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ABSTRACT

The genomic variations of SARS-CoV-2 continue to
emerge and spread worldwide. Some mutant strains
show increased transmissibility and virulence, which
may cause reduced protection provided by vac-
cines. Thus, it is necessary to continuously monitor
and analyze the genomic variations of SARS-COV-2
genomes. We established an evaluation and prewarn-
ing system, SARS-CoV-2 variations evaluation and
prewarning system (VarEPS), including known and
virtual mutations of SARS-CoV-2 genomes to achieve
rapid evaluation of the risks posed by mutant strains.
From the perspective of genomics and structural bi-
ology, the database comprehensively analyzes the
effects of known variations and virtual variations on
physicochemical properties, translation efficiency,
secondary structure, and binding capacity of ACE2
and neutralizing antibodies. An AI-based algorithm
was used to verify the effectiveness of these ge-
nomics and structural biology characteristic quanti-
ties for risk prediction. This classifier could be further
used to group viral strains by their transmissibility
and affinity to neutralizing antibodies. This unique re-
source makes it possible to quickly evaluate the vari-
ation risks of key sites, and guide the research and

development of vaccines and drugs. The database is
freely accessible at www.nmdc.cn/ncovn.

INTRODUCTION

As an RNA virus, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has a relatively high mutation
rate (1) with a mean annual average evolutionary rate of
1 × 10–3 substitutions per base per year under conditions
of neutral genetic drift (2). Since the initial outbreak in
December 2019, a substantial number of SARS-CoV-2
variants have emerged. As of August 2021, a total of
2 635 714 SARS-CoV-2 genome sequences have become
available in the Global Initiative of Sharing All Influenza
Data (GISAID database), and 29 212 mutations have
accumulated over the past year and a half. However, most
mutations in SARS-CoV-2 occur at a very low frequency
and cause no significant effect on the virus (3). Only a
small number of mutations, especially those in the spike (S)
protein, can change the infectivity of the virus and hence
increase transmission or reduce the binding affinity of the S
protein receptor-binding domain (S-RBD) for neutralizing
antibodies. For instance, a point mutation in the S protein,
D614G, shifts the conformation of the S protein to-
ward an angiotensin-converting enzyme 2 (ACE2)-binding
fusion-competent state and hence enhances SARS-CoV-
2 infectivity in human lung cells (4). Research using
computational simulation has suggested that some
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mutations, including Q24T, T27D/K/W, D30E,
H34S7T/K, E35D, Q42K, L79I/W, R357K and R393K
in ACE2, and L455D/W, F456K/W, Q493K, N501T and
Y505W in S-RBD, increase the binding affinity between
ACE2 and S-RBD. Experimental evidence has shown that
these in silico simulations are highly accurate (5).

Efficient and accurate diagnosis of COVID-19 is crucial
for controlling the pandemic in early time. Reverse tran-
scription polymerase chain reaction (RT-PCR) technology
is the most widely used among the common diagnostic
methods (6). Mutations at the probe or primer sites could
have effects on the accuracy of diagnosis, such as loss of
primer efficacy. As a result, continued surveillance of ge-
nomic mutation is crucial for disease control and vaccine
and drug studies.

We here established the variations evaluation and pre-
warning system (VarEPS) and conducted a comprehensive
analysis of the effects of variants on physicochemical prop-
erties, translation efficiency, secondary structure, difficulty
in developing variations, binding capacity of ACE2 and
binding capacity of neutralizing antibodies. To our knowl-
edge, this is the most comprehensive analysis and risk evalu-
ation of SARS-CoV-2 genome variants. Instead of the clas-
sical risk evaluation by variation frequency, we followed a
new perspective on the effect of mutations on protein struc-
ture and function. Moreover, we constructed two random
forest classifiers to verify the effectiveness of these char-
acteristic quantities for accurate risk evaluation. This AI-
based classifier can be used to accurately group strains by
their transmissibility and affinity to neutralizing antibodies.

More importantly, we analyzed not only known vari-
ants but also virtual variants; as a result, by closely ob-
serving newly submitted genome sequences, we can identify
emerging dangerous variants at an early stage. This plat-
form can also yield vital information for virologists using
pseudoviruses to test vaccines and drugs. Currently, VarEPS
is the only database which provides these unique resources
on virtual variants and is thus expected to be of great inter-
est for virologists, especially those involved in vaccine and
drug development.

DATABASE INTERFACE AND FEATURES

Database interface

The web interface of VarEPS is composed of five main
sections: ‘Virus and variation’, ‘Binding ability evaluation’,
‘Primer efficacy evaluation’, ‘Statistics’ and ‘Analysis tools’
(Figure 1). The ‘Virus and variation’ section starts with
search interfaces for metadata attributes of viral sequences
and nucleotide variants. The resulting viral sequences with
associated metadata are displayed as a table, including lin-
eage, single nucleotide polymorphisms (SNP) number, and
variation information for both nucleotides and amino acids.
Each viral sequence is linked to an individual page contain-
ing all of the related mutations and primer evaluation re-
sults. A machine learning model is used to give an overall
risk level prediction for each virus. The query on nucleotide
variation returns a variant list with metadata related to the
number of variations and the associated amino acid muta-
tions. Each variation is linked to a page containing graphs
of distribution over time and by country, and listing related
viral sequences.

The ‘Binding ability evaluation’ section assesses the risk
level of each virus variant. Variants may be queried and
browsed by their location on genes, lineages and antibody
binding sites. After query by different metadata, a list con-
taining all amino acid mutations is returned. Antibody
affinity, binding stability with ACE2, risk of amino acid
substitution, and the first-seen and last-seen time are cal-
culated and displayed. Each amino acid variation is linked
to a page containing details of these values or the risk
level.

The ‘Primer efficacy evaluation’ section assesses how mu-
tations affect primer design for RT-PCR. Primer informa-
tion is obtained from the USA Centers for Disease Con-
trol and Prevention (CDC), the Chinese Center for Disease
Control and Prevention (CDC China), the World Health
Organization (WHO) and others. If mutations are present
in the 5′- and 3′- end, the primers might be of low specificity
or lose efficacy entirely.

Online data analysis pipelines

Online analysis tools are provided for users to submit
sequences for variation analysis. Sequences are aligned
against the reference genome (NC 045512.2) using
NUCmer from the MUMmer package (7). Thereafter,
a catalog of all SNPs and indels internal to the refer-
ence genome is generated. The system evaluates variants
and generates risk level results by assessing amino acid
substitution, binding affinity for ACE2 and secondary
structure change. For variants of the S-RBD, the affinity
with 15 neutralizing antibodies under development is
calculated. Nucleotide mismatches with primers or probes
are reported to warn of possible false negative results in
diagnostic detection of SARS-CoV-2 by real-time RT-PCR.
An evaluation report of the submitted virus is sent to users
via e-mail after all analyses are complete.

Statistics

A statistics page organized by ‘Lineage’, ‘Variations’ and
‘Primer’ provides an overview of statistical analysis of vari-
ants. The ‘Lineage’ page displays the distribution of differ-
ent lineages by country and through time. The ‘Variations’
page gives a set of graphs on variant distribution and risk
level of different lineages. The ‘Primer’ page lists primer
evaluation results of different lineages. Interactive interfaces
are provided to allow the user to further explore the features
of various groups.

DATA CONTENT AND ANALYSIS

We calculate the occurrence of each mutation site in
nucleotide/amino acid variants against the reference se-
quence. Currently, there are 29 212 variants observed on
nearly 30 000 nucleotides of the SARS-CoV-2 whole length
genome sequence. However, many variants are of a very
low frequency. Among the 29 212 nucleotide variants, 4672
(16.0%) sites occur <10 times and 10 920 (37.4%) sites occur
<50 times. Only 1650 (5.7%) sites occur >2600 times (with a
frequency of 0.1%) and 33 (0.1%) sites occur >24 000 times
(with a frequency of 1%) (Figure 2A). The SARS-CoV-2
mutation rate is vital to determining how quickly the trans-
missibility of a virus changes and immune evasion occurs.
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Figure 1. Features of the variations evaluation and prewarning system (VarEPS) portal. We show a global distribution of genome sequences by time frame
and geography. The risk level and frequency of characteristic variants of each lineage are listed. Users can submit a sequence for variation analysis directly
on the homepage.
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Figure 2. Statistics of nucleotide mutation numbers in SARS-CoV-2 genomes. (A) Histogram of the mutation count at all nucleotide positions. Red,
orange and green bars refer to the frequency of mutation count below 10, below 50 and above 2600, respectively. (B) Histogram of total mutation count in
one strain. The heatmap shows the distribution of total mutation count in each month. Mutation counts are accumulating over time and coordinate with
lineages.

The mean annual mutation rate is reported to be 1 × 10–3

substitutions per base per year (2), and apparently, the ob-
served mean mutation occurrence rate is consistent with the
estimated rates and is closely associated with lineage (Fig-
ure 2B).

Among amino acid variants, the most frequent variant is
D614G. The next most frequent, N501Y, is located in the
S-RBD, whereas the frequency of all other S-RBD variants
is <10% (Table 1). Still, a large number of high frequency
mutations are located outside of the S protein. Variants that
appear in viral populations with a high frequency or that are
located in domains with critical effects on viral structure or
function should be given our utmost attention.

SARS-CoV-2 S-RBD is the molecular target for most
SARS-CoV-2 vaccines and antibodies currently in use or
under development. We compared key amino acid muta-
tions (the top 20 most frequent variants) in the S-RBD for
their effects on S protein affinity with neutralizing antibod-
ies and ACE2 (Figure 3). The simulated results showed that
the most frequent variants reduced the binding affinity of
the S protein for neutralizing antibodies. This result should
be followed up with in vivo experiments to test the simu-
lation results and examine the effects. Other variants (e.g.
L452R and K417T) exhibited increased affinity with ACE2,
indicating enhanced infectivity of these variants. Combined
with the distributions with time span, it is critical to pay
close attention to the risk presented by emerging variants
that rapidly increase in frequency.

Apart from the existing mutations, this platform allows
evaluation of new mutations as they appear in the future.
Evaluating the risk level of virtual mutations could facil-
itate drug and/or vaccine development. From the simula-
tion results (Figure 4), we estimated that antibody affinity

will be reduced as a result of most of these virtual muta-
tions. Binding stability to ACE2 will also be affected by
mutations in some key positions (e.g. 345, 413, 520 and
522).

L452R is an important mutation that has commonly
appeared in the recently prevalent Alpha, Delta, Epsilon,
Iota and Kappa strains, and it is reported that the variants
can reduce sensitivity to neutralizing antibodies (8). This
mutation may increase affinity for ACE2 receptors and ac-
cordingly increase infectivity (9). Consistent with these ex-
perimental results, our prewarning system results indicated
that the variation may be associated with increased infectiv-
ity and decreased affinity with some neutralizing antibod-
ies. Additionally, we predicted all possible variants at this
site; the data revealed that the risk level for some variants
was even higher than the currently widespread L452R, in-
cluding L452Q, which is one of the characteristic variants
of Lambda strains. Others were virtual variants that have
not yet, such as L452A, L452N and L452D. Emerging vari-
ants should be closely monitored for such mutations with
high predicted risk levels.

Finally, we list variants that could affect the performance
of the primers recommended by WHO, CDC and CDC
China. These data are organized by number of mismatched
nucleotides for different lineages (Figure 5). Most of these
mismatches occur at the first nucleotide of the 3′ end for
Alpha strains. However, the number of affected viruses is
very low. Considering the high percentage of SNPs of the
SARS-CoV-2 genome, it is not practical to avoid all SNPs
on every primer/probe binding site. Although false negative
results may occur, many molecular tests tolerate a few single
nucleotide mismatches, which have low or even no impact at
all on their performance.
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Table 1. Variants of SARS-CoV-2 genome and most common variants located on S-RBD.

Whole genome high frequency variants RBD high frequency variants

NO Variants Counts Frequency Variants Counts Frequency

1 S:D614G 2467291 95.85% S:N501Y 1200001 46.62%
2 ORF1ab:P314L 2437459 94.69% S:L452R 269897 10.49%
3 N:R203K 1434386 55.72% S:T478K 206979 8.04%
4 N:G204R 1432232 55.64% S:E484K 151017 5.87%
5 S:N501Y 1200001 46.62% S:S477N 68895 2.68%
6 S:P681H 1178130 45.77% S:K417T 57507 2.23%
7 ORF1ab:T1001I 1125623 43.73% S:K417N 33585 1.30%
8 S:D1118H 1124839 43.70% S:N439K 33447 1.30%
9 S:A570D 1122643 43.61% S:S494P 12880 0.50%
10 S:T716I 1122555 43.61% S:F490S 7757 0.30%
11 ORF8:Y73C 1120251 43.52% S:E484Q 7179 0.28%
12 ORF1ab:A1708D 1118801 43.46% S:A520S 5443 0.21%
13 N:S235F 1118673 43.46% S:N440K 4610 0.18%
14 S:S982A 1116061 43.36% S:A522S 4436 0.17%
15 ORF8:R52I 1113847 43.27% S:N501T 4194 0.16%
16 N:D3L 1112519 43.22% S:L452Q 3704 0.14%
17 ORF1ab:I2230T 1099897 42.73% S:V367F 2499 0.10%
18 ORF3a:Q57H 456450 17.73% S:R346K 2357 0.09%
19 ORF1ab:E265I 365975 14.22% S:P384L 2253 0.09%
20 S:L452R 269897 10.49% S:R346S 2188 0.09%

METHODS

Data sources and data processing

We extracted 2 635 714 SARS-CoV-2 sequences from the
EpiCov™ section of the GISAID portal (10), and 956 676
SARS-CoV-2 sequences from the US National Center for
Biotechnology Information (11) and NMDC (www.nmdc.
cn). After low quality and duplicated sequences were re-
moved, the final filtered raw sequence data set comprised
2 574 081 sequences. Each sequence was mapped against
the reference genome from Wuhan, China (NCBI accession
No. NC 045512.2) to identify mutations and deletions in
the SARS-CoV-2 genome. We used the same site-numbering
scheme as the reference genome to generate the lists of nu-
cleotide variants and amino acids variants. Each mutation
was then examined according to the following aspects (Fig-
ure 6):

Changes in free energy of binding with neutralizing antibodies
caused by single amino acid mutation: Saambe-3D (12) was
used to predict changes in free energy of binding caused
by single amino acid mutation and disruption of protein–
protein interaction (PPI). Mutation types included desta-
bilizing mutation (��G > 0), stable mutation (−1.5 <
��G < 0), highly destabilizing mutation (��G > 1.5)
and highly stable mutation (��G < −1.5). Subsequently,
we predicted the affinity with 15 neutralizing antibod-
ies (13–27), some of which have been approved as thera-
peutic antibodies for COVID-19 (casirivimab [28], imde-
vimab [28], bamlanivimab [29], etesevimab [29] and sotro-
vimab [30]). Finally, we assigned an overall ranked risk
level from 1 to 3 based on the average ��G values for all
15 antibodies.

Changes in free energy of binding with S protein and ACE2
induced by single amino acid mutation: Saambe-3D was uti-
lized to predict changes in free energy of binding caused
by single amino acid mutation and whether that muta-
tion could disrupt the PPI. Mutation types included desta-

bilizing mutation (��G > 0), stable mutation (−1.5 <
��G < 0), highly destabilizing mutation (��G > 1.5)
and highly stable mutation (��G < −1.5). We assigned
risk level 2 to highly stable mutations (��G < −1.5) and
risk level 1 to stable mutation (−1.5 < ��G < 0).

Difficulty of occurrence of nucleotide diversity: This was rep-
resented by a ‘nonsynonymous density’ value reflecting
the difficulty of the occurrence of nucleotide diversity and
was evaluated by calculating the density of synonymous
mutations and missense mutations under a sliding win-
dow. High-frequency variants that occurred before July
2021 were used as major alleles for statistical analysis. The
density reflects the difficulty of occurrence of a mutation
in a certain segment. High frequency densities indicate
rapidly accumulating mutations in the region and low fre-
quency densities may indicate a SNP desert (31), i.e. re-
gions where potential selection of elimination occurs, im-
plying that the virus has long-term and stable adaptive
changes in this region.

Risk of replacement of amino acid: PAM (32) and BLOSUM
(33) matrices were employed to evaluate the risk of amino
acid replacement. If replacement of two amino acids fre-
quently occurred, it indicated that such amino acid re-
placements are stable. The replacement was assigned a low
risk level and vice versa.

Effects of mutations on biological function of proteins: ‘Im-
pact on protein function’ was calculated using PROVEAN
(34) to predict the effects of amino acid variants on the bi-
ological functions of proteins. The threshold for destruc-
tiveness and neutrality was set at −2.5.

Effect of variation on secondary structure: Bepipred2.0 (35)
was used for the ‘secondary structure prediction’ of the
mutated protein and for comparison with the published
X-ray diffraction data for the protein.

Effects of variation on potential continuous and discontinuous
epitopes: ElliPro (36) was used to predict ‘changes of anti-
gen continuous epitopes’ and ‘changes of antigen discon-
tinuous epitopes’ before and after the variation occurred.

http://www.nmdc.cn
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Figure 3. Binding stability to ACE2 and antibody affinity risk level for key mutations on S-RBD. Risk levels of reduced antibody affinity for 15 antibodies
were calculated. The risk levels of antibody affinity and increased binding stability to ACE2 are ranked 0 to 2. Frequency of these variants over time are
provided.

Effect of variation on effectiveness of detection reagents: For
PCR ‘Primer efficacy evaluation’, the location and the fre-
quency of the variant were considered comprehensively. If
the variant occurred in the last three bases of the 3′ end,
an early warning score will be given. In addition, the num-
ber of mutations was also assessed, and the corresponding
score was given based on the number of variants at the last
three bases in the 3′ end. The warning rating for RT-PCR
primers was based on these scores.

Machine learning model for risk evaluation

We performed a comprehensive analysis of viral strain
risk level by evaluating the difficulty of occurrence of nu-

cleotide variants, possibility of amino acid replacement,
change in protein secondary structure, and changes in
ACE2 and neutralizing antibody free energy of binding
caused by individual amino acid mutations. Each strain was
given a series of characteristic quantities according to ev-
ery mutation it carries. We constructed two random for-
est classifiers to verify the effectiveness of these characteris-
tic quantities and used these parameters to group strains
by their transmissibility and affinity with neutralizing
antibodies.

The strains belong to eight WHO VOI/VOC were
grouped into six groups according to two grouping modes:
the normal transmissibility group, the mildly increased
transmission group, the severely increased transmission
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Figure 4. Binding stability to ACE2 and antibody affinity risk level for key known mutations and virtual mutations on S-RBD. A red dot indicates is
increased binding stability to ACE2. Overall risk levels of reduced antibody affinity for 15 antibodies are ranked 0 to 3. Both known and virtual mutations
were evaluated.

group, the normal affinity group, the mildly decreased affin-
ity group and the severely decreased affinity group. Up
to 50 000 complete genomic sequences were randomly ex-
tracted from the GISAID database for each of the eight
VOI/VOC strains, and approximately 200 000 sequences
were used to construct the model. All variant sites in the
whole genome sequence of a strain were identified and pa-
rameters including the difficulty of occurrence of nucleotide
variants, the possibility of amino acid replacement, the ef-
fect of variants on protein secondary structure, and changes
in ACE2 and neutralizing antibody binding free energy
caused by individual amino acid mutations were calculated
for each variant site, which were then used to assign values
to a strain sequence and construct the dataset. The Boruta
algorithm was used to filter the feature measurements and
the random forest algorithm was used to construct the clas-
sification model. To assess the reliability and stability of
the model, 1000 random iterations were performed (70%
were randomly selected as the training set and the remain-
ing 30% as the testing set in each iteration). The predic-
tion performance of the model was measured by area un-
der the curve, accuracy, precision and sensitivity. Details of

Machine Learning Model were provided in supplementary
material (Supplementary Tables S1–S4 and Figures S1–S3).

CONCLUSION AND FUTURE DIRECTIONS

As of 5 August 2021, the number of confirmed COVID-
19 patients worldwide reached 200 million with >4 mil-
lion deaths. Over 70 vaccines are currently under develop-
ment and 4 billion vaccine doses have already been admin-
istered (https://coronavirus.jhu.edu/map.html). Rapid diag-
nosis and vaccination are still the most effective methods for
controlling the pandemic. As a result, it remains crucial to
understand whether SARS-CoV-2 variants impact the affin-
ity of current neutralizing antibodies under development or
the performance of current diagnostic methods. It is also
critical to pay close attention to variants that may escape
from protective immune responses induced by population-
level immunity. The VarEPS system presented here allows
close monitoring and evaluation of the current global sta-
tus of genetic variations of SARS-CoV-2.

VarEPS enables the user to focus on the updated global
status of SARS-CoV-2 genome sequences and variation

https://coronavirus.jhu.edu/map.html
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Figure 5. Nucleotide mismatch statistics for primers. Nucleotide mismatches were compared for the 3′ end of primers. The number of strains for each
lineage were calculated.

Figure 6. Schematic representation of VarEPS for data processing and online analysis service. SARS-CoV-2 genome sequences were integrated to perform
metadata curation and quality control procedures. Sequence data were mapped to the reference genome for variation annotation. Each annotated variant
was used to calculate effects on translation efficiency, secondary structure, binding capacity of ACE2 and neutralizing antibodies and efficacy of primers.
Our web portal provides multiple query selections to display results on both known and virtual mutations. The system also provides online analysis service
for custom submitted sequences.

analysis. It provides different levels of variant evaluation
for translation efficiency, secondary structure, binding ca-
pacity of ACE2, binding capacity of neutralizing antibod-
ies and efficacy of RT-PCR primers. Combined with the on-
line analysis tools, the system can serve as both a navigation
and recommendation tool for global virus variant surveil-
lance. Moreover, the system can aid in designing robust vac-
cines and neutralizing monoclonal antibodies in the future.
Based on the risk level evaluation of virtual variants, it pro-

vides key information for the design of prophylactic anti-
bodies and vaccines that target variations with higher risk
levels.

We will continuously update the system with new data
on various resources of SARS-CoV-2 genome sequences.
The machine learning model presented here is the first to
successfully evaluate binding affinity and to group strains
based on this attribute. The model will be further devel-
oped for broader evaluations. As more in vitro and in vivo
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studies are conducted, the in silico models will be iteratively
optimized, and the simulation and prediction features will
improve in accuracy with solid support from experimental
results.

DATA AVAILABILITY

There are no access restrictions for academic use of the plat-
form. Access to VarEPS is free at www.nmdc.cn/ncovn.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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