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COMPREHENSIVE REVIEWS

Understanding Tendons:
Lessons from Transgenic Mouse Models

Manuel Delgado Caceres, Christian G. Pfeifer!? and Denitsa Docheva'*

Tendons and ligaments are connective tissues that have been comparatively less studied than muscle and cartilage/
bone, even though they are crucial for proper function of the musculoskeletal system. In tendon biology, con-
siderable progress has been made in identifying tendon-specific genes (Scleraxis, Mohawk, and Tenomodulin) in
the past decade. However, besides tendon function and the knowledge of a small number of important players in
tendon biology, neither the ontogeny of the tenogenic lineage nor signaling cascades have been fully understood.
This results in major drawbacks in treatment and repair options following tendon degeneration. In this review, we
have systematically evaluated publications describing tendon-related genes, which were studied in depth and
characterized by using knockout technologies and the subsequently generated transgenic mouse models (Tg)
(knockout mice, KO). We report in a tabular manner, that from a total of 24 tendon-related genes, in 22 of the
respective knockout mouse models, phenotypic changes were detected. Additionally, in some of the models it was
described at which developmental stages these changes appeared and progressed. To summarize, only loss of
Scleraxis and TGFp signaling led to severe tendon developmental phenotypes, while mice deficient for various
proteoglycans, Mohawk, EGR1 and 2, and Tenomodulin presented mild phenotypes. These data suggest that the
tendon developmental system is well organized, orchestrated, and backed up; this is even more evident among the
members of the proteoglycan family, where the compensatory effects are much clearer. In future, it will be of great
importance to discover additional master tendon transcription factors and the genes that play crucial roles in tendon
development. This would improve our understanding of the genetic makeup of tendons, and will increase the
chances of generating tendon-specific drugs to advance overall treatment strategies.

Keywords: tendon and ligaments, tendon biology, mice models, knockout mice, transgenic technology, tendon
phenotype

To our knowledge, there are two stages related to tendon
development. First, the emergence of precursors/progenitors
based on their origin and localization and second, commit-
ment and differentiation based on pivotal signaling cas-

Introduction

Tendon development, critical factors
and signaling cascades

THE ESTABLISHMENT OF a proper musculoskeletal system
involves the finely orchestrated development of muscle,
cartilage, and tendon lineages emerging from the somitic
mesoderm [1]. During embryonic development, muscle and
cartilage (systems that are better understood and studied than
tendon) arise from the myotome and sclerotome respectively,
in response to signals emitted from neighboring tissues. The
tendon lineage is formed within the dorsolateral sclerotome,
adjacent to and beneath the myotome, in a somite subdomain
denominated as syndetome [1]. The ontogeny of the teno-
genic lineage is not fully understood yet because of the
absence of specific early tendon lineage markers.

cades. With the identification of the beta helix-loop-helix
transcription factor Scleraxis (Scx), an important and dis-
tinctive marker for early tendon development was found
[2,3]. Schweitzer et al. reported the usage of Scx expression
as a method for the identification of a pool of tendon pro-
genitors in the mesenchyme subjacent to the ectoderm [3].
In mice, embryonic tendon and ligament development starts
occurring between E9.5-E12.5 [4].

The main function of the axial tendon is to bond the
muscles that are located along the spinal column to the
vertebrae and transfer the generated force to the axial
skeleton, providing spinal stability and range of movement
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[4]. Axial tendon progenitors, which per definition are Scx-
expressing cells, originate during embryonic development
from the ventral compartment of emerging somites, more
precisely, from the syndetome, one of the four somatic sub
compartments [5—8].

Fibroblast growth factors (FGF) play an important role
in chick and mouse embryos during axial tendon develop-
ment (Fig. 1A). In mice, FGF signaling starts from the upper
myotome resulting in the activation of the mitogen-activated
protein kinase pathway, E26 transformation-specific sequence
(Ets) transcription factors, Phosphatidylinositol-4-phosphate
5-kinase (Pea3) and Ezrin/radixin/moesin (Erm). Lastly, Scx
and transcription factor Mohawk (Mkx) promote final tendon
lineage commitment and differentiation; this is characterized
by the expression of collagen type I, type XIV, and teno-
modulin (Tnmd) [1,9,10]; Tnmd is to date, the best-known
mature marker for tendons [11-13].

A

B
Ectoderm signals

FIG. 1.
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On the other side, ventral midline sonic hedgehog ex-
pression can solely activate Pax1, which consequently has a
negative effect on Scx, hindering its induction in the scler-
otome [10]. While signals coming from the myotome pos-
itively influence axial tendon development, signals derived
from the sclerotome have an adverse effect. This starts with
the expression of Sox9 and subsequent induction of Sox5
and Sox6, which block Scx expression [10].

Progenitors of the limb tendons develop differently to the
cells that give rise to axial tendons because they are not
localized within a specific subdomain in the somite but ra-
ther around the lateral plate mesoderm [7,14]. Limb tendon
progenitor cells are intermingled with migrating myoblasts
in ventral and dorsal parts of the limb bud [8,15]. During
limb development, Scx-positive tendon progenitors are in-
duced by ectodermal signals and constrained by bone mor-
phogenetic protein [10] in the limbs and position themselves

Development of axial and limb tendons during embryogenesis. (A) Axial tendon differentiation starts with

upcoming FGF signaling from myotome. Signals from the sclerotome, for example, Sox9 (activated by SHH) have a
negative effect on Scx induction blocking its expression. Moreover, TGFf signaling influences Scx and Mkx expression
promoting axial tendon differentiation and the activation of extracellular matrix proteins such as collagen I, collagen XIV,
tenomodulin, and others. (B) Limb tendons are formed differently compared to axial tendons. Tendon limb progenitors are
induced by ectodermal signals in the limbs and inhibited by BMP. Tendon progenitors position themselves between
differentiating muscles and cartilage, condensate, and differentiate to form proper tendon tissue. Not only FGF but also
TGFp can induce limb tendons. Six2 is highly expressed in forming limb tendon cells, but the role of Eyal/2 is still
controversial (therefore indicated with?). As in the axial tendon development, Scx and Mkx play a pivotal role giving the
starting impulse for limb tendon formation. Early growth response 1 and 2 (Egrl/2) transcription factors act as molecular
sensors for mechanical signals guiding the final steps of tendon maturation and production of collagen I, III, V, XIV,
proteoglycans (decorin, fibromodulin, lumican), and tenomodulin. Figure was adapted from [10]. BMP, bone morphoge-
netic protein; FGF, fibroblast growth factors; SHH, sonic hedgehog.
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between differentiating muscles and cartilage. Subsequently,
they condense and finally differentiate to form distinct ten-
dons [8] (Fig. 1B).

Not only FGF signaling has a pivotal role in regulating
limb tendon differentiation, proteins from the TGFf super-
family have been reported to be inducers of limb bud ten-
dons [16-19] (Fig. 1B). It has been previously described that
the disruption of TGFp signal in double mutant Tgff2~"/
TgfB3~~ mouse embryos leads to the loss of most tendons
and ligaments in the limbs, trunk, tail, and head [20].

The close interaction between muscles and tendons dur-
ing limb development [7,15,21] suggests that transcription
factors such as Six homeobox 1 and 2 (Six1/2) and EYA
transcriptional coactivator and phosphatase 1 and 2 (Eyal/2)
[22] might play an indirect role in tendon formation. How-
ever, Bonnin et al. showed using Six/-deficient mice that
this gene is neither expressed in tendons nor essential for
tendon development [23]. Whole transcriptome expression
profiling of mouse limb tendons using RNA-Seq. revealed
no differential expression of Six/, while Six2 was found to be
highly expressed in forming limb tendon cells at E13.5 [24].

As in axial tendon development, Scx and Mkx play a
crucial role, giving the initial impulse for limb tendon for-
mation. In a second step, Early growth response 1 and 2
(Egr1/2) act as molecular sensors for mechanical signals
[25] guiding and regulating collagen maturation and leading
to final tendon differentiation [10,26-28].

The exact mechanisms triggering tenogenesis, which need
to be finely orchestrated to guide progenitor cells to fully
differentiated tendon cells, still remain elusive and worth
further investigation since the whole process is dependent
on various factors with different signaling cascades amongst
the diverse cellular compartments.

Tendon function, composition, and structure

Tendons appear to be simply organized tissues with the
main function of connecting muscles with bones transmit-
ting the muscle-generated force, thus allowing joint move-
ments [29,30]. Tendons, which could be compared to flexible
strings, are primarily made of collagens and a minor fraction
of elastin surrounded by a proteoglycan-rich matrix. Con-
cerning the mechanical function, tendons can be classified
as positional tendons, which are primarily loaded along their
long axis permitting the interplay between muscles and
bones [29,31] and energy storing tendons that are more
elastic and extensible and when loaded, release the accu-
mulated energy to improve the efficiency of movement [32].

The tendon extracellular matrix consists mainly of collagens
(60-85% of tissue’s dry weight) [33], with type I being the
most prominent one (~95%) and small amounts of type V, VI,
XII, XTIV, and XV [34,35]. The role of collagens within tendons
has been well studied and characterized [36-38] but the non-
collagenous part of the matrix consisting of proteoglycans like
fibromodulin, lumican, biglycan, and decorin [39-41] requires
more investigation. Recent advances in proteoglycans research
will be discussed later.

Tendons are hierarchically organized structures with col-
lagen fibrils as the smallest structural units; these are com-
posed of parallel chains of collagen molecules bound together
by covalent cross-links [30]. Fibrils aggregate gradually with
other fibrils to form tube-like structures called fibers, which
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subsequently attach to other fibers and arrange themselves
into bundles (collagen-rich fascicles). Collagen fascicles are
aligned in the direction of force application [42] and are
surrounded by thin layers of connective tissue known as endo-
and epitenon (tendon sheets), where nerves, blood vessels,
and tendon stem/progenitor cells are situated [41]. Fully dif-
ferentiated tendon cells (tenocytes) are localized between the
collagen fibers [41].

Power of Knockout Technologies

Knockout/-in technologies are a powerful and indispens-
able tool to study gene functions in vivo. In 2007, the Nobel
Committee for Physiology or Medicine awarded Drs. Ca-
pecchi, Evans, and Smithies with the Nobel Prize for their
discoveries in the field. The identification and isolation of
stem cells of the early mouse embryo, the proper cell culture
conditions, and the reintroduction of the genetically modi-
fied cells into foster mice mothers was established by Martin
J. Evans and Matthew Kaufmann in the early 80s [43].
Mario Capecchi and Oliver Smithies, working independently
of each other, discovered the mechanism behind homologous
recombination [44,45], creating the fundamentals for the pro-
duction of the first knockout mice [46,47].

Due to the startling gene homology between mice and
humans (99%) [48], mouse knockout technology has great
advantages for the understanding of human biology and
disease [48-50]. The mouse, as an experimental model is
fundamental in biomedical research, since its development,
physiology, behavior, and diseases are similar to those in
humans [49]. Additionally, mouse properties such as short
life spans and high reproduction rates make it very suitable
for low-cost genetic studies.

The most obvious approach to investigate a gene’s func-
tion is by generating a knockout and to validate the outcome
by analyzing the whole animal phenotype [51]. The capacity
to manipulate and introduce specific DNA sequences (eg,
genes) has been used for biomedical purposes for more than
three decades [52]. Furthermore, with the introduction of
CRISPR/Cas-9 and CRISPR/Cas-13 technologies, new and
precise tools for genome engineering are now available [53,54].

There are two main methods for the generation of
knockout mice: (i) Gene trapping [55,56] and (ii) gene tar-
geting [43.,45]. Gene trapping mutagenesis was first devel-
oped for the detection of different gene expression patterns
[57] but it is now well established as random mutation
technique. Gene targeting is based on homologous recom-
bination and proper manipulation of embryonic stem cells
(ES cells). This technique permits the insertion of ge-
netic mutations into a mouse at a specific genomic locus
and generates full gene knockout, point mutation, deletion/
insertion (indel), and others. [58]. In this review we will
shortly describe options and techniques for the generation of
mouse knockout models.

Conventional knockout mouse model (constitutive)

This biological model targets a gene, which will be
constitutively inactivated and has therefore a major effect at
all stages of development (Fig. 2A). The method is based on
the inactivation of the gene of interest by the insertion of a
null mutation into an essential coding region in a specific
genetic locus [58]. The modified sequence is inserted into
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a targeting vector containing an antibiotic resistance gene
between the homologous regions (eg, neomycin). This step
will allow a subsequent selection for positively transfected
ES cells [58-60].

The technique commonly used for transfection is elec-
troporation, because of its high efficiency and stable DNA
introduction [61]. ES cells containing the mutagenized DNA
construct are inserted into blastocysts, which are finally
transferred into pseudopregnant females for the production
of chimeric mice [60]. Offspring from chimeric mice have
to be screened for targeted mutation and inbred to generate
homozygous knockout mice. The main disadvantage of a
constitutive knockout system is the fact, that roughly one-
third of the genes present in mammals (~ 8,000 genes in
mice) are essential. This means that the deletion of two copies
of some genes may either lead to embryonic or postnatal
lethality, or could activate a nonregulated expression of
other compensatory genes [62].

Tissue-specific knockout mice (conditional)

An interesting and effective approach to circumvent
embryonic lethality or compensatory mechanisms, is the
generation of conditional knockout mice by the use of, for

A VWild type mouse

Gene of Interest

Functional

B Tissue-specific Knockout mouse

Targeted tissue (tendons)

Gene of Interest

No expression

C Inducible Knockout mouse

No Inducer Gene of Interest

Functional
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example, Cre/loxP- (Cre recombinase/loxP sites) [63] or
FIp/FRT technology (Flp recombinase/FRT sites) [64,65]. A
target gene can be specifically inactivated in defined tis-
sue(s), while its expression stays unaffected in the rest of the
body [58] (Fig. 2B). Of great benefit is the possibility to
inactivate a particular gene in a predefined cell lineage or at
certain stage of development (eg, in the tenogenic lineage,
Scx) [66].

For the proper usage of the Cre-loxP recombination sys-
tem two mouse strains are required: the first one, called the
deleter mouse line (where the Cre-recombinase is expressed)
and the second strain carries the targeted gene flanked by
two loxP sites. When intercrossed, the resulting offspring
carries both, Cre-recombinase and loxP-flanked (‘‘floxed’’)
target gene. In the cells, where the Cre gene is expressed
and due to Cre-loxP site-dependent recombination deletion/
excision of targeted gene will occur [67].

The main disadvantage of this approach is the time taken
to develop this model, since there is the need for an addi-
tional breeding steps with the tissue-specific deleter mouse
line. Additionally, it has been reported that the efficiency of
gene deletion differs depending not only on the age and sex
of the transgenic animal but also on gene locus position and
Cre activity [68,69].

Constitutive Knockout mouse

Gene of Interest

No expression

Rest of the body

Gene of Interest

Functional

With Inducer

Gene of Interest

FIG. 2. Schematic representation of constitutive, conditional, and inducible knockout mouse models. (A) In a wild-type
mouse, the GOI is functional. In a constitutive knockout mouse the GOI is not functional and therefore not expressed. The
generated Tg-mouse might show phenotypic changes, depending on which gene has been knocked out. (B) In a tissue-
specific knockout mouse the GOI is not functional in a specific tissue, while normal gene functionality is detected in the rest
of the organism. In the cartoon the red targeted area illustrates that the gene is inactivated only in tendon tissues such as in
the tail and Achilles tendons. (C) Inducible knockout systems allow the inactivation of a GOI by the addition of an inducer
(in defined doses) at a given time point and within a specific tissue, before that, gene of interest is functional. Figure was
adapted from [154-156]. GOI, gene of interest
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Inducible knockout mouse models

Inducible transgenic mouse models allow the activation/
inactivation of a target gene at a given time point and within a
particular tissue. Before this, the gene of interest is either ex-
pressed or not (Fig. 2C). The first inducible system, based on
tetracycline, called Tet-off and Tet-on system, was developed
by Gossen and Bujard [70,71]. Other systems were later de-
veloped, including the tamoxifen system [72].

The inducible gene expression regulation is based on a
bi-transgenic system and the estrogen receptor (ER) ligand-
binding domain [73,74]. Transcription factors or recombinases
can be genetically modified and subsequently be ligated into
the mutated ligand-binding domain of the ER. Therefore,
genes can be turned/switched on and off by administering
triggering compounds [74]. The main advantage is that in-
activation can be done in all cells of the body or in a tissue-
specific manner. Conversely, the main disadvantage relays
in the important role played by the inducer since it may
generate complications in the phenotype.

CRISPR-Cas technology

This new technology takes advantage of precise genome
engineering tools to increase the feasibility for the faster
generation of transgenic mice models, which is of great im-
portance for more in-depth study of the musculoskeletal
system. Nelson et al. showed that in vivo genome editing
improved muscle function in a Duchenne muscular dystrophy
mouse model; Tabebordbar et al. and Suzuki et al. have also
shown similar results [75-77]. The accessibility to this tech-
nology has increased rapidly in the last years and the sim-
plicity of the system is its greatest advantage. Naturally, there
are important issues that have to be taken into account while
working with this tool [78].

The classical approach for the generation of knockouts
is by injecting Cas9 mRNA and the single guide(s) RNA
(sgRNA) directly into mouse embryos producing accurate
edits into specific genomic loci. Mice that develop from the
modified embryos have to be sequenced and/or genotyped
to confirm that they carry the wanted mutation and bred
to corroborate that a germline transmission is possible. The
offspring can directly be crossed saving time and resources
and eliminating the necessity of backcrossing.

Translation and Relevance
for Clinical Treatment

To unveil critical mechanisms in tissue degeneration and
regeneration, knockout or knock-in animal models of spe-
cific genes is of utmost importance. Small animals seem to
be genetically very similar to human beings, a high number
of genetic patterns and downstream mechanisms are com-
parable and preserved throughout evolution. Thus, geneti-
cally altered mouse models have already been used in the
musculoskeletal field to uncover diseases and develop po-
tential therapies for clinical use. For example, fibrodysplasia
ossificans progressiva (FOP) is caused by a genetic variant
in the glycine/serine activation domain of activing A type I
receptor/activin-like kinase 2 (ACVRI1/ALK?2) and leads to
lethal ossifications of soft tissues in the developing and
growing human body [79,80].
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This gene mutation was mirrored in a knock-in mouse,
which developed FOP and is therefore, now used for gen-
eration of specific therapies against this lethal disease [81].
Most recently, it was shown that depletion of mast cells in
these mice leads to less severe heterotopic ossifications and
minor dysplastic bone formation compared with untreated
animals, paving the way for clinical translation [82]. As
this example from bone formation disorder shows, genet-
ically altered small animals are of great use for increasing
insights into clinically relevant illnesses and may serve as
a starting point for the development of clinically useful
therapies.

A knockout mouse model of biglycan and fibromodulin,
both of which are important contributors to tendon develop-
ment and tendinous homeostasis, has shown heterotopic os-
sification of tendons [83]. Biglycan is a X-chromosome
related small leucine-rich proteoglycan and due to its gene-
tic location is underexpressed in X-chromosome-deficient
patients and overexpressed in multi-X-chromosome aber-
rations, such as Turner syndrome (X0) and Klinefelter
syndrome (XX+) respectively. While Turner’s syndrome is
characterized by short stature, Klinefelter syndrome is char-
acterized by tall stature [84].

However, single knockouts of biglycan only led to
mild age-related osteopenia due to the lack of osteogenetic
precursors [85]. Ultrastructural analysis of singly biglycan
knockout mice showed disorganization of the collagen
network in structural tissues, mimicking Ehlers-Danlos-like
changes [86]. Interestingly, decorin (Dcn) was upregulated
in these knockout mice, suggesting a compensation of bi-
glycan loss on a molecular level [87] and further studies
using a double biglycan/decorin knockout revealed severe
osteopenia, overall reduced health status and infertility [86].
Furthermore, it was shown, that severity of tendon calcifi-
cation is dependent on single vs. double knockout, age and
biglycan vs. fibromodulin knockout [88].

Working groups studying tendon biology have suggested
that, based on published data, tendon degeneration, growth,
and regeneration have underlying multifactorial genetic
contributors [85-89]. To gain insight in different genetic
regulators and correlate those with clinical findings, both
small animal gene knockout and clinically relevant studies
have to be conducted. As stated before, experimental studies
using transgenic animals and different models, such as
functional performance [13], injury [90], and inflammation/
degeneration [91] should be stressed out.

An example of relevant experimental knockout studies
was published by Dex et al., where the endurance running
performance of Tenomodulin-deficient (Tnmd-KO) mice
was analyzed [13]. Tnmd-KO mice have been previously
described and showed a mild tendon but no developmental
phenotype [11]. Tnmd deficiency led to significantly inferior
running performance that worsened with training.

Using the same transgenic line, Lin et al. applied an
Achilles tendon injury model to challenge the role of Tnmd
in early tendon healing [90]. Detailed analysis showed a
very different scar organization in the injury site of the KO
tendons with an augmented adipocyte and blood vessel ac-
cumulation. This demonstrated that Tnmd is needed to
prevent fat cells accumulation and fibrovascular scar forma-
tion, which subsequently have an impact in tendon func-
tionality and healing [90].
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TRANSGENIC MOUSE MODELS WITH TENDON PHENOTYPE

There are three different scenarios that might help to
optimize the study and translation of animal models to the
development of future clinical treatments. (i) Target a spe-
cific gene to see whether the generated phenotype mimics a
human disease; (ii) find a human disease with the respective
genetic mutation and generate a KO-mouse model to under-
stand the mechanisms involved, and (iii) use transgenic mice
with no developmental phenotype and challenge the system
testing the above-mentioned models (performance, injury,
and inflammation/degeneration).

Thus, genetic animal models will serve in the future to
unveil contributors for tendon disorders and add to the de-
velopment of clinically meaningful therapies whether in
prevention of tendon degeneration and injuries or improving
the speed and effectiveness of recovery of tendon ruptures.

Genes Involved in Tendon Development

Over the past 30 years, the usage of transgenic technol-
ogies has proved to be a very powerful and helpful tool for
in-depth gene studies, not only by ‘‘loss-of-function” ex-
periments but also by targeting a specific gene’s over-
expression. New tools and methods have supported a more
detailed molecular analysis of tendons including the com-
mitment, development, maturation, and consolidation of
progenitor cells into fully differentiated tendon cells.

We have screened for a large number of tendon-related
genes, which have been previously studied using corre-
sponding gene-deficient mice (Table 1). We have summarized
and classified diverse transgenic mice strains that have been
used to analyze specific gene’s function and have been of great
help to understand tendon biology (Table 2). Moreover, we
have described meticulously, if a phenotype is evident in
constitutive, conditional, or inducible knockout mice, espe-
cially regarding tendon tissue morphology, structure, or me-
chanical function. One of the first descriptions made in the
table is the time point by which the phenotype is noticeable;
we specify how the tissue affected is organized, which changes
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are present at a cellular and ultra-microscopic level, and
whether the biomechanics of the tendons were compromised.

Open Questions, Concluding Remarks,
and Future Perspectives

The goal of this review was to transmit in a comprehensive
manner how important basic research has been and still is for
the appropriate understanding of tendon tissue, its biology,
development, and function. It is remarkable that even though
~45% of all musculoskeletal injuries in the United States each
year are due to tendons and ligaments [89,92] very little at-
tention has been given to the study of these tissues. The
shortage of unambiguous tendon markers and the absence of
suitable cell lines has been a constant issue impeding the
breakthrough needed for understanding the mechanisms be-
hind tendon development, maintenance, and repair. Basic re-
search using small animal models (mouse and rat models) and
knockout technologies has proven to be a success for the study
of single genes, their function and role within a specific system.

On one side, the Cre/loxP- and Flp/FRT- technologies rep-
resent a valuable and powerful tool for the study of single genes
in a controlled context and tissue that needs to be further in-
vestigated. Initially, the expression of Cre and Flp was not
expected to be harmful because it was thought that mouse
genome would not contain endogenous loxP or FRT sites [93]
but Thyagarajan et al. showed in vitro, that sequences from
human and mouse genomes appeared to be different from loxP
and could support Cre-mediated recombination, thus, resulting
in reduced specificity [94].

The possibility of combining ScxCre transgenic mouse line
[66] with floxed genes, or the generation of new Cre-lines under
the control of known tendon-related genes (Tenomodulin-Cre,
Mohawk-Cre, Collagen type I-Cre, and Thrombospondin-Cre)
would contribute immensely to augment our knowledge on the
field and would allow us to obtain more information about
signaling pathways, and upstream and downstream molecular
regulators. On the other side, reporter lines such as ScxGFP

TABLE 2. CONDITIONAL KNOCKOUT AND REPORTER MOUSE MODELS

Mouse model Mouse line Description (what was the line used for?) Reference
Reporter ScxGFP Allowed the identification of Scx-expression sites and the study of tendon/ [95]
ligament lineage.
Reporter ScxAP Reporter line facilitates the identification of tendon cells and phenotypic [95]
analysis in a wide range of genetic backgrounds
Conditional ScxCre-L Transgenic mouse lines were used for targeting genes specifically in the [66]
ScxCre-H Scx-expressing domain.
Conditional Scx“™" KI  Mouse line was used to identify that Scleraxis is transiently needed for [148]
proper tissue maturation and integration of musculoskeletal components.
Reporter CollalGFP Reporter mice were used for the identification of a cell subpopulation at [149,150]
different stages of skeletogenesis.
Conditional Col5al1™1°x  Mice strain was crossed with ScxCre transgenic mice for the generation of [151]
a tendon and ligament-specific collagen V-null mice.
Reporter Nes-GFP GFP expression was used to isolate a subpopulation of nestin” TSPCs. [152]
After single-cell analysis, gene expression profiles revealed that nestin
expression was activated at specific stages of tendon development.
Isolated nestin® TSPCs showed superior tenogenic capacity.
Conditional Dcnlo¥/ox/ Used to study the role of both proteoglycans in mature tendons. Tendons [153]
Bgn/lo¥/flox showed alterations in collagen fibril structure, realignment,

and mechanical properties.
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[95] have already helped to decipher the pivotal role of the
master transcription factor Scleraxis for tenogenesis and te-
nogenic differentiation. Following this example, it would be
of importance to continue the efforts generating transgenic
KO mouse models that mimic mutations and diseases ob-
served in humans and to improve our understanding on the
molecular mechanisms behind such conditions.

The most important and remaining challenge in the field
is related to finding specific tendon markers at each devel-
opmental stage. This knowledge would not only contribute
to the obtention of valuable information but also opens the
possibility for the production and generation of drugs that
could ““boost’ tendon healing.
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