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A B S T R A C T   

Pyroptosis is a form of programmed cell death associated with inflammatory alterations. However, the intrinsic 
mechanisms and underlying correlation of pyroptosis-related lncRNAs (PRLs) in pancreatic ductal adenocarci-
noma (PDAC) remain unclear. The objective of the current research was to identify pyroptosis-related lncRNAs 
and a prognostic model to predict the prognosis of patients. We extracted pyroptosis-related lncRNAs to construct 
a risk model and validated them at Fudan University Shanghai Cancer Center. Crosstalk between lncRNA 
SNHG10 and GSDMD was found to regulate pyroptosis levels. A new algorithm was used to establish a 0 or 1 PRL 
pair matrix and prognostic model. Six pyroptosis-related lncRNA pairs were identified and utilized to construct a 
risk model. The low-risk groups exhibited better prognoses than the high-risk groups. The area under the curve 
(AUC) indicated extremely high accuracy, reaching 0.810 at 1 year, 0.850 at 2 years, and 0.850 at 3 years in the 
training set. Patients with different risk scores exhibited distinct metabolic, inflammatory, and immune micro-
environments as well as tumor mutation landscapes. Additionally, 9 commonly used chemotherapeutic drugs 
exhibited different sensitivities between the high- and low-risk groups. To conclude, we propose that pyroptosis 
exhibits a close correlation with PDAC. Our risk model based on PRL pairs may be beneficial for the accurate 
estimation of prognostic outcomes, the immune microenvironment, and drug sensitivity, bringing therapeutic 
hope for patients with PDAC.   

Introduction 

Pancreatic cancer is one of the most aggressive and malignant tu-
mors, with a five-year survival rate of less than 9% [1]. As the most 
common pathological type of pancreatic cancer, pancreatic ductal 
adenocarcinoma (PDAC) often attracts attention but lacks satisfactory 
therapeutic results [2]. A cold microenvironment makes tumors insen-
sitive to chemotherapy and immunotherapy, and this may be the most 
important cause of unsatisfactory treatment outcomes [2,3]. Therefore, 
it is urgent to find new molecular targets and therapeutic strategies for 
PDAC. Pyroptosis, a form of programmed cell death that leads to cell 
lysis, has been implicated in inflammation and the gasdermin family [4]. 

Current evidence has elucidated that pyroptosis may affect innate and 
adaptive immunity and can also promote chimeric antigen receptor 
T-cell therapy (CAR-T) and immune checkpoint inhibitor (ICI) therapy 
[5]. Notably, pyroptosis-related research may bring new hope to pa-
tients with PDAC. 

Previous studies on pyroptosis mainly focused on executive pyrop-
tosis proteins such as the gasdermin family (GSDMs) [6] and 
inflammation-associated lyases such as caspase1/3/4/5 [7]. For 
example, caspase3/gasdermin E-mediated pyroptosis was demonstrated 
to inhibit the malignant proliferation and migration of triple-negative 
breast cancer cells [8]. However, the intrinsic mechanism of 
lncRNA-mediated pyroptosis regulation remains complex and 
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enigmatic. Zhang et al. eliminated that the lncRNA MEG3 regulated the 
pyroptosis of endothelial cells by interacting with NLRP3 [9]. Recent 
studies also indicated that lncRNAs may modulate the occurrence and 
progression of malignant tumors through ceRNA networks. For example, 
the lncRNA TP53TG1 was found to influence the proliferation and 
migration of PDAC cells by binding to miR-96 [10]. Zhong et al. 
demonstrated that the lncRNA Sox2ot served as a ceRNA to regulate 
invasion, metastasis and stemness through the Sox2ot/miR200/Sox2 
axis [11]. Nevertheless, the innate mechanism by which lncRNAs 
regulate the occurrence and development of PDAC through pyroptosis 
has not been explored. The identification of pyroptosis-related lncRNAs 
(PRLs) and associated prognostic markers may lead to new break-
throughs in the underlying molecular mechanisms and clinical treat-
ment of PDAC. 

In the present research, comprehensive bioinformatics analysis was 
performed to identify PRLs and construct a pyroptosis-related lncRNA 
model (PRLM) that can accurately distinguish patients with different 
prognoses, metabolic reprogramming, immune and inflammatory mi-
croenvironments, mutation landscapes, and drug sensitivities. The 
pattern flowchart in Figure S1 shows our research design. 

Materials and methods 

Acquisition of transcriptome data, clinical data and mutation data 

The transcriptome data and clinical data of 182 pancreatic cancer 
patients were downloaded from the UCSC Zena database. The clinical 
data, including sex, race, age, total tumor stage, T stage, N stage of the 
American Joint Committee on Cancer (AJCC), and alcohol history, were 
included for prognostic analysis. A total of 142 patients with PDAC 
remained after eliminating patients with other neoplasms and with 
incomplete clinical information. The mutation data of these PADC 
samples were extracted from the UCSC Zena database in varscan2. 
Genomic subtype information was extracted from a previously pub-
lished study [12]. 

Detection of pyroptosis 

We identified pyroptosis by detecting critical proteins, including 
csapase1, caspase4, caspase5, GSDMD, and IL18. Quantitative real-time 
polymerase chain reaction (qRT–PCR) was used to calculate the relative 
expression of these molecules. 

Identification and pairing of PRLs 

Pyroptosis-related genes (PRGs) were extracted from GeneCards 
(https://www.genecards.org/) and published studies. The mRNAs and 
lncRNAs were annotated according to the annotation file in the UCSC 
Zena database. PRLs were identified by correlation analysis between 
PRGs and lncRNAs, with a P value 〈 0.001 and a correlation coefficient 〉
0.5 considered significant. LncRNAs were paired cyclically and unre-
petitively, and a “0′′ or “1′′ matrix was established according to the 
relative expression of lncRNA A or lncRNA B in the lncRNA pairs 
(lncRNA A- lncRNA B). A lncRNA pair was defined as 1 if the expression 
of lncRNA A was higher than that of lncRNA B; otherwise, it was defined 
as 0. The lncRNA pair was thought to be invalid and was excluded when 
its number of 0 or 1 exceeded 80% or less than 20% of the total number. 

Construction of a PRL pair model (PRLM) to assess the prognosis of PDAC 

Multiple machine learning algorithms were utilized to screen valid 
lncRNA pairs for model construction. Univariate analysis was used to 
identify lncRNA pairs with prognostic significance, followed by Lasso 
regression analysis to eliminate overfitting and complete coefficient 
compression and a random forest algorithm to improve prediction ac-
curacy. The intersection of the Lasso regression and random forest 

results was incorporated into the multivariate Cox regression model to 
eliminate multicollinearity and construct the final predictive model. The 
risk score formula: risk score = exprpair1 * coffpair1þ exprpair2 * 
coffpair2þ… … exprpairn * coffpairn. The R packages “survminer” and 
“survival” were utilized to draw survival curves. Additionally, we 
identified 4 prognostic pyroptosis inhibitors and 15 prognostic pyrop-
tosis promotors from the PRGs and calculated the pyroptosis-related 
index (PRI) using the “GSVA” R package. To validate the clinical value 
of our PRLM, we extracted 80 paraffin-embedded specimens from the 
previously mentioned FUSCC cohort, and qRT–PCR was performed to 
confirm its application value. We used delta CT to define the relative 
expression of lncRNAs and translated it into a “0” or “1” matrix ac-
cording the aforementioned method. 

Evaluation of the enriched pathways and alterations in critical metabolism 
patterns according to the PRLM 

To elucidate the alterations in the critical biological processes and 
functional pathways in PDAC, we identified the differentially expressed 
genes between different PRLM groups. In addition, we obtained 
metabolism-related gene sets from KEGG database and annotated them 
with the "GSVA" package. The variation in metabolic rewriting between 
different PRLM groups was accurately analyzed. 

Estimation of the mutational landscape based on the PRLM 

To assess the correlation between the mutational landscape and 
PRLM scores, we analyzed and evaluated various perspectives. The 
“maftools” R package was used to process and depict the mutation data. 
The differences in tumor mutation burden and mutation form between 
different PRLM risk groups were compared, with a P value < 0.05 
considered significant. 

Significance of the PRLM in immune infiltration and the microenvironment 

Various published immune assessment algorithms, including 
ssGSEA, XCELL, TIMER, EPIC, QUANTISEQ, CIBERSORT and MCP- 
counter, were used to evaluate immune infiltration. We compare the 
differences in immune infiltration between different PRLM risk groups. 
Additionally, the correlation between immune cell infiltration and the 
PRLM score was analyzed by Spearman’s correlation analysis. Further-
more, a heatmap was generated to exhibit the variations in critical 
checkpoints between the various PRLM groups. 

Drug sensitivity analysis based on the PRLM 

The R package “pRRophetic” was utilized to predict the drug IC50 in 
the different PRLM risk groups. This algorithm can calculate the IC50 of 
chemotherapeutic drugs according to the gene expression matrix in-
formation and then accurately predict drug sensitivity. We used the 
Wilcoxon test to compare the differences in drug IC50 values between 
the various risk groups. Spearman analysis was performed to calculate 
the correlation between drug IC50 values and PRLM scores. 

Cell culture and qRT–PCR 

Paraffin-embedded specimens from 80 FUSCC patients were utilized 
to identify the expression levels of core lncRNAs. The patients had un-
dergone standard pancreatic cancer resection and had complete follow- 
up information. Additionally, one human normal pancreatic cell line 
(H6C7) and six human pancreatic cancer cell lines (PANC-1, Mia-PaCa2, 
SW 1990, ASPC-1, CFPAC-1, and BxPC-3) were chosen to verify the 
expression levels of core lncRNAs. The expression of candidate lncRNAs 
was determined using an ABI 7900HT Real-Time PCR system (Applied 
Biosystems, Foster City, MA, USA). The primers in the research are 
summarized in Supplementary Table 1. 
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Flow cytometry 

Flow cytometry experiments were utilized to detect the apoptosis 
rate of various groups. The PE Annexin V Apoptosis Detection Kit 
(Beyotime Biotechnology, Shang Hai, China, cat: 559763) was used for 
staining, and a FACSCalibur flow cytometer was used for counting. 

Transwell migration assay 

To detect the migration ability, PANC-1 cells (5 × 104 cells) were 
cultured in the upper chamber to determine their migration capacity. 
We counted the number of migrating cells in a random area, and an 
average of 5 fields per chamber was assessed. 

Fig. 1. Identification of potential PRLs and experimental validation of the regulatory effects of SNHG10 on pyroptosis. (A) The correlation between core 
PRGs, corresponding lncRNAs and expression conditions. (B) SNHG10 was positively correlated with the expression of GSDMD. (C) SNHG10 exhibited elevated 
expression in tumor samples. (D) SNHG10 expression was upregulated in multiple pancreatic cancer cell lines. (E) The expression of SNHG10 in PANC-1 was knocked 
down. (F) The expression level of GSDMD was downregulated after SNHG10 knockdown. (G-I) The expression level alterations of CASP1, CASP4, CASP5, and IL18. 
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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EdU assay 

To detect the proliferation capacity, PANC-1 cells (3 × 104 cells) 
were cultured in 96-well plates with 5 replicate wells. The specific 
experiment was performed as described in our previous study [13]. 

CCK-8 assays 

PANC-1 cells (1500 cells) were cultured in 96-well plates with 4 
replicate wells to detect cell viability and proliferation ability. Cells were 
incubated with CCK-8 (Gaithersburg, MD, USA) for two hours, and a 
microplate reader (Tecan F50, Switzerland) was used to measure the 
absorbance at 450 nm. 

Soft agar colony formation assays 

For the soft agar colony formation assays, Panc-1 cells (3000/well) 
were cultured in DMEM with 15% FBS and 0.2% agarose, and then the 
complex was layered on DMEM with 15% FBS and 0.3% agarose in 6- 
well plates with 3 duplicated holes. These cells were fixed and stained 
with 4% paraformaldehyde and 0.5% crystal violet. 

Animal studies 

We obtained five-week-old nude mice from Shanghai Laboratory 
Animal Center. Each mouse was inoculated with 2 × 106 Panc-1 cells. 
We divided these mice into two groups: a group treated with si-control 
(5 nmol) (used for animals, RuiBo, Shanghai, China) and a group treated 
with si-SNHG10 (5 nmol) (used for animals, RuiBo, Shanghai, China) 
every 3 days for 4 weeks. We measured the tumor size every week, and 
the tumors were excised and weighed after four weeks. The Ethics 
Committee of Fudan University approved our experimental protocol 
(FUSCC-IACUC-2,022,166). 

Results 

Identification of PRLs using coexpression analysis and experimental 
validation 

A total of 113 PRGs and 14,831 lncRNAs were identified and inte-
grated into a coexpression matrix. In total, 2639 PRLs were significantly 
coexpressed with PRGs based on the inclusion criteria, with a P value <
0.001 and correlation coefficient > 0.5. Additionally, 364 PRLs were 
found to exhibit prognostic value and to be related to the overall survival 
of PDAC. Some lncRNAs were remarkably positively correlated with 
critical pyroptosis regulators, including DFNA5, DFNA59, GSDMA, 
GSDMB, GSDMC, and GSDMD (Fig. 1A). GSDMD is a typical pyroptosis- 
inducing molecule that is targeted by autoprocessed caspases and was 
found to be inhibited by disulfiram [14,15]. In the results of the corre-
lation analysis, GSDMD was found to be positively correlated with 
SNHG10 (r = 0.58, P < 0.001), which may promote the proliferation, 
migration, and progression of various malignancies [16,17]. In addition, 
we also identified pyroptosis-associated microRNAs and circRNAs, 
explored their relationship with pyroptosis regulators and clarified their 
expression levels in pancreatic cancer (Figure S2). 

To further validate the potential function of SNHG10 in PDAC, 
paraffin-embedded specimens from 80 FUSCC patients, which contained 
16 pairs of pancreatic cancer and adjacent samples, were analyzed in the 
current study. SNHG10 was found to be positively correlated with the 
expression of GSDMD (r = 0.442, P<0.0001) (Fig. 1B) and exhibited 
elevated expression in tumor samples (Fig. 1C). The cytological results 
indicated that the expression of SNHG10 was upregulated in multiple 
pancreatic cancer cell lines, including PANC-1, Mia-PaCa2, ASPC-1, and 
CFPAC-1 (Fig. 1D). Furthermore, we knocked down the expression of 
SNHG10 in PANC-1 cells through small interfering RNA and detected 
fluctuations in pyroptosis levels (Fig. 1E). The expression level of 

GSDMD was significantly downregulated after SNHG10 was knocked 
down (Fig. 1F). Additionally, we detected the expression of some core 
molecules of pyroptosis, including CASP1, CASP4, CASP5 and IL18, 
which mostly showed a downward trend (Fig. 1G-1I), demonstrating the 
decrease in intracellular pyroptosis and the capacity of SNHG10 to 
regulate pyroptosis in PDAC. We further explored the effects of SNHG10 
on proliferation, apoptosis and metastasis with functional experiments. 
The apoptosis ratio of PANC-1 cells was not remarkably influenced by 
gene silencing and only exhibited a small increase (Figure S3). The 
proliferation capacity of SNHG10 knockdown cells was decreased 
compared to that of the control groups (Fig. 2A-2B). The CCK-8 exper-
iment further proved this result (Fig. 2C). The colony formation in soft 
agar results indicated that the control group showed stronger colony 
ability than the SNHG10 si group (Fig. 2D-2E). Additionally, SNHG10- 
silenced cells exhibited lower migration ability in the Transwell 
migration experiment (Fig. 2F-2G). To explore the potential role of 
SNHG10 in vivo tumorigenicity in pancreatic cancer, we established 
pancreatic xenograft tumors and administered different treatments to 
different groups of mice (Fig. 2H). The results indicated that the tumors 
of mice in the SNHG10 si group were significantly smaller than those of 
the control group (Fig. 2I), and there were also significant differences in 
tumor weight (Fig. 2J), which further suggested that SNHG10 played a 
promoting role in pancreatic cancer tumorigenesis. 

The PRLM risk signature can accurately identify the prognosis of patients 
with PDAC 

A total of 364 PRLs were screened as mentioned and reintegrated 
into a “0” or “1” matrix containing 21,886 lncRNA pairs. In total, 270 
lncRNA pairs associated with overall survival were retained after uni-
variate Cox regression analysis. After Lasso regression analysis 
(Figure S4A-S4B) and random forest analysis to reduce overfitting and 
improve accuracy, 7 lncRNA pairs remained in the intersection 
(Figure S4C). Six lncRNA pairs were finally included in the PRLM after 
multivariate Cox regression analysis to avoid collinearity (Figure S4D). 
The risk score plot exhibited the risk distribution and survival status 
(Fig. 3A). A Kaplan–Meier curve was generated to evaluate the predic-
tive effectiveness (Fig. 3B), and patients with different risk scores were 
divided into two risk groups according to the medium cutoff value. The 
low-risk group exhibited significantly better prognoses than the high- 
risk group. A ROC curve was drawn to verify the sensitivity and accu-
racy of the PRLM (Fig. 3C). The AUC values for 1, 2, and 3 years were 
0.81, 0.85, and 0.85, respectively. To estimate the clinical value of the 
PRLM, we performed univariate and multivariate Cox regression ana-
lyses on the PRLM combined with some important clinical parameters. 
Multivariate analysis indicated that PRLM had superior predictive ca-
pacity and was an independent prognostic factor for PDAC (Fig. 3D-3E). 
To further verify its practicality and reliability, an external cohort from 
FUSCC was used. Significant differences in survival were exhibited be-
tween the various groups (Fig. 3F), and the AUCs at 1 (0.87) and 2 years 
(0.85) illustrated the potential clinical value of the PRLM (Fig. 3G). We 
performed meticulous subtype classification based on the final screened 
lncRNA pairs, and the ConsensusCluster algorithm was used to complete 
this classification process. According to the cumulative distribution 
function (CDF) value and CDF area change, k = 2 exhibited the best 
unsupervised clustering competence (Figure S5A). The principal 
component analysis (PCA) plot further validated the independence of 
the clustering subtype (Figure S5B). Interestingly, certain differences 
were determined between our unsupervised clustering and PRLM, which 
may be complementary to our PRLM-related grouping (Figure S5C). The 
survival curve indicated that subtype 1 exhibited a longer average sur-
vival time than subtype 2 (Figure S5D). 
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Comprehensive analysis of enriched pathways and metabolic 
reprogramming 

We identified 1757 differentially expressed genes between different 
PRLM groups and included them in the functional annotation analysis. 
Gene Ontology (GO) analysis indicated that these genes were mainly 
involved in some metabolism-related physiological processes, including 
“regulation of lipid metabolic process”, “negative regulation of protein 
phosphorylation”, “regulation of lipase activity”, and “canonical 
glycolysis” (Fig. 4A). KEGG analysis also suggested that these genes were 
related to some metabolism-related pathways, such as “Proteoglycans in 
cancer”, “Central carbon metabolism in cancer”, “Regulation of lipolysis 
in adipocytes”, and “Carbohydrate digestion and absorption” (Fig. 4B). 
Furthermore, we explored the alterations in metabolic reprogramming 
between the high- and low-PRLM subgroups. A total of 7347 

metabolism-related pathways from the KEGG database were annotated 
and analyzed, such as lipid modification, ion transport, carbohydrate 
process, and steroid biosynthetic process. Metabolic pathway analysis 
indicated that a total of 24 metabolism-related processes were differ-
entially expressed between the high- and low-PRLM groups, including 
15 upregulated metabolic pathways in the PRLM high-risk group, such 
as N glycan biosynthesis and glycolysis and gluconeogenesis, and nine 
downregulated metabolic pathways, such as fatty acid metabolism and 
glycerolipid metabolism (Fig. 4C). We further divided these metabolic 
pathways into nucleic acid metabolism, lipid metabolism, glucose 
metabolism, protein metabolism and other metabolic pathways. Coex-
pression analysis demonstrated that these pathways closely interacted, 
which further indicated alterations in metabolic reprogramming in 
PDAC (Fig. 4D). 

Fig. 2. Influence of SNHG10 on the proliferation, migration and tumorigenesis in PDAC. (A, B) EDU experiments demonstrate the proliferation ability of 
different PANC-1 treatment groups. (C) CCK-8 assay to detect the proliferation ability of PANC-1 cells transferred with SNHG10 siRNA. (D, E) The soft agar colony 
formation experiment to detect the colony formation ability of different PANC-1 treatment groups. (F, G) The influence of SNHG10 on the migration of PANC-1 cells. 
(H) The image of tumors excised from different treatment groups. (I) the tumor size of different treatment groups. (J) the tumor weight of different treatment groups. 
Scale bars, 100 μm. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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Identification of differences in immune infiltration and the inflammatory 
microenvironment between the high- and low-PRLM groups 

We comprehensively analyzed and compared the differences be-
tween PRLM and previously published molecular subtypes in PDAC and 
found that our PRLM was an independent classification (Fig. 5A-5C). 
Seven different immune infiltration algorithms, ssGSEA, XCELL, TIMER, 
EPIC, QUANTISEQ, CIBERSORT and MCP-counter, were used to anno-
tate and analyze the immune microenvironment of PDAC. Coexpression 
exploration was performed between the PRLM score and various im-
mune cells, and the results indicated that most of the tumor-resistant 
immune cells, such as active CD8+ T cells, Th1 cells, and dendritic 

cells, were negatively related to the PRLM score (Fig. 5D). To further 
explore the feasibility of the PRLM in immune checkpoint therapy, we 
analyzed the expression of various immune checkpoints in different 
PRLM groups. Most immune checkpoints, including CTLA4, PDCD1, and 
LAG3, exhibited higher expression activity in the low-PRLM group, 
demonstrating great potential for PRLM grouping in immune checkpoint 
therapy (Fig. 5E). Differences in some critical immune 
microenvironment-related scores were also compared. The low-PRLM 
group exhibited upregulated immune scores, stromal scores, microen-
vironment scores, and ESTIMATE scores, demonstrating stronger im-
mune infiltration activity (Fig. 5F). We also explored the differences in 
the inflammatory microenvironment between various groups. 

Fig. 3. Construction of a PRL pair model (PRLM) to assess the prognosis of PDAC. (A) The risk score plot shows the risk distribution and survival status. (B) A 
Kaplan–Meier curve was used to evaluate the predictive effectiveness. (C). A ROC curve was used to verify the sensitivity and accuracy of the PRLM. (D) Forest plot of 
multivariate Cox regression analysis based on the risk signature and clinical parameters. (E) A ROC curve was used to estimate the effectiveness of the PRLM and 
some clinical parameters. (F) A Kaplan–Meier curve was used to validate the PRLM in FUSCC. (G) A ROC curve was used to validate the PRLM in FUSCC. 
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Inflammatory factors exhibited significantly upregulated expression 
activity in the low-PRLM group (Figure S6). 

Comparison of the PRLM with the PRI in PDAC 

The expression profiles of PRGs in different PRLM groups were 

explored, and 19 differentially expressed pyroptosis regulators were 
identified, including 15 pyroptosis promotors and 4 pyroptosis in-
hibitors (Fig. 6A, S7A). We further calculated the PRI of every sample 
according to these pyroptosis regulators and compared it with the 
PRLM. The samples were divided into two groups based on the PRI 
(Fig. 6B). The PRI exhibited identical fluctuation trends as the PRLM, 

Fig. 4. Comprehensive analysis of enriched pathways and metabolic reprogramming. (A) GO analysis based on differentially expressed genes. (B) KEGG 
analysis based on differentially expressed genes. (C) The differentially expressed metabolic pathways between the high- and low-PRLM groups. (D) Coexpression 
analysis of metabolic pathways. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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and it increased as the PRLM score increased. Similarly, the PRI-high 
group exhibited higher PRLM scores, further validating the rationality 
of our PRLM (Fig. 6C). A pyroptosis-related risk signature based on these 
differentially expressed pyroptosis regulators was established and 
compared to the PRLM. The survival curve exhibited good predictive 
performance (Figure S7B), but the AUC was remarkably lower than that 
of our PRLM, further demonstrating the superiority of our PRLM 
(Figure S7C). 

Comparison of the mutational landscape in different PRLM risk groups 

The mutational landscape in different PRLM risk groups was 
compared. The high-PRLM group exhibited remarkably higher TMB 
scores (Fig. 7A). Mutation type comparisons demonstrated that the high- 
PRLM group exhibited a higher mutation rate in some mutant forms, 
such as in frame deletions, missense mutations, nonsense mutations, and 
silent mutations (Fig. 7B). The waterfall plot indicated that KRAS, TP53, 
COKN2D, and SMAD4 exhibited the highest mutation frequencies in all 
groups (Fig. 7C, 7D). Comutation analysis indicated that KRAS/TP53 

Fig. 5. Identification of differences in immune infiltration and the inflammatory microenvironment between the high- and low-PRLM groups. (A-C) The 
differences between the PRLM and previously published molecular subtypes in PDAC. (D) Coexpression exploration between the PRLM score and various immune 
cells. (E) The expression of various immune checkpoints in different PRLM groups. (F) Differences in the inflammatory microenvironment between the high- and low- 
PRLM groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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and CDKN2A/TP53 may be comutation pairs in the low-PRLM group 
(Fig. 7E). In addition, the high-PRLM group exhibited more comutation 
pairs, including KRAS/TP53, CDKN2A/TP53, MUC16/SMAD4, and 
TTN/PCDH15 (Fig. 7F). 

Predictive value of the PRLM risk signature for chemotherapeutic 
sensitivity 

Drug sensitivity analysis was utilized to eluminated the application 
value of the PRLM in drug effectiveness prediction. The IC50 values of 
27 commonly used chemotherapeutic drugs were calculated, and we 
investigated their correlation with the PRLM score. The IC50 values of 
most drugs were negatively correlated with the PRLM score, and a few 
were positively correlated (Fig. 8A). We further compared the change in 
drug IC50 values between the various PRLM groups and found that 9 
drugs exhibited significant differences, including paclitaxel, erlotinib 
and other commonly used drugs for PDAC (Fig. 8B, 8C), indicating that 
the PRLM not only has a guiding role in chemotherapeutic drug usage in 
PDAC but may also have predictive significance for other anticancer 
drugs. 

DISCUSSION 

Pyroptosis is a programmed cell death process closely related to in-
ternal inflammation and the immune response [18], and it has been 
proven to be a double-edged sword in the occurrence and development 
of various tumors [6]. Dysregulation of GSDMD may perturb pyroptosis 
and influence cell phase progression, leading to an imbalance in cell 
proliferation in gastric cancer [19]. More interestingly, pyroptosis may 
modulate the immune microenvironment and anticancer therapy 
through inflammatory cytokines from cancer cells [5], bringing new 
prospects to the therapy of solid tumors such as PDAC that are prone to 
chemotherapy resistance [20]. However, the innate mechanism of 
pyroptosis in cancer prognosis and the microenvironment remains un-
clear, especially in the lncRNA field. Tan et al. found that the lncRNA 
HOTTIP may function as a tumor promotor by increasing AKT2 
expression and inducing inflammatory pyroptosis [21]. Additional 
crosstalk between pyroptosis and lncRNAs was identified in liver cancer. 
Chen et al. demonstrated the regulatory role of the lncRNA SNHG7, 
which may interact with the pyroptosis modulator NLRP3 [22]. There-
fore, determining PRLs and exploring the interaction between PRLs and 

Fig. 6. Comparison of PRLM with PRI in PDAC. (A) The expression pattern of pyroptosis regulators. (B) The samples were divided into two groups based on the 
PRI. (C) Comparison between PRI and PRLM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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PRGs may be a forward-looking approach and lead to further findings. In 
our current research, multiple PRL and PRG pairs were identified, and a 
PRLM was constructed to estimate the metabolic reprogramming, im-
mune and inflammatory microenvironments, mutation landscape, and 
drug sensitivity in PDAC. Additionally, the GSDMD-related lncRNA 
SNHG10 was identified, and biological experiments were conducted to 
validate its potential role in pyroptosis. 

SNHG10 serves as a tumor promoter in various malignancies, 
including osteosarcoma [23], non-small cell lung cancer [24], and 

hepatocellular carcinoma [25]. In our research, we found that SNHG10 
was elevated not only in multiple pancreatic cancer cell lines but also in 
pancreatic cancer tissues. Furthermore, SNHG10 may also promote the 
proliferation and migration capacity of pancreatic cancer cells, illus-
trating its oncogenic potential. We also demonstrated that SNHG10 was 
positively coexpressed with the pyroptotic regulator GSDMD, and it 
could affect the pyroptotic status through caspase1, IL18, etc. Therefore, 
we hypothesized that SNHG10 may affect the biological behavior, 
occurrence and development of PDAC by affecting pyroptosis, and the 

Fig. 7. Comparison of the mutational landscape in different PRLM risk groups. (A) Comparison of the TMB score between the high-risk and low-risk groups. (B) 
Comparison of the mutation forms between the high-risk and low-risk groups. (C, D) The waterfall plot depicts the mutated genes of patients in different risk groups. 
(E, F) The coexpression plots show the coexpressed genes in the high- and low-risk groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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concrete underlying mechanism needs to be further explored by addi-
tional molecular biology and animal experiments. 

Previous major discoveries about pyroptosis and tumors mainly 
focused on intrinsic molecular mechanisms and inflammatory alter-
ations [5]. Our research was the first to explore the potential effect of 
pyroptosis on metabolic reprogramming in PDAC. The basic metabolic 
patterns, including nucleic acid metabolism, lipid metabolism, glucose 
metabolism, and protein metabolism, were altered in the different PRLM 
groups, indicating that metabolic reprogramming may be involved in 
pyroptosis-related carcinogenic mechanisms. The combined analysis of 
pyroptosis and metabolism may bring new breakthroughs to mecha-
nistic research in PDAC. 

Recent studies have illustrated the crosstalk between malignancies 
and the immune microenvironment [26]. Currently, impressive 

immunotherapy methods have achieved profound success in a small 
number of cancer patients, but the efficacy in most patients remains 
unsatisfactory [27]. Pyroptosis-related cancer research may be benefi-
cial to anticancer immunotherapy. Notably, we highlighted that im-
mune infiltration was significantly negatively correlated with the PRLM 
score, especially some anticancer immune cells, such as active CD8+ T 
cells and Th1 cells. Additionally, some typical immune checkpoints and 
cytokines, such as PDCD1 and IL6, exhibited upregulated trends in the 
low-PRLM group, indicating that drugs targeting these molecules may 
be effective treatment measures for these patients. 

Our research has some undeniable strengths. First, there have been 
many studies on the prognostic prediction of pyroptosis-related genes or 
lncRNAs in the past [28,29]. Our study first proposed the establishment 
of a prognostic model based on PRL pairs, filling the gap in this area. 

Fig. 8. Predictive value of the PRLM risk signature for chemotherapeutic sensitivity. (A) The correlation between the PRLM score and IC50 values of 27 drugs. 
(B, C). The difference in drug IC50 values between the high- and low-PRLM groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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Second, the previous studies constructed algorithms mostly based on 
gene expression. Notably, due to differences in platforms and the 
subjectivity of different researchers, applying their model may lead to 
substantial deviation and yield biased results. Our research used a 0 or 1 
matrix as a measure of relative expression, avoiding platform bias and 
enhancing applicability. Our PRLM achieved optimal predictive 
competence (AUC> 0.85). Third, we not only identified SNHG10 as a 
key molecule regulating pyroptosis in PDAC but also validated our 
PRLM in our FUSCC cohort. 

Our research also has some limitations. On the one hand, our 
screening criteria for PRLs were consistent with those of published 
research [28,29] based on coexpression analysis and the magnitude of 
the correlation coefficient, not based on biological experiments. On the 
other hand, the number of samples in our FUSCC cohort was relatively 
small, and our PRLM needs to be further validated in a larger dataset. In 
conclusion, our current research first identified PRLs and constructed a 
PRLM in PDAC, realizing optimal predictive capacity for the prognosis of 
patients. Additionally, we comprehensively analyzed the ability of the 
PRLM to discriminate PDAC metabolic reprogramming, immune mi-
croenvironments, mutational landscapes, and drug sensitivities. We 
expect to find new approaches for PDAC treatment based on these 
research directions and apply our PRLM to clinical treatment. 
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