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ABSTRACT We reported the complete genome sequence of a member of the patho-
genic Curtobacterium genus. The sample includes a circular 3,955-kb chromosome, a 164-
kb megaplasmid and a 42-kb plasmid. This strain was isolated from surface-sterilized alfalfa
seeds.

The genus Curtobacterium is known for its pathogenic members that cause soft rot
of various plant species, e.g., poinsettia, sugar beet, grains, and dry beans (1–3).

However, many other members are important decomposers and plant mutualists (3–
5). Despite the many pathogenic isolates of Curtobacterium, a considerable number are
plant growth-promoting bacteria (PGPB) or show potential for the bioremediation of
metals (5, 6). Curtobacterium sp. strain TC1 is the latest addition to this genus of under-
studied but ecologically important organisms.

Strain TC1 was isolated from alfalfa (Medicago sativa L. var. Guardsman II registra-
tion number CV-203, PI 639220) seeds harvested in 2012 and stored at 4°C. Seed
batches were washed three times with sterile water, surface sterilized with 3% hydro-
gen peroxide, and rinsed three times with sterile water. The seeds were then incubated
in water for 24 h at 30°C in the dark. Streaking 10 mL of the liquid onto plates contain-
ing 1.5% agar, 0.5% tryptone, 0.3% yeast extract, and 0.087% CaCl2 � 2H2O (TYC)
yielded single Curtobacterium sp. TC1 colonies.

Genomic DNA for both sequencing technologies was isolated from a Curtobacterium
sp. TC1 culture grown at 30°C in TYC broth using a phenol-chloroform extraction protocol
(7). Illumina MiSeq sequencing with Swift Biosciences library prep kit was first used and
generated 4,030,212 paired-end reads. Reads were quality filtered and trimmed using
BBduk in Geneious Prime 2021.2.2. Initial assembly of paired reads was performed de novo
with the Geneious assembler on medium-low sensitivity/fast. The N50 was 43,861, and the
average coverage was about 120�.

Oxford Nanopore sequencing utilized a 9.4.1 minION flow cell and SQK-LSK109 liga-
tion sequencing kit. A total of 537,904,841 bp was generated across 20,000 reads.
Guppy 4.4.1 was used for base calling, and adaptors were trimmed with Porechop
0.2.4. The mean read length was 26,845 and the read length N50 was 75,214. Nanopore
data were assembled using Flye in Geneious and high-quality Illumina reads were used
in Geneious to correct Nanopore sequencing errors. This combined assembly gener-
ated a circular chromosome of 3,954,930 bp with 70.7% GC content and two circular
plasmids; 163,762 bp with 65.6% GC content named pTCL, and 41,985 bp with 67.8%
GC content named pTCS. Annotation was performed by the NCBI Prokaryotic Genome
Annotation Pipeline 5.2 (8–10). The annotation revealed 3,910 protein-coding sequen-
ces, 63 RNA genes (48 tRNAs), four of each ribosomal RNA, and 42 pseudogenes. The
annotation of the plasmids revealed 50 protein-coding sequences in pTCS and 166
coding sequences in pTCL. Numerous flagellar structural, assembly and motor proteins
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are present, suggesting the possibility of motility in this organism, yet no obvious che-
motaxis genes were identified. pTCL appears to contain a gene encoding a WXG 100
family protein, which is predicted to be secreted by type VII secretion systems (11).
While no type VII secretion system genes were identified, genes encoding type II and
type IV secretion systems were annotated in the chromosome. This is evidence that
the bacterium may be capable of pathogenesis.

Data availability. The chromosome is accessible under accession number CP081964,
pTCL under CP081962, and pTCS under CP081963. Raw reads from Illumina sequencing
are accessible under SRX11895606, and raw reads from Nanopore sequencing are accessi-
ble under SRX11895607.
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