti6Bi4 Ti6Sb4 Ti6Pb4 Ti6In4 Ti6Tl4

szxy �160 �225 �420 �274 �201

s
y
zx �333 �629 �230 �66 80

sxyz �354 �342 �124 34 �114
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� 5.1 K and have a strong Z2 index with clear TSS near the Fermi level. The calculated spin texture of Ti6Bi4
shows TSS with spin helicity. Either the proximity-induced s-wave pairing on the surface or the possible

odd-parity pairing with strong topological character shows that Ti6Bi4 is a promising TSC. Based on the

Kubo formula, the SHC of Ti6X4 is calculated to be about 34 � 639 -$ (e $U$ cm)�1. The large SHC is attrib-

uted to the large spin Berry curvature caused by the gapped nodes and DNLs. With high EPC supercon-

ductivity, excellent topological properties, and large spin Hall effect, Ti6X4 deserve further experimental

studies on their topological superconductivity and electronic transport properties.

Limitations of the study

We only calculate superconductivity based on the traditional s-wave-paired BCS theory. If Ti6Bi4 has an

odd-parity pairing potential beyond traditional s-wave pairing due to its strong SOC, its superconducting

temperature Tc may be changed.
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Materials availability

Detail of structures information can be seen in Table S2 of supplemental information.

Data and code availability

Data reported in this paper will be shared by the lead contact upon request. There is no code associated

with this work. Any additional information required to reanalyze the data reported in this paper is available

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study does not use experimental methods typical in the life sciences.

METHOD DETAILS

DFT and superconductivity calculations

DFT calculations with projector augmented-wave pseudopotential method74 are implemented through

Viennaab initio simulationpackage (VASP)69 and QUANTUM � ESPRESSO (QE).70 The convergence cri-

terion of atomic force is less than 1 meV/Å for VASP and 10�7 Ry/a.u. for QE (1a.u. = 0.053 nm). The cutoff

energy of plane-wave is taken as 500 eV and the total energy convergence threshold of all processes is 10�7

eV/atom for VASP. For QE, kinetic energy cutoffs of wavefunction and charge density are taken as 100

Ry and 1250 Ry, respectively, and the convergence threshold cutoffs of wavefunction and ionic minimiza-

tion total energy is 10�9 Ry. To be consistent with the previous calculations and experimental results of

AV3Sb5,
50,75 the on-site Coulomb interaction (U) is set to 0 eV. The G centered 6 3 6 3 6 Monkhorst-

Pack k-mesh is used in the self-consistent calculation. The q-point grid is set to 33 33 3 during EPC calcu-

lation. The symmetry analysis of the structure and parity calculation of the time-reversal invariant momenta

(TRIM) points are performed by the irvsp program.71

The phonon dispersion and EPC are calculated by the phonon module of QE using the density functional

perturbation theory.76 To estimate Tc, we use the McMillan-Allen-Dynes equation,77,78

Tc =
ulog

1:2
exp

�
� 1:04ð1+ lÞ

l � m�ð1+ 0:62lÞ
�
; (Equation 1)

where ulog is the logarithmically averaged phonon frequency, and l is a dimensionless parameter

describing the EPC strength. The semiempirical Coulomb pseudopotential m� of electron-electron effec-

tive repulsion is taken as 0.10, which is consistent with the previous calculation of AV3Sb5.
75,79

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Vienna ab initio simulation package Kresse and Furthmüller69 www.vasp.at/

QUANTUM-ESPRESSO Giannozzi et al.,70 www.quantum-espresso.org/

irvsp Gao et al.,71 github.com/zjwang11/irvsp

Wannier90 Mostofi et al.,72 www.wannier.org/

WannierTools Wu et al.,73 www.wanniertools.com/
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After careful testing, we find that the Tc with and without SOC are almost the same. Therefore, the calcu-

lation of superconductivity in this article does not include SOC.

Calculations of topological properties and SHC

We use the Wannier90 package72 to fit the Wannier functions, construct effective tight-binding Hamilto-

nian, and calculate spin Hall conductivity (SHC), where Ti-d and Bi-p orbitals are chosen to be projected.

SHC tensor is calculated by employing the Kubo formula80,81

s
g
ab = eZ

Z
dk

ð2pÞ3U
g
abðkÞ; (Equation 2)

U
g
abðkÞ =

X
n

fnkU
g
n;abðkÞ; (Equation 3)

U
g
n;abðkÞ = � 2Im

X
msn

Cjnk

��jga��jmkDCjmk

��vb��jnkD

ðEmk � EnkÞ2
; (Equation 4)

where U
g
n;abðkÞ is the spin Berry curvature, Ug

abðkÞ is the k-resolved term obtained by integrating the spin

Berry curvature of all occupied bands, which is the derivative of the SHC to k, and fnk is the Fermi-Dirac dis-

tribution. The spin current operator jga = 1=2fva; sgg with velocity operator va = 1
-

vH
vka

ða;b;g = x; y; zÞ and
spin operator sg. The spin current operator can be expressed as jga = s

g
abEb. The k-mesh for the spin Berry

curvature integral adopts 200 3 200 3 200, and an extra 5 3 5 3 5 fine mesh around those points with

U
g
n;abðkÞ exceeding 100 �A

2
is added. SOC is considered in SHC calculation.

With effective tight-binding Hamiltonian, we calculate the surface spectra and topological properties using

the iterative surface Green’s functionmethod withWannierTools package.73,82 After calculating the surface

Green’s function for a semi-infinite systemGsðkk;u + ihÞ. The surface spectrum function Aðkk;uÞ can be ob-

tained from its imaginary part, with which we can identify clear topological surface states of specific mate-

rials. The spin texture of surface states can be obtained with

Sðkk;uÞ = � 1

p
lim

h/0+
ImTr½sGsðkk;u + ihÞ��Aðkk;uÞ (Equation 5)

where s are the Pauli matrices and kk is the 2D momentum.83,84

QUANTIFICATION AND STATISTICAL ANALYSIS

Our study does not include statistical analysis or quantification.

ADDITIONAL RESOURCES

There are no additional resources needed to be declared in this manuscript, additional requests for this can

be made by contacting the lead contact.
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