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Abstract
Background  Mammographic density is a marker of breast cancer risk and diagnostics accuracy. Density change over time is 
a strong proxy for response to endocrine treatment and potentially a stronger predictor of breast cancer incidence. We devel-
oped STRATUS to analyse digital and analogue images and enable automated measurements of density changes over time.
Method  Raw and processed images from the same mammogram were randomly sampled from 41,353 healthy women. 
Measurements from raw images (using FDA approved software iCAD) were used as templates for STRATUS to measure 
density on processed images through machine learning. A similar two-step design was used to train density measures in 
analogue images. Relative risks of breast cancer were estimated in three unique datasets. An alignment protocol was devel-
oped using images from 11,409 women to reduce non-biological variability in density change. The protocol was evaluated 
in 55,073 women having two regular mammography screens. Differences and variances in densities were compared before 
and after image alignment.
Results  The average relative risk of breast cancer in the three datasets was 1.6 [95% confidence interval (CI) 1.3–1.8] per 
standard deviation of percent mammographic density. The discrimination was AUC 0.62 (CI 0.60–0.64). The type of image 
did not significantly influence the risk associations. Alignment decreased the non-biological variability in density change 
and re-estimated the yearly overall percent density decrease from 1.5 to 0.9%, p < 0.001.
Conclusions  The quality of STRATUS density measures was not influenced by mammogram type. The alignment protocol 
reduced the non-biological variability between images over time. STRATUS has the potential to become a useful tool for 
epidemiological studies and clinical follow-up.

Keywords  Mammographic density · Breast cancer · Risk · Recurrence · Endocrine treatment · Therapy response · 
Longitudinal · Time series

Introduction

High mammographic density is a strong risk factor for 
breast cancer [1]. The density consists of epithelium and 
stroma and is radiographically dense. Epithelium and stroma 
appears bright on a mammogram while the fatty tissue is 
radiolucent and appears dark. Density decrease is also a 
good proxy for therapy response to endocrine therapy, both 
in the preventive [2] and adjuvant settings [3, 4]. However, 
mammograms from the same woman at different time-points 
are not always comparable since dissimilar proportions of 
the breast are sometimes captured in the images. A differ-
ence in density with non-biological meaning could therefore 
be captured. A possible solution is to align images to make 
the amount of breast tissue similar in each image. Cumulus 
is the gold standard to measure mammographic density on 
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analogue mammograms [5]. The drawbacks of Cumulus are 
that it does not account for dissimilar breast proportions in 
the images; it is labour intense, and heavily dependent on the 
reader skill [6]. Several commercial tools measure density 
automated on digital raw mammograms [7]. Raw images 
are available during a short time in the hospital work-flow 
before they are converted to processed images. Most often 
only processed images are stored for future use. Vendors of 
mammography machines use different conversion methods 
which makes processed images from different machines dif-
ficult to compare. Tools are also developed for measuring 
density on processed images [8]. However, there is currently 
no automated tool that measures density of raw and pro-
cessed images regardless of vendor and accounts for techni-
cal difference between images from the same women. This is 
unfortunate since most digital images are stored as processed 
images and precise measures are needed to monitor treat-
ment response and density change over time.

We previously showed that it is possible to measure mam-
mographic density fully automated on analogue film mam-
mograms [9]. Here we present a new algorithm which meas-
ures density on all type of images, regardless of vendor, and 
controls for non-biological differences seen in time series of 
mammograms from the same women.

Method

Three Swedish datasets

The KARMA cohort includes 70,877 women who attended 
mammography screening between January 2011 to March 
2013 at any of four mammography units in Sweden [10]. 
Participants donated blood, answered a web-based question-
naire, and raw and processed digital mammograms were 
stored. Women reported length and weight, family history 
of breast cancer, age at menarche, parity, age at first child, 
menopausal status, and ever use of hormone replacement 
therapy (HRT). Breast cancer cases, invasive and in situ, 
were identified through the Swedish Information Network 
for CAncer treatment (INCA) national quality register.

The population-based LIBRO1 study included invasive 
and in situ breast cancer cases diagnosed between 2001 and 
2008 in the Stockholm area. Frequency matching was used 
to age-match 2443 breast cancer cases with the available 
controls from the KARMA study. The third Swedish study 
was the population-based SASBAC study which included 
1194 women diagnosed with invasive and in situ breast 
cancer between 1993 and 1995, and 1086 controls density 
sampled and frequency matched on age [9]. Pre-diagnostic 
analogue films were collected for all cases, and images clos-
est to recruitment date were collected for the controls. The 

cases and controls in LIBRO1 and SASBAC contributed 
with the same lifestyle factors as was collected in KARMA.

Density measures

In all, 41,353 breast cancer-free women were sampled from 
KARMA with available digital raw and processed images 
from the same mammograms (vendors General Electric, 
Philips, Sectra, Hologic, Siemens, Array Corp.). Mammo-
graphic density was measured on the raw mammograms 
using the FDA approved density measurement tool iCAD 
(iReveal®, Nashua, NH, USA), which served as the reference 
measure for STRATUS. STRATUS analysed 1027 image 
features of the processed and raw images from the same 
mammogram (Supplementary Text 1, [11]). STRATUS fur-
ther learned how to estimate density on the processed images 
using machine learning by relating the 1027 feature variables 
with the known original reference density measure from the 
raw image of the same mammogram (Supplementary Text 
2, [12]). The accuracy of the measurements was tested in 
an independent validation dataset. This two-step procedure 
with training and validation was performed for each type of 
mammogram and mammography machine using up to 4000 
mammograms per machine to generate the density measures.

Density measures for analogue images were developed 
with all available women in the SASBAC study [9]. The 
density measures were trained using the same algorithm as 
for digital images here by learning on one of the breasts and 
validating on the contralateral breast.

Risk estimation and discrimination

Using samples based on augmentation sampling [13] from 
the described datasets, we estimated the association between 
the density measurements derived from different kind of 
images and breast cancer incidence. Cases and controls 
with different types of mammograms were contrasted. The 
first risk estimation was done on a nested case–control study 
sample with a two-year follow-up using the available 433 
incident breast cancer cases age-matched in one-year bands 
with 1732 controls in KARMA (Table 1). The risk associa-
tion was estimated using density measures of the raw and 
processed mammograms, respectively (contrasting raw cases 
to raw controls; processed cases to processed controls). The 
second risk estimation set was defined as the 2443 LIBRO1 
cases age-matched in one-year bands with the available 2999 
controls from KARMA (analogue cases to digital controls). 
The third risk estimation set was defined as the 1194 breast 
cancer cases in LIBRO1 possible to age-match in one-year 
bands with the available 1086 controls from SASBAC (ana-
logue cases to analogue controls).
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Alignment of time series images

The problem with not aligning images becomes evident 
when looking at Fig. 1, Frame A. Two images from the 
same woman have been superimposed on each other. Most 
of the breast is seen in the image showing a green border. 
In contrast, the image with the red border lacks a large part 
of the breast and thereby also a part of the dense area. The 
red outlined breast area is 185 cm2. The corresponding area 
is 197 cm2 for the green outlined breast. In Fig. 1, Frame 
B the two images are aligned, and the two breast areas are 
now 185 cm2.

The tool for aligning images was created using the ImageJ 
program [14] and the TurboReg [15] plugin (Supplementary 
Text 3, [16, 17]).

Two datasets were used to evaluate the tool. For 11,409 
KARMA participants, two mammograms were taken within 
minutes which gave the opportunity to study differences in 
density that possibly could not be due to biological altera-
tions. The reasons for a second mammogram were not given 
in the medical records but we can assume that major reasons 
were technically suboptimal images and identification of 
artefacts. Second, we used all KARMA participants that had 
been through two rounds of negative screens (N = 55,073) 
to test if density measures of aligned images differed from 
the regular density measures. Dense area was measured in 
left or right breast at each screen and the average dense area 
was calculated.

Table 1   Description of the three case–control study samples used to 
calculate risk of breast cancer of mammographic density measured by 
STRATUS

Total women in the three study samples: 2876 cases and 5817 con-
trols
a Digital images
b Analogue images

Characteristics by study sample Cases Controls

KARMA study sample
 Number of participants 433a 1732a

 Age (years), mean (SD) 57.4 (9.2) 57.4 (9.2)
 Ever use of HRT (%) 39 36
 Postmenopausal (%) 65 65
 Family history of breast cancer (%) 19 13

LIBRO1/KARMA study sample
 Number of participants 2443b 2999a

 Age (years), mean (SD) 60.8 (9.5) 60.8 (9.5)
 Ever use of HRT (%) 53 34
 Postmenopausal (%) 92 90
 Family history of breast cancer (%) 20 13

LIBRO1/SASBAC study sample
 Number of participants 1194b 1086b

 Age (years), mean (SD) 63.1 (6.4) 63.1 (6.4)
 Ever use of HRT (%) 54 50
 Postmenopausal (%) 100 100
 Family history of breast cancer (%) 15 8

Fig. 1   Two mammograms of the same breast were taken 2 min apart 
by the same radiographer. In Frame a, the mammograms were super-
imposed to show the difference in breast placement in the mammog-

raphy machine. In Frame b, the two images were digitally aligned 
to the image showing the smallest breast size (outlined with red in 
Frame A) prior to density measurement
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Statistical methods

The agreements between the STRATUS and reference den-
sity measures were investigated using Spearman’s rank cor-
relation coefficient [18] and Bland–Altman fit plot [19].

The differences between the mammographic density 
measures of different mammogram types were investigated 
using least square means of mammographic percent den-
sity adjusted for age, BMI, and two mammography machine 
related factors, i.e. voltage of the X-ray tube and thickness 
of the compressed breast.

The association between mammographic density and 
breast cancer was estimated using conditional logistic 
regression in the three case–control study samples separately 
and in all study samples combined. Three models were con-
structed to assess potential confounders for the risk asso-
ciation. The first model included percent density and age, 
the second model also included BMI, and the full model 
also ever use of HRT, menopause status, and family history 
of breast cancer. The addition of X-ray tube voltage, breast 
thickness, and indicators of mammogram type and study 
sample to the full model did not change the estimates and 
were therefore excluded in the final model.

The odds ratios were calculated per standard deviation 
with 95% Wald confidence intervals. The discrimination per-
formances of the models were calculated with area under the 
receiver operating curve (AUC) and 95% Wald confidence 
intervals.

The effect of image alignment was calculated by first 
subtracting the last measure from the first for aligned and 
non-aligned images, respectively. The density differences 
were further aggregated as means and standard deviations 
for the aligned and non-aligned images. Levene’s test [20] 
and the Student’s t test [21] were used to test for differences 
in standard deviations and means between the aligned and 
non-aligned image measures.

The analysis of the longitudinal density measures was 
performed by first calculating the density change per year for 
aligned and non-aligned images, respectively. The change 
in dense area per year was calculated by subtracting the last 
measure from the first and divide by the number of years 
between examinations. The differences between means and 
standard deviations of density changes in aligned and non-
aligned images were calculated similarly using the Student’s 
t test and the Levene’s test. The density change per year was 
stratified by age and BMI and modelled using non-linear 
regression.

All tests were two-sided with 5% significance level. All 
analyses were performed using the statistical software SAS 
v9.4.

Results

In total, 45,417 women from the KARMA, LIBRO1, and 
SASBAC studies contributed with raw and processed mam-
mograms from nine different types of mammograms from 
six vendors (Supplementary Table 1). The correlations 
between the measures on the raw and processed mammo-
gram were close to 0.9 (Supplementary Fig. 1). The corre-
lations increased with increasing number of images used in 
the density training session and reached Spearman r = 0.933 
(min = 0.923, max = 0.936) with 4000 images per machine. 
The Bland–Altman fit plot showed agreement between the 
raw and processed mammograms and the standardized mean 
difference was 0.01 with standard deviation 0.28 (Supple-
mentary Fig. 2). No significant differences were found in 
mean percent mammographic densities between the nine 
mammogram types after adjusting for age, BMI, X-ray tube 
voltage, and breast thickness, p > 0.05 (Supplementary 
Fig. 3). The same non-significant differences between mam-
mography machines were seen when BMI was substituted 
with breast area as adjustment factor (data not shown).

The density risk association was estimated in three 
case–control study samples (Table 1). The odds ratios for 
percent density in the full model ranged between 1.5 (CI 
1.3–1.7) and 1.7 (CI 1.6–1.8) per standard deviation, and 
the combined odds ratio was OR 1.6 (1.3–1.8) (Table 2).

The discrimination performance of the full model ranged 
between AUC 0.60 (CI 0.57–0.63) and 0.63 (CI 0.60–0.65) 
in the three study samples; and the combined study sample 
AUC was 0.62 (0.60–0.64) (Table 3).

The aligned percent density measures showed signifi-
cantly lower variability compared to the non-aligned per-
cent density measures (SD 8.0 vs. 28.6, p < 0.001) in the 
11,409 women who had two consecutive mammograms 
taken within minutes (Table 4). The aligned percent density 
measures also showed significantly lower yearly decrease 
compared to the non-aligned density measures for the 55,073 
women who had mammograms taken 1–2 years apart, 0.9 
versus 1.5 (SD 4.3 vs. 5.0, p < 0.001), Table 4. In Fig. 2 
the yearly, non-aligned (upper panel) and aligned (lower 
panel), percent density changes were plotted for the 55,073 
women. The blue fitted lines show the yearly average percent 
density change with 95% CI by age at baseline. The green 
curves show the density change stratified by BMI subgroups 
defined at baseline. The biggest difference between aligned 
and non-aligned measures is seen during women’s fertile 
part of life. The yearly mean percent density decreases in 
40-year-old women (N = 2499) was 1.9 (95% CI 1.7–2.2) 
using non-aligned images and 0.7 (95% CI 0.4–0.9) using 
aligned images.
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Table 2   Odds ratios and 95% confidence intervals of breast cancer in three unique case–control study samples contrasting the performance of 
estimates per standard deviation from density measures in processed, raw, and analogue mammograms

a 433 cases and 1732 controls with density measurements from processed mammograms
b 433 cases and 1732 controls with density measurements from raw mammograms
c 2443 cases with density measurement from processed mammograms and 2999 controls with density measurements from analogue mammo-
grams
d 1194 cases and 1086 controls with density measurement from analogue mammograms
e Model 1—percent density and age
f Model 2—percent density, age, and BMI
g Model 3—percent density, age, BMI, ever use of HRT, menopause status, and family history of breast cancer

Case–control study sample Model 1e Model 2f Model 3g

KARMA (processed)a 1.6 (1.5–1.7) 1.7 (1.6–1.8) 1.7 (1.6–1.8)
KARMA (raw)b 1.6 (1.5–1.7) 1.7 (1.6–1.8) 1.7 (1.6–1.8)
LIBRO1/KARMA (processed/analogue)c 1.5 (1.4–1.6) 1.6 (1.4–1.8) 1.6 (1.4–1.8)
LIBRO1/SASBAC (analogue)d 1.5 (1.3–1.7) 1.5 (1.3–1.8) 1.5 (1.3–1.7)
Study samples combined 1.5 (1.3–1.6) 1.6 (1.3–1.8) 1.6 (1.3–1.8)

Table 3   Discrimination 
performance (AUC) and 
95% confidence intervals in 
three unique case–control 
study samples contrasting 
the performance of estimates 
from density measures in 
processed, raw, and analogue 
mammograms

a 433 cases and 1732 controls with density measurements from processed mammograms
b 433 cases and 1732 controls with density measurements from raw mammograms
c 2443 cases with density measurement from processed mammograms and 2999 controls with density 
measurements from analogue mammograms
d 1194 cases and 1086 controls with density measurement from analogue mammograms
e Model 1—percent density and age
f Model 2—percent density, age, and BMI
g Model 3—percent density, age, BMI, ever use of HRT, menopause status, and family history of breast 
cancer

Case–control study sample Model 1e Model 2f Model 3g

KARMA (processed)a 0.59 (0.55–0.63) 0.62 (0.59–0.65) 0.63 (0.60–0.65)
KARMA (raw)b 0.59 (0.55–0.63) 0.62 (0.59–0.65) 0.63 (0.60–0.65)
LIBRO1/KARMA (processed/analogue)c 0.59 (0.55–0.62) 0.60 (0.57–0.64) 0.62 (0.59–0.64)
LIBRO1/SASBAC (analogue)d 0.58 (0.55–0.62) 0.59 (0.55–0.63) 0.60 (0.57–0.63)
Study samples combined 0.59 (0.55–0.62) 0.60 (0.59–0.63) 0.62 (0.60–0.64)

Table 4   Comparison 
of variability in density 
measurements of non-aligned 
and aligned mammograms 
taken at two time-points

a N = 11,409 women with digital images. Images taken on average 1 min apart. Mean age 57 (SD 9,8), BMI 
26 (SD 4.7)
b N = 55,073 women with digital processed images. Images taken on average 2.0 years apart. Mean age 55 
(SD 10.0), BMI 25 (SD 4.2)
c The Levene’s test tested for equality of variances between the measures of aligned and non-aligned mam-
mograms. All density measurement differences were normally distributed
The Spearman rank coefficient r was used to calculate the correlation between the density measurements of 
aligned and non-aligned mammograms. The correlation between measures from aligned and non-aligned 
mammograms taken up to 2 years apart was r = 0.64 for percent density and r = 0.60 for dense area

Time series Non-aligned Aligned p valuec

Mammograms within minutes apart (last minus first)a

 Difference in percent density, mean (SD) 0.3 (20.6) 0.1 (10.4) < 0.001
 Difference in dense area cm2, mean (SD) 0.3 (28.6) 0.0 (8.0) < 0.001

Mammograms up to 2 years apart (last minus first)b

 Yearly change in percent density, mean (SD) − 1.5 (5.0) − 0.9 (4.3) < 0.001
 Yearly change in dense area cm2, mean (SD) − 1.8 (6.8) − 1.8 (6.8) 0.99
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Discussion

We created a tool that enables comparison of mam-
mographic density changes over time without being 
restricted to type of mammogram or technical differences 
between images. STRATUS performs high-throughput 

measurements of mammographic density on mam-
mograms from different mammography machines and 
mammogram types. As a consequence, risk assessments 
were not influenced by type of image when estimated in 
three independent study samples which included a com-
bination of different mammogram types. The alignment 

Fig. 2   Comparison of yearly 
percent mammographic density 
change in 55,073 women with 
aligned and non-aligned mam-
mograms taken at two time-
points 1–2 years apart. The blue 
fitted curve (non-linear regres-
sion) shows the yearly average 
percent density change with 
95% CI. The circled dots show 
the density averages by age at 
baseline. The green curves show 
the density change stratified by 
BMI at baseline for women with 
BMI between 20 and 40
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protocol also reduced the non-biological variability 
between mammograms.

Mammographic density is a strong marker of breast 
cancer risk with a discrimination performance compara-
ble to established risk models, which combine informa-
tion on hormonal exposures and family history of breast 
cancer [22].

There are several reasons for identifying the true density 
change over time. A longitudinal study showed that individ-
ual differences in mammographic density changes over time 
were not associated with breast cancer risk [23]. This result 
was, however, based on non-aligned images. As revealed in 
Fig. 1, technical differences between mammograms influ-
ence the comparison of density measurements over time. 
Figure 2 shows that aligned density measurements capture 
the level and rate of density change different in comparison 
to non-aligned density measures. This is particularly true for 
premenopausal women and this could be a reflection of the 
change in breast size [24], percent density [25], and dense 
area [26] during the menstrual cycle [27]. Breast size is fur-
ther strongly modified by BMI, which means that density 
measures are influenced also by changing BMI over time.

Another reason to study density change over time is that 
density change is a remarkably good proxy for treatment 
response in the adjuvant and preventive setting [28]. Studies 
have shown that a decrease in mammographic density by 
20% during the first two years of adjuvant therapy reduced 
breast cancer mortality by nearly 50% over the subsequent 
15 years [3, 4]. Patients that benefits from adjuvant anti-hor-
monal therapy could therefore be identified. Non-responders 
could also be identified early in the treatment and therefore 
be selected to alternative treatments. Third, breast cancer 
prevention has been demonstrated to reduce breast cancer 
incidence by approximately 50% after tamoxifen treatment 
[2]. A decrease in mammographic density in the first year 
is also here an excellent proxy for a decrease in breast can-
cer incidence in the following years. However, tamoxifen 
treatment is associated with side-effects, similar to meno-
pausal symptoms, and in rare cases endometrial cancer and 
thromboembolism [28]. It is therefore crucial to treat only 
the group of healthy women that respond to therapy and are 
likely to benefit with a decrease in breast cancer incidence.

Several techniques are available for aligning images [29]. 
We tested translation, rigid body, scaled rotation, affine, and 
bilinear transformation. The translation registration method 
was not sensitive to breast tissue overlaying and preserved 
the largest part of the original breast area, and was used in 
the final analysis (Supplementary Text 3). The alignment 
protocol was developed to analyse several mammograms in 
a time series and to not be sensitive to differences in pixel 
intensities between processed and raw or analogue images. 
The alignment technique could potentially also be used for 
Cumulus in a post-processing step, if the reader saved the 

breast area and dense area positioning in the mammograms 
during the measurement procedure.

The strength of our study is that we used a large popu-
lation-based cohort with access to both raw and processed 
images form the same examinations. We also had access 
to repeated and longitudinal measurements from the same 
women. In addition, we could construct case–control study 
samples and combine cases and controls with different type 
of images from three unique Swedish studies.

There should, however, be some caution interpreting our 
findings. Sweden has a well-organised screening program 
with mammograms of high quality. Further studies are 
needed to show how our risk estimates are affected by imag-
ing techniques and radiographer routines in other countries. 
The time from date of mammogram to date of breast cancer 
diagnosis varied between the studies. The average time in 
the KARMA sample was 1.7 and 0.2 years in the other two 
study samples. However, the contralateral breast was used 
for the risk association analyses and the time differences 
seen in this study is not likely to affect the results [30]. The 
proportion of HRT users differed between the studies. HRT 
is positively associated with higher levels of density and may 
have affected the risk estimates. However, HRT was used as 
an adjustment factor in this study and did not seem to affect 
the risk estimates.

The density algorithm for digital mammograms was con-
structed solely on women with no diagnosis of breast cancer, 
while the density algorithm for analogue mammograms was 
developed on an equal number of healthy women and breast 
cancer cases. Although no significant difference was seen in 
the density measures from the two image types, the analogue 
density measures could be more susceptible to capture radio 
dense tissue associated with breast cancer compared to the 
density measures of digital mammograms.

Conclusion

STRATUS is a fully automated tool that measures mammo-
graphic density from mammograms obtained from a vari-
ety of sources (raw and processed digital images, analogue 
films). The added alignment feature provided by STRATUS 
improves longitudinal measurements of mammographic 
density. Given that an increasing number of mammograms 
are stored in the screening and clinical setting, STRATUS-
derived mammographic density can become a useful tool 
for risk prediction and treatment response in research and 
clinical praxis.
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