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Abstract: Increasing scientific evidence demonstrated the deregulation of human endogenous
retroviruses (HERVs) expression in complex diseases, such as cancer, autoimmune, psychiatric,
and neurological disorders. The dynamic regulation of HERV activity and their responsiveness to
a variety of environmental stimuli designate HERVs as genetic elements that could be modulated
by drugs. Methylphenidate (MPH) is widely used in the treatment of attention deficit hyperactivity
disorder (ADHD). The aim of this study was to evaluate the time course of human endogenous
retrovirus H (HERV-H) expression in peripheral blood mononuclear cells (PBMCs) with respect
to clinical response in ADHD patients undergoing MPH therapy. A fast reduction in HERV-H
activity in ADHD patients undergoing MPH therapy was observed in parallel with an improvement
in clinical symptoms. Moreover, when PBMCs from drug-naïve patients were cultured in vitro,
HERV-H expression increased, while no changes in the expression levels were found in ADHD
patients undergoing therapy. This suggests that MPH could affect the HERV-H activity and supports
the hypothesis that high expression levels of HERV-H could be considered a distinctive trait of
ADHD patients.

Keywords: HERVs; HERV-H; ADHD; methylphenidate; neurodevelopmental disorders;
environmental stimuli

1. Introduction

Endogenous retroviruses are genetic elements present in the genomes of all vertebrates, including
humans [1,2]. They are residual of ancestral infections of germ cells by exogenous viruses, which have
been integrated as proviruses into the host genome and transmitted to subsequent generations in a
Mendelian fashion [3–5].

Int. J. Mol. Sci. 2018, 19, 3286; doi:10.3390/ijms19113286 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-6058-1092
https://orcid.org/0000-0003-4351-5429
http://www.mdpi.com/1422-0067/19/11/3286?type=check_update&version=1
http://dx.doi.org/10.3390/ijms19113286
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2018, 19, 3286 2 of 12

During evolution, human endogenous retroviruses (HERVs) amplified and spread throughout
the entire genome by repeated events of retrotransposition and/or reinfection [6]. Their integration
into the genome alters the structure and/or the function of neighboring genes [7]. Currently, about
8% of the human genome consists of endogenous retroviral sequences [8]. Many cellular mechanisms
have evolved to restrict HERVs’ intracellular ability to replicate and to express mRNAs and proteins,
including deletion and recombination events, epigenetic mechanisms such as DNA methylation and
chromatin remodeling, post-transcriptional processing, and RNA interference [9,10]. However, at least
some members of the HERV groups are still transcriptionally active in a tissue-specific manner [11,12],
maintaining open reading frames (ORFs) that potentially code for viral proteins [13].

HERVs have been mainly taken into account for their role in the molecular evolution of
genomes [14]. However, in the last decades, several studies have underlined their involvement
in the etiopathogenesis of complex diseases, such as cancer [15,16], autoimmune diseases [17], type 1
diabetes [18], and neurological and psychiatric disorders [19].

Peculiarly, numerous endogenous/exogenous factors lead to the activation of HERVs,
including hormones [20], cytokines [21], cytotoxic chemicals/drugs [22,23], and interactions with
microorganisms [24,25].

In addition, HERV expression can be modified by different types of drugs, such as DNA
methyltransferase and histone deacetylase inhibitors [26,27], antiretroviral drugs [28–30], and
neuroleptics and/or antidepressants (valproic acid, haloperidol, risperidone, clozapine) [22].
In agreement, in an earlier study using a murine model of autism we showed that valproic acid
activates endogenous retroviruses expression in blood and brain tissue [31].

Among several HERV groups, copies of HERV-H have been found distributed throughout the
entire human genome [32], with the majority of HERV-H elements showing large deletions in the pol
region, lack of the entire env region, and rare full-length copies with intact ORFs [33]. The presence
of HERV-H insertional polymorphisms in human genome supports the idea that this group is still
active [34], contributing to pluripotency in human embryonic stem cells harboring binding sites of
pluripotency transcription factors, such as NANOG, OCT4, and SOX2 [35]. Expression of several HERV
groups, including HERV-H, has also been demonstrated in different types of cancer [36]. In patients
with active multiple sclerosis, antibody reactivity towards HERV-H env and high expression of HERV-H
env epitopes on B cells and monocytes have been found [37]. Among neurodevelopmental disorders,
an increased transcriptional activity of HERV-H sequences has been found in patients with autism
spectrum disorders (ASD) [38,39] and attention deficit hyperactivity disorder (ADHD) [40].

With an estimated prevalence of 5% in children and 2.5% in adults in the United States, ADHD
is one of the most common neurodevelopmental disorders, which leads to persistent inattention,
hyperactivity, and impulsivity [41]. Among a wide variety of pharmacological options available in
ADHD treatment, the stimulant drug methylphenidate (MPH) is the most frequently prescribed in the
treatment of children. It is believed that MPH increases the concentration of catecholamines, including
dopamine and norepinephrine, in the synaptic cleft by blocking their reuptake [42,43]. MPH is thought
to predominantly affect the dopaminergic system, and its action consists of blocking the reverse
dopamine transporter (DAT) [44]. Magnetic resonance studies and/or positron emission tomography
and genetic studies using molecular techniques have revealed that the ADHD neurobiological
substratum consists of a dopaminergic system dysfunction and an alteration of cerebral networks
involving the frontostriatal system [45–48]. Moreover, it has been shown that the attentional processes
and the ability to inhibit impulsive responses are mediated by catecholaminergic neurotransmitters,
such as dopamine and noradrenaline [49,50].

Several studies have shown that MPH is able to improve the core symptoms of ADHD [51,52],
and the efficacy of pharmacological treatment has been demonstrated by improvements in a variety of
social settings [53]. In our previous work, we described a high transcriptional activity of HERV-H in
peripheral blood mononuclear cells (PBMCs) from 30 drug-naïve ADHD children compared to healthy
controls, that correlated positively with the core symptoms of the disorder, suggesting HERV-H as a
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possible new molecular signature of the disease [40]. More recently, we demonstrated a significant
reduction in HERV-H expression associated with improvement in ADHD symptoms in a 16-year-old
ADHD patient after six months of MPH therapy [54]. On this basis, the aim of this study was to evaluate
the time course of HERV-H expression with respect to clinical response in ADHD patients undergoing
MPH therapy. For this purpose, HERV-H expression was analyzed in fresh- and in-vitro-stimulated
PBMCs from drug-naïve ADHD patients after 1, 8, and 24 weeks of therapy.

2. Results

In order to evaluate the time course of HERV-H expression during MPH therapy, the transcriptional
activity was evaluated in fresh PBMCs from drug-naïve ADHD patients (grey box plot in Figure 1)
after 1, 8, and 24 weeks of MPH therapy (green box plots).
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Figure 1. HERV-H expression in peripheral blood mononuclear cells (PBMCs) from attention deficit
hyperactivity disorder (ADHD) patients at different times of methylphenidate (MPH) therapy. HERV-H
relative expression was evaluated in fresh PBMCs from seven drug-naïve ADHD patients (grey box
plot) and after 1, 8, and 24 weeks of MPH therapy (green box plots) and compared to that obtained in
fresh PBMCs from 12 healthy controls (HC), age- and sex-matched (white box plot).

The transcriptional levels evaluated by real-time RT-PCR were compared to those in fresh PBMCs
from age- and sex-matched healthy controls (HC) (white box plot). Before therapy, relative HERV-H
expression was significantly higher in PBMCs from ADHD patients compared to HC (p < 0.001).
As early as the first week of treatment, HERV-H relative expression significantly decreased (p = 0.012),
and a further reduction was observed after eight weeks (p = 0.001) and 24 weeks (p = 0.001) of therapy.
Notably, after 24 weeks of MPH therapy, HERV-H levels were comparable to those found in PBMCs
from HC (p = 0.659).

The intensity and frequency of the core symptoms of ADHD were assessed with the long version
of the Conners’ Parents Rating Scale-Revised questionnaire (CPRS-R). The CPRS-R was conducted
at eight and 24 weeks after MPH treatment as any clinical response cannot be detected before that
time [55,56]. Four clinical variables were considered: the Conners’ parent oppositional (CP-O), the
Conners’ parent inattention (CP-I), the parent hyperactivity/impulsivity (CP-H), and the Conners’
parent ADHD-Index (CP-AI).

In Figure 2, panel A represents the mean values ± standard deviations (SD) of the scores recorded
before and during the MPH therapy.
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Figure 2. Clinical variables from Conners’ Parents Rating Scale-Revised (CPRS-R) and human
endogenous retrovirus H (HERV-H) expression. (A) Mean values ± standard deviations (SD) of
the four clinical variables (Conners’ parent oppositional, Conners’ parent inattention, Conners’ parent
hyperactivity/impulsivity, and Conners’ parent ADHD-Index) in seven ADHD patients before the
beginning of MPH therapy and after eight and 24 weeks. The dashed line represents the cut-off score.
Single asterisk (*) indicates p values < 0.05 and double (**) indicates p values < 0.001. (B) HERV-H
relative expression evaluated by real-time RT-PCR analysis plotted against the clinical variables.
The patients are represented according to the time points by different colors: black for patients at the
beginning of therapy, grey for patients analyzed after eight weeks of therapy, and white for patients
after 24 weeks of therapy. Rho and p values for Spearman correlation analysis are shown.

A general trend of reduction for all the scores was observed in response to therapy. In particular,
when compared to the scores values before therapy, a statistically significant decrease in the CP-I
(p = 0.028), CP-H (p = 0.044), and CP-AI (p = 0.006) scores was observed after eight weeks of therapy.
After 24 weeks of therapy, a significant decrease in the CP-I (p = 0.001), CP-H (p = 0.001), CP-O
(p = 0.002) and a highly significant decrease in CP-AI (p < 0.001) was achieved.

As the decreasing trend observed in Conners’ scores (Figure 2, panel A) paralleled with HERV-H
expression during therapy (Figure 1), to assess this association, we performed a Spearman correlation
analysis between the expression of HERV-H and the values for the different clinical scores. The statistical
analysis demonstrated a positive correlation between HERV-H relative expression and all the scores
values (Figure 2, panel B): in particular CP-O (rho 0.543, p = 0.013), CP-I (rho 0.648, p = 0.002), CP-H
(0.676, p = 0.001) and CP-AI (rho 0.751, p < 0.001), in ADHD patients before and during treatment.

Finally, in order to consider cell responsiveness to the in vitro stimulation with IL-2 and PHA,
HERV-H transcriptional activity was assessed in cultured PBMCs from ADHD patients. To this
purpose, HERV-H relative expression was evaluated by real-time RT-PCR in fresh PBMCs (T0) and
after 72 h of culture in absence (not stimulated, NS) or in presence of IL-2 and PHA (stimulated, ST)
before and during MPH therapy. The HERV-H relative expression was also evaluated in PBMCs from
HC maintained in the same culture conditions. In PBMCs from drug-naïve ADHD patients, HERV-H
expression was significantly higher after 72 h of culture in both the conditions, i.e., in presence or not
of IL-2/PHA, with respect to fresh PBMCs (p ≤ 0.004) (Figure 3, grey box plots). Conversely, when
PBMCs from ADHD patients in therapy were cultured in vitro, no differences in HERV-H expression
were found, either in presence or not of IL-2/PHA, at all the observation times (1, 8, and 24 weeks)
after the beginning of therapy (Figure 3, green box plots). Likewise, the PBMCs from HC did not show
any changes in HERV-H expression when maintained in culture (Figure 3, white box plots).
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Figure 3. HERV-H expression in PBMCs from ADHD patients after in vitro culture. The relative
expression of HERV-H was evaluated in fresh PBMCs (T0) and after 72 h in culture in absence (not
stimulated, NS) or in presence of IL-2 and PHA (stimulated, ST). The levels were measured in seven
drug-naïve ADHD patients (grey box plots) and during MPH therapy (green box plots) at 1, 8, and
24 weeks. The results were compared to those obtained in PBMCs from 12 healthy controls (HC) (white
box plots), maintained in the same culture conditions (* weeks of therapy).

3. Discussion

Scientific reports support the involvement of HERV genetic elements in many complex human
diseases, including neurological and psychiatric disorders [19]. Evidence of an association between
HERV expression and neurodevelopmental diseases had also emerged from our previous published
studies in which we demonstrated an increase in HERV-H transcriptional activity in PBMCs from
ASD [38,39] and drug-naïve ADHD patients [40] compared to healthy controls, suggesting that HERVs
could play a role in the etiology of these complex diseases. Moreover, HERV-H transcriptional activity
correlated with inattention and hyperactivity symptoms in ADHD patients [40]. Interestingly, we
had also described the reduction in HERV-H expression and the significant improvement in ADHD
symptoms in PBMCs from an ADHD patient after 24 weeks of MPH treatment [54]. In agreement
with our previous findings, the present study showed that the HERV-H expression was higher in
drug-naïve ADHD patients compared to HC and was significantly reduced after 24 weeks of MPH
treatment. These data further support our hypothesis that the transcriptional activation of this specific
retroviral element might represent a molecular signature of the disorder.

Herein, we analyzed the time-course of HERV-H transcriptional activity in PBMCs from ADHD
patients after 1, 8, and 24 weeks of MPH therapy, demonstrating that the expression of HERV-H
significantly decreased after only one week. Interestingly, at this time of observation, no significant
improvement of clinical symptoms by MPH treatment can be achieved [55,56]. Subsequent to the fast
downregulation of HERV-H expression, a further decreasing trend was confirmed throughout the
24 weeks of therapy. Notably, at the endpoint of observation, HERV-H expression in treated ADHD
patients reached levels comparable to those found in HC. The improvement of the clinical signs, as
evidenced by the reduction in the CPRS-R scores during MPH treatment, proceeded in parallel with
the decrease in HERV-H expression, and the statistical analysis demonstrated the correlation between
the CPRS-R scores and HERV-H expression levels. All these data support the hypothesis that the
deregulation of HERV-H expression is closely associated with the disorder.

Treatment with neuroleptics and/or antidepressants induces epigenetic modifications influencing
gene expression [22,57,58]. By exploring the mechanism of action of MPH, the modulation of the
expression of several genes has been demonstrated in animal models as well as in ADHD patients. In the
striatum of MPH-treated rats, more than 700 genes were found upregulated [59]. These genes are involved
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in migration of immature neural/glial cells and/or growth of novel axons, active axonal myelination,
upregulation of mature processes, and more enduring enhancement of neurobehavioral plasticity [59].
Recently, long non-coding RNAs (lncRNAs) signature in the prefrontal cortex of MPH-exposed rats was
identified [60] and among the lncRNAs modulated by MPH, the MRAK081997 positively correlated
with the dihydrofolatereductase gene, which may be involved in axon regeneration in rodents through
DNA methylation [61]. Finally, a microarray analysis of patient-derived lymphoblastoid cells revealed
that several genes were regulated by MPH treatment [62].

The responsiveness to environmental triggers designates HERVs as genetic elements that could be
modulated by MPH treatment. Our thought is supported by evidence that HERV activity is modulated
in response to a variety of environmental stimuli, including epigenetic drugs [63]. On the other hand,
the HERV sequences spread in the genome may regulate the expression of neighboring genes [7,64].
Particularly, HERV-H, acting as promoter enhancer of nearby genes and functioning as lncRNAs,
plays an important role in the pluripotency of human cells [35], and the aberrant HERV-H expression
in embryonic stem cells and induced pluripotent stem cells determines the differentiation-defective
phenotype in neural lineage [65–67]. We recently demonstrated in a valproic acid-induced mouse
model of ASD that high expression of different murine ERVs and inflammatory mediators was related
to autistic-like traits. Notably, we showed that the high levels of ERVs expression identified in
brain were also revealed in blood tissue from the same mice, supporting the view that altered ERVs
expression in the blood could be a reliable biomarker for brain atypical development [31].

Finally, herein we reported an increase in HERV-H expression in response to culture or stimulation
in vitro (with IL-2 and PHA) of PBMCs from drug-naïve ADHD patients, which was in line with our
previous findings in ASD patients [38]. Intriguingly, this intrinsic predisposition to express HERV-H,
observed in PBMCs of drug-naïve patients, was lost early after MPH therapy, suggesting that the drug
could directly or indirectly influence HERV-H activity. In addition, no changes in expression levels
of HERV-H were observed in PBMCs from HC after culture or stimulation in vitro, supporting the
hypothesis that the predisposition to express HERV-H could be considered as a distinctive trait of
drug-naïve ADHD patients.

Although the present study provides preliminary data, we have highlighted for the first time
the fast decrease in HERV-H activity after only one week of MPH treatment and how the further
activity reduction runs in parallel with improvement in symptoms in ADHD patients undergoing
therapy. MPH is the most frequently used drug in ADHD treatment, showing several favorable effects
on symptoms; however, its use is associated with serious and nonserious adverse events, both in
children and adolescents, with about 30% of patients not responding to the therapy [68–70]. In this
context, it may be important to identify patients who are most susceptible to adverse events or are
nonresponders in order to select patients to whom MPH treatment could exert major benefits. Future
well-designed prospective studies will greatly help to candidate HERV-H as a predictive marker of the
response to MPH therapy.

4. Materials and Methods

4.1. Participants

The study included 7 drug-naive ADHD patients, all males and aged between 7 and 17 years
(median age 13) with IQ > 80, recruited among those attending the Child Neurology and Psychiatry
Unit of “Tor Vergata” University Hospital of Rome (Table 1).

Table 1. Demographic information of individuals included in the study.

ADHD Patients (n = 7) Healthy Controls (n = 12) p Value

Gender males males 1
Median age (range) years 13 (7–17) 11 (7–17) 0.249
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The patients were compared to 12 healthy controls (HC) of the same sex, aged between 7 and
17 years (median age 11), attending the outpatient facilities of the same hospital for routine control
visits. None of them had a history of neurological or psychiatric disorders, learning disability, or
infectious diseases.

All participants were of Caucasian origin without significant economic, social, and cultural differences.
At the time of onset of the study, no participants were taking medication known to affect the

central nervous system.
The study was carried out following the rules of the Declaration of Helsinki of 1975 (revised

in 2008); the University Hospital of “Tor Vergata” Ethics Committee approved the study, and all
examinations were performed after receiving written informed consent of the parents.

4.2. Clinical Assessment

The diagnosis of ADHD was based on clinical assessment, observations of children, and interviews
with parents and children, which were carried out by an experienced child psychiatrist. To make
the diagnosis of ADHD, the long version of the Conners’ Parents Rating Scale-Revised (CPRS-R)
was used, including four clinical variables: the Conners’ parent oppositional (CP-O), the Conners’
parent inattention (CP-I), the Conner’ parent hyperactivity/impulsivity (CP-H), and the Conners’
parent ADHD-Index (CP-AI) [71]. The CPRS-R was also conducted after eight and 24 weeks of MPH
treatment, to evaluate the clinical response. The interview with the Schedule for Affective Disorders
and Schizophrenia for School-Age Children—Present and Lifetime Version (K-SADS-PL) was used to
exclude other psychiatric comorbidities in the ADHD group [72].

4.3. Pharmacological Intervention

The planned treating schedule required the administration of MPH at the dose of 0.3 mg/kg/die
for 1 week to subsequently reach the entire dose (0.5 ÷ 0.8 mg/kg/die). The immediate release
formulation was used during the MPH titration phase. Once the absence of adverse effects was tested,
the patients were treated with modified-release MPH because it allows once-daily dosing and therefore
guarantees better compliance with the drug’s intake.

4.4. Samples Preparation and RT-PCR Analysis

PBMCs were separated by density gradient centrifugation (Lympholyte-H, Merck Darmstadt,
Germany) from both ADHD patients and healthy controls. PBMCs were collected immediately
after separation (fresh PBMCs) or cultured in RPMI 1640 medium (Merck, Darmstadt, Germany)
supplemented with 12% fetal bovine serum (Life Technologies, Carlsbad, CA, USA), 2 mM glutamine
(Merck, Darmstadt, Germany), 50 U/mL penicillin, 50 U/mL streptomycin (Merck, Darmstadt,
Germany) at 37 ◦C under 5% CO2, without any stimulation (condition termed “not stimulated”, NS) or
in presence of human recombinant interleukin-2 (IL-2), 20 U/mL (Chiron corporation, Emeryville, CA,
USA) and T-lymphocyte-specific mitogen phytohemagglutinin (PHA), 2 µg/mL (Merck, Darmstadt,
Germany) (condition called “stimulated”, ST).

HERV-H activity was evaluated both in fresh and cultured PBMCs of drug-naïve patients and
after 1, 8, and 24 weeks of MPH therapy. The expression levels of the env sequence from HERV-H
were quantitatively assessed by real-time RT-PCR, as previously described [38]. Briefly, 250 ng
of DNase-treated RNA from PBMCs of ADHD patients and HC subjects were reverse-transcribed
and amplified using primers specific for HERV-H and the housekeeping gene glucoronidase beta
(GUSB) using SYBR Green chemistry. Each experiment was completed with a melting curve
analysis to confirm the specificity of amplification and the relative expression was calculated as
2−[∆Ct(sample) − ∆Ct(calibrator)], where ∆ Ct(sample) = [Ct(HERV-H env) − Ct(GUSB)],and ∆ Ct(calibrator)
was the mean of ∆CT of data obtained from fresh PBMCs of HC individuals. Real-time RT-PCR results
were represented by box plots.
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4.5. Statistical Analysis

The Mann–Whitney test was used to compare HERV-H relative expression between ADHD and
HC groups, within ADHD patients at different times of therapy, and in all the conditions analyzed.
The ANOVA analysis of variance and post-hoc Bonferroni tests were used to determine changes
in Conners’ parent scores (CP-O, CP-I, CP-H, and CP-AI) during the treatment. To determine any
correlation between HERV-H relative expression and core symptoms (or scores value), the Spearman’s
rho correlation coefficient was calculated. Statistical analyses were carried out using Statistical Package
for the Social Sciences (SPSS) software version 23.0 (SPSS Inc., Chicago, IL, USA). Statistical significant
comparisons were considered when p < 0.050.

5. Conclusions

Growing evidence supports the role of HERVs in the onset and/or progression of several complex
diseases, such as cancer, autoimmunity, neurological, and psychiatric disorders. Spatial and temporal
fine-tuning mechanisms regulate HERV expression, and numerous endogenous/exogenous factors
influence their activity, as the main common feature of HERVs is the responsiveness to environmental
stimuli. Several drugs seem to affect HERV expression, candidating HERVs as predictive markers for
the response to therapy, especially for those disorders where none of the available clinical parameters
can discriminate a non-response as a priori or an early response after the beginning of therapy.
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