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Abstract

Alzheimer’s disease (AD) is linked to changes in fMRI task activations and fMRI resting-state 

functional connectivity (restFC), which can emerge early in the illness timecourse. These fMRI 

correlates of unhealthy aging have been studied in largely separate subfields. Taking inspiration 

from neural network simulations, we propose a unifying mechanism wherein restFC alterations 

associated with AD disrupt the flow of activations between brain regions, leading to aberrant task 

activations. We apply this activity flow model in a large sample of clinically normal older adults, 

which was segregated into healthy (low-risk) and at-risk subgroups based on established imaging 

(positron emission tomography amyloid) and genetic (apolipoprotein) AD risk factors. Modeling 

the flow of healthy activations over at-risk AD connectivity effectively transformed the healthy 

aged activations into unhealthy (at-risk) aged activations. This enabled reliable prediction of at-

risk AD task activations, and these predicted activations were related to individual differences in 

task behavior. These results support activity flow over altered intrinsic functional connections as a 

mechanism underlying Alzheimer’s-related dysfunction, even in very early stages of the illness. 

Beyond these mechanistic insights, this approach raises clinical potential by enabling prediction of 

task activations and associated cognitive dysfunction in individuals without requiring them to 

perform in-scanner cognitive tasks.

Keywords

Functional connectivity; Task activation; fMRI; Alzheimer’s; Aging

This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
*Corresponding author. rdm146@rutgers.edu (R.D. Mill).
Author contributions
RDM and MWC conceived of the analysis approach. RDM performed the analysis under the supervision of MWC. BAG and DAB 
designed the task paradigm and coordinated data collection. BAG and DAB arranged access to the data. RDM and MWC wrote the 
manuscript, with feedback received from BAG and DAB.

Declaration of Competing Interest
The authors declare no competing financial interests.

Supplementary materials
Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.neuroimage.2020.117167.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2021 January 15.

Published in final edited form as:
Neuroimage. 2020 November 01; 221: 117167. doi:10.1016/j.neuroimage.2020.117167.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction

Analyzing the synchronization of activity fluctuations in task-free rest is thought to provide 

insight into the brain’s intrinsic network organization (Raichle, 2010; Petersen and Sporns, 

2015). Formalized in the subfield of resting-state functional connectivity (restFC), such 

approaches have primarily been applied to human functional magnetic resonance imaging 

(fMRI) data. As testament to the reproducibility of restFC, convergent network topologies 

have been recovered across different regional atlases (Power et al., 2011; Ji et al., 2019), 

non-fMRI human imaging modalities (Brookes et al., 2011; Kucyi et al., 2018) and non-

human animals (Wang et al., 2013; Stafford et al., 2014). Whilst these findings highlight that 

restFC is reliably observed, debate persists over its cognitive relevance, given that the 

experimentally unconstrained nature of rest raises practical difficulties in separating signal 

from noise (Power et al., 2012; Laumann et al., 2016), as well as theoretical difficulties in 

moving from an exploratory to explanatory understanding of brain network function (Mill et 

al., 2017).

Evidence of restFC’s cognitive relevance comes from clinical research linking restFC 

alterations to pathology (Buckner et al., 2008; Buckholtz and Meyer-Lindenberg, 2012). 

Given the severe prognosis and societal burden of Alzheimer’s disease (AD), much of this 

work has interrogated restFC changes characterizing various forms of healthy and unhealthy 

aging (Andrews-Hanna et al., 2007; Sorg et al., 2007; Ferreira and Busatto, 2013; Geerligs 

et al., 2015a; Ferreira et al., 2016). Burgeoning research focuses on restFC changes in early 

at-risk stages of AD (Hedden et al., 2009; Sheline and Raichle, 2013; Schultz et al., 2017), 

as neurobiological abnormalities such as elevated positron emission tomography (PET) 

measures of amyloid beta may precede clinical impairment by many years (Jack et al., 2010; 

Sperling et al., 2011). Alzheimer’s-related alterations of restFC emerge around the same 

time as elevated amyloid (Sheline and Raichle, 2013) and have been associated with 

presence of the genetic apolipoprotein (APOE) ε4 allele (Sheline et al., 2010), suggesting 

utility of restFC in developing imaging biomarkers to expedite diagnosis and intervention.

Recent reports have extended towards using restFC to quantitatively predict or classify age-

related conditions (Dosenbach et al., 2010; Woo et al., 2017; Du et al., 2018). However, 

reported failures of predictive models in generalizing out-of-sample (Onoda et al., 2017; 

Teipel et al., 2017; Fountain-Zaragoza et al., 2019) highlight limitations of entirely data-

driven approaches to predicting Alzheimer’s-related pathologies, especially as artifactual 

contaminants of restFC can drive clinical group differences (Siegel et al., 2016; Hodgson et 

al., 2017). These findings again call for increased efforts to clarify the cognitive relevance of 

restFC, so as to identify clear mechanisms by which restFC alterations impact on AD and 

other pathologies.

To this end, we recently developed an approach inspired by neural network simulations to 

mechanistically predict task activations from restFC via the concept of activity flow (the 

propagation of task-evoked activity between neural populations; Cole et al., 2016; Ito et al., 

2017). This approach directly interrogates the cognitive relevance of restFC, given that tasks 

are designed to elicit particular cognitive processes. Furthermore, in addition to restFC, 

fMRI task activations are disrupted in various forms of aging (Grady, 2012; Campbell and 
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Schacter, 2017), raising the potential for age-related alterations of restFC and task 

activations to arise from a common activity flow mechanism.

The present report sought empirical evidence for this mechanism (Fig. 1). We hypothesized 

that unhealthy age-related restFC alterations disrupt the ability for activity to flow between 

brain regions, leading to the emergence of dysfunctional task activations. We tested this 

framework in clinically normal older adults, a subset of whom presented positively for PET 

amyloid or APOE risk factors for AD, which were separately used to define ‘at-risk’ 

subjects. We found that activity flow mapping reliably predicted task activations in held-out 

at-risk AD subjects from their pattern of restFC. We extended the approach to accurately 

predict individual differences in task behavior from the model’s predicted activations, 

observing superior performance to using ‘raw’ restFC features that had not been passed 

through the model. These results support activity flow alterations as a mechanism underlying 

age-related dysfunction, even in the earliest stages of AD.

2. Materials and methods

2.1. Participants

The sample comprised 101 right-handed elderly subjects (age mean = 65.1 years, age range 

= 42–82 years, 63 female) collected as part of the Adult Children Study at the Knight 

Alzheimer’s Disease Research Center at Washington University in St Louis (Knight ADRC, 

https://knightadrc.wustl.edu/). All participants gave their informed consent in compliance 

with Washington University’s human subjects guidelines. Full details of behavioral and 

neuroimaging measures acquired by the Knight ADRC project are available in Gordon et al. 

(2015). Subjects included in our sample underwent behavioral (Mini Mental State Exam, 

MMSE; Folstein et al., 1975) and neuropsychological (Clinical Dementia Rating, CDR; 

Morris, 1993) assessment, rest and task fMRI scans, structural MRI scans, 11 [C] Pittsburgh 

Compound B (PiB)-PET imaging for high levels of amyloid beta uptake, and a DNA swab 

testing for presence of the apolipoprotein (APOE) ε4 allele. All subjects were assessed as 

clinically ‘normal’ at the time of recruitment (Mini Mental State Exam, MMSE score > 24; 

Clinical Dementia Rating, CDR=0). All subjects passed the exclusion criteria of high motion 

across runs (subjects with an average absolute movement > 1.50 mm or an average relative 

movement of 0.5 mm were excluded from our sample), presence of neurological damage 

(stroke or traumatic brain injury), and a lag between their fMRI and PiB-PET imaging 

sessions greater than 90 days. Note that this Knight ADRC sample was the largest AD-

related sample available at the time of analysis that had both a sufficient amount of resting-

state data, and data collected from multiple cognitive tasks (both integral to our analyses; see 

Discussion for further on issues relating to sample size in AD research).

2.2. Segregation of sample into at-risk and healthy aged groups

We binarized the APOE ε4 and PiB-PET amyloid beta measures separately to provide 

distinct methods of segregating our sample into ‘at-risk AD’ (i.e. ‘unhealthy’) and ‘healthy’ 

subject groups. This enabled us to test the generalizability of the activity flow mapping 

approach across different ways of identifying at-risk subjects. The APOE segregation was 

created by labeling any subject with at least one APOE ε4 allele as at-risk, and all other 
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subjects as healthy (see Table 1 for demographic information). At-risk subjects were 

identified in the amyloid segregation on the basis of a standardized PiB uptake ratio (SUVR) 

greater than 1.42 (following Jack et al., 2017; Vlassenko et al., 2018; see Section 2.3 for 

details), with the remaining subjects classified as healthy. Note that our definition of at-risk 

AD encompasses both previously adopted at-risk (APOE ε4 genotype) and preclinical 

(elevated PET amyloid) AD categorizations. For brevity, the Results section focuses 

primarily on the APOE segregation due to the larger at-risk group obtained compared to the 

amyloid segregation (see Table 1). However, the pattern of observed results is virtually 

identical for both segregation types (see Supplementary Information section 1.1).

2.3. Data acquisition and preprocessing

MRI data was collected on a Siemens Trio 3T scanner. Anatomical T1-weighted images 

were acquired via a magnetization-prepared rapid gradient-echo sequence (MPRAGE; TR = 

2400 ms, TE = 3.16 ms, flip angle = 8°, field of view = 256 mm, 1 mm isotropic voxels, 

sagittal orientation). Task fMRI images were acquired using an interleaved whole-brain echo 

planar imaging (EPI) sequence (TR = 2000 ms, TE = 25 ms, flip angle=90°, field of 

view=256 mm, 4 mm isotropic voxels, 36 slices in interleaved sagittal orientation). Task 

fMRI data was collected for two tasks (see next section for paradigm details): semantic 

animacy (2 runs, 303 volumes each) and color Stroop (2 runs, 295 volumes each). Resting-

state fMRI images were acquired using a similar EPI sequence (TR = 2200 ms, TE = 27 ms, 

flip angle = 90°, field of view = 256 mm, 4 mm isotropic voxels, 36 slices in interleaved 

sagittal orientation; 2 runs, 164 volumes each). Separate dual-echo gradient-recalled echo 

(GRE) fieldmaps were also acquired to correct b0 distortions in the task and rest EPI images 

respectively.

The full analysis pipeline is depicted in the flowchart in Fig. 2. T1 images were segmented 

using Freesurfer (Fischl, 2004). fMRI preprocessing was conducted in FSL using the FEAT 

toolbox (Woolrich et al., 2001). Subjects’ task and rest fMRI images underwent motion 

correction, fieldmap b0 unwarping, slice timing correction, linear coregistration to their 

anatomical T1 and non-linear normalization to an age-appropriate MNI template (created 

from a separate large sample of demographically matched older adults; Gordon et al., 2015). 

Subsequent analyses were conducted at both the regionwise and voxelwise levels. For the 

regionwise analyses, task and rest timeseries were extracted from 264 regions from the 

Power functional atlas (Power et al., 2011). For the voxelwise analyses, timeseries were 

extracted from all gray matter voxels. Nuisance regression was performed for the 

regionwise/voxelwise timeseries via general linear models (GLMs), which included 

regressors for 6 motion parameters, white matter and ventricular timeseries, and their 

temporal derivatives. The GLM fit to the task fMRI data also included regressors for the two 

tasks (see next section for details). Note that the main results were virtually identical if a 

regressor modeling the global signal (GSR) was included in the task and rest GLM, and if 

high motion timepoints were scrubbed from the rest GLM (see Supplementary Information 

section 1.1.; note that high motion subjects were also excluded from the sample, see Section 

2.1). The residual timeseries from the rest GLM and the beta activation amplitudes from the 

task GLM were used for the main activity flow mapping analyses. The voxelwise beta 
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activation maps were spatially smoothed using non-Gaussian nearest-neighbor averaging (at 

4 mm), which reduces spatial autocorrelation compared to Gaussian smoothing.

Full details about PiB-PET acquisition in the Knight ADRC project was provided previously 

(Su et al., 2013). Briefly, after injection of the PiB tracer subjects underwent 60 min 

dynamic PET imaging scans using a Siemens 962 HR+ ECAT scanner. A summary measure 

of whole-brain PET amyloid was estimated from anatomical atlas regions identified from 

Freesurfer segmentations of each subject’s T1 image (using the ‘wmparc’ segmentation; 

Fischl, 2004). Errors in the Freesurfer segmentation were identified and corrected manually. 

The Freesurfer regions of interest were then aligned to the native PET images, and the 

standardized uptake value ratio (SUVR) was computed as the median PiB uptake at each 

region relative to a cerebellar reference (following Rousset et al., 2008; Su et al., 2015). 

SUVR was averaged across regions to provide a summary measure of whole-brain PET 

amyloid deposition, which was then binarized to label at-risk AD and healthy subjects for 

the Amyloid segregation (whole-brain SUVR > 1.42 = at-risk; Vlassenko et al., 2018).

2.4. Experimental design and fMRI task activation estimation

The design of the two tasks is depicted in Fig. 3a. Each task was briefly practiced by 

subjects just prior to their fMRI sessions. Both tasks involved word stimuli presented in a 

block design, with the presentation format and durations matched closely across them. There 

were 2 runs of each task, each alternating between 4 task blocks (containing 24 trials with 

jittered intertrial intervals) and 5 rest intervals. The semantic animacy task preceded the 

color Stroop task, and required subjects to judge whether individually presented words 

referred to living or nonliving things. Words used in this task were balanced across living/

nonliving categories in terms of length, orthographic neighborhood and frequency. The color 

Stroop task required participants to judge whether words were presented in a red or blue 

font; the words’ meaning was either ‘congruent’ with the font color (e.g. the word ‘red’ in 

red font), ‘incongruent’ (e.g. the word ‘blue’ in red font), or ‘unrelated’ to color (e.g. the 

word ‘deep’ in red font). Stimulus classes for both tasks were balanced within task blocks 

(e.g. equal numbers of living and non-living words were presented for each animacy task 

block, in a randomized order). For the resting-state fMRI scans, subjects lay passively in the 

scanner with their eyes open. fMRI task activation amplitudes were estimated via GLM in 

Matlab. In addition to nuisance regressors (see previous section), the task GLM included two 

regressors modeling blocks for each task as box-cars convolved with the canonical 

hemodynamic response function (using the ‘spm_hrf’ function from the SPM toolbox). 

GLMs were fit to the regionwise and voxelwise timeseries data separately, and the resulting 

beta amplitude estimates were used in all analyses involving fMRI task activations.

2.5. Resting-state functional connectivity estimation

The residual timeseries from the rest fMRI GLM were used to estimate restFC. Fig. 3b 

illustrates the approach, which involves an optimized form of multiple linear regression with 

principal component analysis (PCA) dimensionality reduction. Multiple linear regression 

has been used for activity flow mapping previously (Cole et al., 2016), with a primary 

benefit over alternative FC estimation methods being the removal of indirect connections. 

For example, an underlying ground truth FC pattern with connectivity between regions A-B-
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C would incorrectly yield connections between A-C if using Pearson correlation, but not 

multiple linear regression.

The optimization of multiple linear regression FC was performed for each individual subject, 

with the goal of maximizing the inter-session stability of restFC, and hence prevent 

overfitting to noise. The latter may arise from multiple linear regression using the maximum 

number of principal components permitted by the data, given that some components will 

reflect noise rather than neural signal. Our optimization approach varied the number of 

principal components included in the regression in a cross-validation scheme that maximised 

the similarity of the restFC pattern across the two resting-state runs for each subject.

Specifically, for a ‘target’ brain region j (see Fig. 3b), a PCA projection was performed for 

all ‘source’ regions i→n excluding that target (i.e. spatial PCA on an input matrix where 

timepoints = observations and source regions = variables). The number of principal 

component scores (ncomps) retained after this step was iteratively varied from 1 to the 

maximum permitted (i.e. 164 timepoints per rest run minus 1 = 163 max ncomps). The 

retained PCA scores were then used in a multiple linear regression predicting the target j 

timeseries, with the resulting coefficients multiplied by the PCA loadings to obtain betas 

capturing resting-state connectivity between region j and all other regions i (pcaβij in Fig. 

3b). This process was repeated for all target regions j to populate the (asymmetric) region x 

region restFC matrix for each rest run. The similarity between the run 1 and run 2 restFC 

matrices was finally calculated as the Pearson correlation between all off-diagonal matrix 

elements, with this entire process repeated on each ncomps cross-validation loop. The 

optimized ncomps value was chosen as that yielding the maximum FC similarity between 

rest runs, whilst also accounting for greater than 50% of the variance explained in the source 

region PCA (averaged across all PCAs performed for each target region, for each 

optimization loop). This PCA variance explained constraint served as a hyperparameter 

ensuring that FC stability was maximized without excluding signal components accounting 

for meaningful variance. Note that we did not explore any other values for this 

hyperparameter to reduce the chance of overfitting to noise in the data. Hence, each subject 

had a different optimized ncomps value (mean ncomps across subjects = 10.26, std = 6.88; 

mean restFC similarity = 0.58, std = 0.09; mean source PCA variance explained = 63.90%, 

std = 10.85). This optimized ncomps value was entered when computing the final restFC 

estimates for each target region for that individual subject, with the resulting restFC matrix 

used for further analyses.1

A separate restFC optimization was performed for the voxelwise analyses following an 

almost identical approach, wherein target voxels j were predicted by the PCA projection of 

source voxels i. The only modifications were the exclusion of spatially proximal voxels from 

the source voxel set (i) i.e. voxels from the same functional region as the target voxel and all 

voxels within 9 mm of that functional region were excluded. Functional region affiliations 

were identified from the Gordon functional atlas (Gordon et al., 2016), as this parcellation 

1Note that the final restFC matrix for each subject was computed after concatenating timeseries across both resting-state runs. This 
step is non-circular, given that the optimization across sessions was performed as a preliminary step to maximize restFC stability for 
each subject, rather than to directly optimize any analyses that we report inferential statistics for (e.g. the strength of the activity flow 
mapping predictions).
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provides regional affiliations for every gray matter voxel in the brain, unlike the Power 

functional atlas which only provides affiliations for 10 mm diameter spheres. This exclusion 

step reduced the inflation of activity flow mapping predictions by spatial autocorrelation of 

the fMRI BOLD response.2

2.6. Machine learning classifications using restFC and task activation features

We trained multivariate machine learning classifiers to distinguish between healthy and at-

risk subjects, separately on the basis of regional restFC and regional task activation features. 

We employed a minimum-distance classification approach, which is related to 

representational similarity analysis (Kriegeskorte et al., 2008; Mur et al., 2009; Diedrichsen 

and Kriegeskorte, 2017; Hebart and Baker, 2018; Spronk et al., 2018). To increase the 

sample size for classifier training, we concatenated at-risk subjects across both APOE and 

amyloid segregation types, yielding a combined at-risk group size of 40. Given that the 

healthy group was larger (n = 61), we selected a random subset of 40 subjects from the 

healthy group to ensure that training was performed on balanced group sizes (as 

recommended e.g. in Poldrack et al., 2019). To probe the robustness of the classification 

results, we employed two distinct approaches to cross-validation: a k-folds approach (90% 

of subjects assigned to training and 10% to testing over 10 folds, with each test fold 

containing equal numbers of healthy/at-risk subjects uniquely assigned to each fold) and a 

leave-two-subjects-out approach (two unique subjects assigned to testing on each loop, one 

from each healthy/at-risk group to ensure perfectly balanced group sizes during training, as 

recommended e.g. in Poldrack et al., 2019). These cross-validation approaches yielded an 

identical pattern of classification results, highlighting robustness of the between-group 

differences (see Results).

Features for the restFC classification were the off-diagonal elements from each subject’s 

restFC matrix (264 × 264 regionwise connections), as estimated via the optimized regression 

approach described above. Features were first z-scored within subjects. Given the high 

dimensionality of restFC (69,432 connections), we performed a feature selection step at the 

start of each training/testing loop to remove outlier connections (i.e. features contributing 

noise to the classification of AD group status; Thung et al., 2018). Consistent with statistical 

outlier identification approaches, noisy connections were identified from the z-scored 

standard deviations of each connection across training set subjects (i.e. connections with z-

score standard deviation > 4.5 were removed). The held-out test subjects were excluded 

from this step to prevent circularity. Note that the pattern of classification results was highly 

similar when varying this z-score threshold hyperparameter at > 4 or > 5. After feature 

selection, at-risk and healthy group restFC templates were computed by averaging features 

for each group separately (again, excluding the held-out test subjects). Pearson correlation 

was used as a distance metric to assess the similarity between the test subjects and both 

templates, with binary classification decisions set by comparing whether the test subjects’ 

restFC was more similar to the unhealthy group (yielding an ‘unhealthy’ classification) or 

2Note that applying this PCA regression FC approach at the voxel scale was computationally intensive: 32424 gray matter voxels * 2 
rest runs * 163 PCA ncomps = 10570224 regressions for the initial optimization process; followed by 32424 gray matter voxels * 1 
concatenated rest run * 1 optimal PCA ncomps = 32424 regressions to estimate the final FC matrix; applied to each subject separately. 
The procedure therefore required parallel computation of individual subjects using a high performance computing cluster.
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healthy group (‘healthy’ classification) template. Decisions were averaged across test 

subjects to estimate classification accuracy.

The approach to the machine learning classification using task activations was almost 

identical to the restFC classification. Given the low dimensionality of the regional 

activations, we used all 264 activation features without performing feature selection. 

Separate classifications were performed for the two fMRI tasks, as well as after averaging 

activations across the two tasks for each subject to promote ‘task general’ activation 

features.

In all cases, significance of the classification accuracies was assessed by a permutation 

testing approach, wherein the observed accuracy for a given classifier was compared to a 

permuted null distribution of classification accuracies generated from scrambled group 

labels (over n = 1000). P values were generated as the proportion of permuted accuracies 

that exceeded the observed ones (alpha = 0.05). This permutation testing approach ensured 

that significantly above-chance classification performance was not driven by random noise 

in the sample, increasing confidence that the groups meaningfully differed in terms of their 

restFC and activation patterns. Note that the pattern of classification accuracies was identical 

when using binomial tests against 50% chance.

2.7. Activity flow mapping approach

Fig. 1b provides an abstract depiction of our activity flow mapping approach that predicted 

task activations in at-risk AD subjects. Fig. 3c provides a more practical guide to 

implementing the procedure, which can also be formalized as a matrix equation:

Pj = ∑
i ≠ j ∈ V

AiFij

where i and j index source (predictor) and target (to-be-predicted) regions respectively, Pj is 

the predicted task activation for an at-risk subject at a target j, Ai is the healthy group 

activation for the same task (the average over GLM betas estimated for the healthy subjects) 

at a source i, and Fij is the restFC between i and j. Hence, for an at-risk subject, task 

activations in target regions j were predicted by the dot product of two vectors (both of 

length n regions - 1): the healthy group activation in the sources i (which excludes j) and the 

at-risk subject’s restFC between j and i. To clarify, the Fij vector is taken from the subject’s 

full restFC matrix estimated via the PCA multiple regression approach (described in Section 

2.5), which excludes self-connections on the diagonal and is oriented appropriately to 

capture the influence of sources i predicting the resting-state timeseries of the target j (rather 

than vice versa, given the asymmetry of the regression-based restFC matrix). The restFC 

estimates thus weight the ability for activity to flow between regions, as indicated by the 

variable width of the red lines in Fig. 1b. Iterating through all target brain regions populated 

a predicted task activation vector for each at-risk AD subject (see Fig. 3c). The accuracy of 

the activity flow predictions was then assessed by computing the overlap (Pearson 

correlation) between the predicted task activation vector and the actual activation vector. 

This was done both after averaging predicted and actual activations across subjects (group-

level overlap) and for each subject’s individual vectors (subject-level overlap).
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Statistical significance of the prediction accuracy was assessed in both parametric and non-

parametric fashion. For parametric statistics, the significance of the group-level overlap was 

indexed by the p value accompanying the Pearson correlation. The subject-level significance 

was assessed in a random effects approach, with the overlap r values for each subject 

transformed to Fisher-z values and submitted to a one-sample t-test against 0. We also 

conducted non-parametric permutation tests to: i) demonstrate the importance of region-to-

region correspondence between the healthy group activation and at-risk subject restFC terms 

to the prediction accuracy, and ii) deal with any violation of the independence assumption in 

the parametric statistics. The latter is a possibility given that each region’s activation 

prediction is made on the basis of dot product operations between task activation and restFC 

terms, which involve overlapping regions that could introduce dependency. Hence for 1000 

permutations, the group healthy activation term and the rows of each at-risk subject’s restFC 

matrix were shuffled. Activity flow predictions were then computed from the dot product of 

these shuffled terms as described above, ultimately generating permuted group-level and 

subject-level overlap r values. Significance was assessed by calculating the proportion of 

permuted r values that were higher than the observed values (group- and subject-level), at an 

alpha threshold of 0.05.

Activity flow mapping was applied separately for each task and at-risk AD group 

segregation type (APOE and amyloid; see Table 1). The procedure was virtually identical for 

both the regionwise and voxelwise analyses (i.e. replace ‘region’ with ‘voxel’ in the matrix 

equation above). For the voxelwise analyses, accompanying the exclusion of nearby voxels 

from the restFC estimation for a given voxel (see Section 2.5), we also excluded the same set 

of source voxels from the group healthy activation vector when computing the activity flow 

prediction for that target voxel. Combined with use of non-Gaussian smoothing, this step 

prevented inflation of activity flow predictions by fMRI BOLD spatial autocorrelation 

amongst proximal voxels.

We also applied a ‘two-cycle’ variant of this general approach, wherein the predicted at-risk 

task activations obtained from the standard ‘one-cycle’ approach described above were 

multiplied by subjects’ restFC a second time (see Supplementary Information section 1.4 

and Figure S3). This was theoretically motivated to enhance the ability for activity flow 

mapping to transform the healthy activation state to an at-risk AD (unhealthy) activation 

state (see Fig. 1a), and hence improve the prediction accuracy.

To clarify, the task activation term for this activity flow model is taken from the healthy 

group, whereas the restFC term is taken from each to-be-predicted at-risk AD subject (see 

Fig. 1b and Fig. 3c). This represents a modification to the original activity flow mapping 

approach (Cole et al., 2016), wherein both activation and restFC terms were taken from the 

to-be-predicted subject. This modification permits application of the procedure in cases 

where task fMRI data is unavailable or difficult to acquire for a given subject, which raises 

clinical utility. The fact that the activation and FC terms are derived from separate subjects 

(as well as separate task/rest sessions) also avoids any direct correspondence of the first-

order activation and second-order FC moments.
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2.8. Activity flow prediction of dysfunctional activations: regressing-out approach

The previous section describes our approach to using activity flow mapping to predict task 

activations in at-risk subjects. We also extended the approach to more directly model AD 

dysfunction i.e. task activation differences between the at-risk and healthy groups. To 

achieve this, we used a regression approach in which we took the activity flow-predicted 

activations for each at-risk subject, and regressed out the group healthy task activation from 

each one (see flowchart Fig. 2, and commented analysis code provided via Section 2.11). 

After this operation, the residual activation vector reflects differences between the healthy 

group and that at-risk subject (scaled by the constant in the regression). We also regressed 

out the group healthy activation from the actual activation for the same at-risk subject. This 

enabled comparison (via Pearson correlation) of the overlap between the predicted and 

actual dysfunctional activation vectors. Statistical significance of the overlap was assessed 

by both parametric and non-parametric (permutation) tests, applied to the group-level and 

subject-level overlap. This approach was repeated for both the regionwise and voxelwise 

data (again, excluding nearby voxels from the activation and restFC terms that generate the 

voxelwise predictions).

The permutation test approach was similar to that described in the previous section: 

scrambled group healthy activation and subject at-risk restFC vectors were generated for 

each to-be-predicted at-risk subject. Activity flow was then computed from these terms, with 

the same unscrambled group healthy activation vector regressed out of the predicted and 

actual activations prior to computing their overlap at both the group level (after averaging 

activations across subjects) and the subject level (for each individual subject). This generated 

a permuted distribution of activity flow mapping prediction overlap (over 1000 

permutations), to which the observed group-/subject-level overlap was compared at an alpha 

threshold of 0.05.

2.9. Activity flow prediction of dysfunctional activations: contrast image approach

As an alternative method of predicting dysfunctional task activations (to the regressing-out 

approach described in Section 2.8), we used activity flow mapping to generate a predicted 

between-group contrast image that captured activation differences between the at-risk and 

healthy groups (see flowchart Fig. 2). We focused on the voxelwise data for this analysis as 

this spatial scale provides the most visually interpretable results, and as this is typically the 

scale at which between-group contrast images are analyzed in fMRI research. The actual 

healthy task activations and the predicted at-risk activations were firstly z-scored (within 

subjects) to more clearly recover the activation patterns. The average of the healthy 

activations was then subtracted from the average of the predicted at-risk activations. The 

resulting ‘predicted contrast image’ directly indexed how activations at each brain voxel 

differed in the at-risk relative to the healthy group. This predicted contrast image was 

correlated with the ‘actual contrast image’ (the averaged actual at-risk activation minus the 

averaged healthy activation) to assess how accurately task activation dysfunction was 

captured.

To correct for any inflation of the contrast image overlap induced by subtracting the same 

vector (healthy group activation) from two other vectors (predicted and actual at-risk group 
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activations) that are subsequently correlated, we used a non-parametric permutation 

approach to generate a more appropriate null than overlap r = 0. Over 1000 permutations, we 

generated activity flow-predicted task activations based on scrambled group-averaged 

healthy activation and scrambled at-risk subject restFC terms (as per the permutation tests 

described in previous sections). From the resulting scrambled predicted group at-risk 

activation, we subtracted the unscrambled group healthy activation. This permuted predicted 

contrast image was correlated with the observed (unscrambled) actual contrast image. 

Significance of the observed overlap values was assessed against this permuted null 

distribution at an alpha threshold of 0.05.

We also conducted a thresholded version of the voxelwise contrast image analyses. A 2-

sample t-test contrasting the actual at-risk activations versus the actual healthy activations 

was used to identify the most highly dysfunctional voxels in the actual data. A ‘predicted’ 

version of this 2-sample t-test was also computed by contrasting predicted at-risk activations 

versus the healthy activations. Prediction overlap was assessed by correlating the actual at-

risk t-statistic vector with the predicted t-statistic vector, after confining to the most highly 

dysfunctional voxels in the actual data (identified by thresholding the actual t-statistic vector 

at p <.001 uncorrected). Significance was assessed by a non-parametric permutation 

approach, wherein a null overlap distribution was generated by randomly selecting a 

matched number of voxels from the predicted t-statistic vector and correlating with the 

(unscrambled) actual thresholded t-statistic vector over 1000 iterations. Significance of the 

observed overlap r values was assessed against this null distribution at an alpha level of 0.05.

2.10. Using the activity flow-predicted activations to model individual differences in task 
behavior

We assessed whether task activations predicted by the activity flow approach were able to 

accurately model individual differences in task behavior (see flowchart Figs. 2 and 4). To 

increase the sample size for this analysis (as recommended for individual differences 

research, Brydges, 2019), we used activity flow mapping to generate predicted task 

activations for the healthy subjects in analogous fashion to the procedure for at-risk subjects. 

Specifically, a group activation template was created by averaging the healthy group 

excluding the to-be-predicted healthy subject, and the dot product was computed between 

this activation template and that healthy subject’s restFC. The resulting predicted healthy 

task activations were concatenated with the predicted at-risk task activations to increase the 

sample size to 101.

We then trained a regression model to predict task behavior from the activity flow-predicted 

activations (see Fig. 4). We used cross-task reaction time as the behavioral outcome measure 

for these analyses (see Table 1 for cross-task RT and accuracy information). We began by z-

scoring RT across trials for each subject, as recommended previously to account for each 

subject’s characteristic processing speed (Faust et al., 1999). These z-scored RT values were 

then averaged across all trials (correct and incorrect) for each subject, for each task 

separately. To focus the model on prediction of cross-task RT, the first principal component 

across RT for the two tasks was estimated for a given subject and this was used as their final 

behavioral outcome measure.
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After these preprocessing steps, leave-one-subject-out cross-validation was used for model 

training. Given that the number of features (264 regional activations) exceeded the number 

of subjects (100 in each training set), we first performed feature dimensionality reduction by 

averaging the regional activations according to each region’s network affiliation (determined 

by the Power functional atlas, Power et al., 2011), yielding 13 network-averaged activation 

features for each task, for each subject. These dimensionality reduction steps circumvented 

rank deficiency problems that would arise if the number of features was greater than the 

number of subjects (i.e. observations). The first principal component across the two task 

activation vectors was taken for each subject, meaning that cross-task RT (1st component 

across animacy and stroop tasks, PCA estimated across all 101 subjects) was predicted from 

cross-task predicted activations (1st component across animacy and Stroop task activations, 

PCA estimated separately for each subject).

Within each training loop, the activation features and behavioral RT outcomes were z-scored 

using the means and standard deviations from the training set (to prevent circularity). The 

RT scores (Y) were then regressed onto the activation features (X) in the training set, with 

the beta coefficients of the resulting model used to predict the held-out test subject’s RT. 

Behavioral prediction accuracy was finally quantified as the Pearson correlation between the 

predicted and actual RT scores, with significance assessed via the accompanying p values 

(alpha = 0.05 uncorrected). To demonstrate robustness of the approach, separate models 

were trained across all ways of identifying at-risk subjects: amyloid, APOE, and the 

concatenation of at-risk subjects across amyloid and APOE.

For comparison, the above regression approach was repeated to generate behavioral 

predictions using i) the actual task activations as features (network-averaged, as with the 

predicted activations), and ii) ‘raw’ restFC features that had not been passed through the 

activity flow model to simulate task activations. For the latter, an analogous feature 

dimensionality reduction approach to that used for the predicted/actual activations was 

devised, wherein restFC was averaged across all connections for each individual network. 

This graph theoretic measure has previously been described as ‘global brain connectivity’ 

(GBC; Cole et al., 2012) or ‘unthresholded weighted degree centrality’ (Rubinov and 

Sporns, 2011). In this case, GBC was averaged across regions within each network to yield 

13 restFC features in total (identical to the number of features in the activation-based 

behavior models).

2.11. Data and code availability

Analysis code used in the present report is available from the following public repository: 

https://github.com/ColeLab/AgingActflow_release. This includes the Matlab functions used 

for estimation of multiple regression FC (with PCA optimization, Section 2.5), prediction of 

task activations via activity flow mapping (Section 2.7; which also optionally applies the 

‘regressing-out’ dysfunction prediction approach described in Section 2.8), and modeling of 

individual differences in behavior (Section 2.10). Requests for neuroimaging and clinical 

data should be submitted to the Knight ADRC (as described here https://

knightadrc.wustl.edu/Research/ResourceRequest.htm).
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3. Results

3.1. Evidence of at-risk Alzheimer’s-related dysfunction: behavioral

To reiterate our sample’s screening criteria, none of the included subjects met clinical 

criteria for full Alzheimer’s-related behavioral impairment: Mini Mental State Exam 

(MMSE) scores were greater than 24, and Clinical Dementia Ratings (CDR) were 0 

(negative dementia diagnosis). However, analysis of the MMSE scores revealed that the at-

risk group was behaviorally impaired compared to the healthy group, even in this sub-

clinical range (see Table 1 for MMSE means and standard deviations across groups). MMSE 

scores were significantly lower for the at-risk group across both APOE (2-sample t-test 

healthy > at-risk: t(99) = 2.20, p =.030) and amyloid (t(99) = 2.32, p =.022) segregation 

types.3 Overall, these results support the presence of sub-clinical Alzheimer’s-related 

behavioral dysfunction in the at-risk AD subjects, which activity flow mapping attempted to 

capture.

3.2. Evidence of at-risk Alzheimer’s-related dysfunction: restFC and task activation 
classifications

To further demonstrate dysfunction in the at-risk versus healthy group, we trained 

multivariate machine learning classifiers to discriminate between the two groups separately 

on the basis of regional restFC and regional task activation features. We used a minimum-

distance classifier with two distinct forms of cross-validation to demonstrate robustness (see 

Methods; Poldrack et al., 2019). To increase the sample size for classifier training, these 

analyses collapsed across at-risk subjects identified in either APOE or amyloid segregation 

types (yielding at-risk n = 40).

The restFC classifier achieved significantly above-chance accuracy in discriminating 

between at-risk and healthy groups via k-folds cross-validation (60% mean accuracy; 62.5% 

sensitivity in classifying ‘at-risk’, 57.5% specificity in classifying ‘healthy’; p =.021 via 

permutation test, null classification mean = 50.1%). Classifiers trained via k-folds to 

discriminate based on task activation features yielded above-chance accuracy for the 

animacy task (68.8% accuracy; 72.5% sensitivity, 65% specificity; p <.001, null mean = 

50%) but not the Stroop task (53.8% accuracy; 60% sensitivity, 47.5% specificity; p =.253, 

null mean = 49.9%). A separate classifier was trained to discriminate on the basis of ‘task 

general’ activation features identified by averaging across the two tasks for each subject, 

yielding significantly above-chance accuracy (62.5% accuracy; 65% sensitivity, 60% 

specificity; p =.005, null mean = 50.1%). Note that the pattern of performance was identical 

when using a distinct leave-two-subjects-out cross-validation approach: restFC classification 

mean accuracy = 61.3%, p =.016; animacy task activation accuracy = 66.3%, p <.001; 

Stroop task activation accuracy = 56.3%, p =.097; task general activation accuracy = 66.3%, 

p =.002.

Overall, the classification results revealed reliable differences between the at-risk and 

healthy groups in terms of their restFC and task activations. Taken in isolation, these 

3Note that these between-group MMSE differences were only marginally significant when using the more conservative Wilcoxon 
ranksum test: z = 1.68, p =.093 (collapsed across segregation types).

Mill et al. Page 13

Neuroimage. Author manuscript; available in PMC 2021 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



findings help to address the previously highlighted dearth of machine learning classification/

prediction approaches applied to at-risk Alzheimer’s samples versus more commonly 

studied mild cognitive impairment (MCI) samples (Rathore et al., 2017; Liu et al., 2018). 

Our results demonstrate statistically reliable between-group classification even at this earlier 

stage of AD. Considered with the between-group MMSE differences reported above, this 

validates the presence of meaningful dysfunction in the at-risk AD group. This supports the 

ensuing analyses of primary interest, in which we apply our theory-driven activity flow 

mapping approach to model this AD-related dysfunction.

3.3. Activity flow mapping accurately predicts task activation patterns in held-out at-risk 
AD subjects

Activity flow mapping was firstly applied to predict at-risk AD task activations at the region 

level (Fig. 5a). For the APOE segregation, the group-level predicted-to-actual activation 

overlap was significant for both the animacy task (Pearson r = 0.68, p <.00001) and the 

Stroop task (r = 0.70, p <.00001). Significance was maintained when computing the overlap 

at the subject level (treating subjects as a random effect, see Methods) for both the animacy 

task (mean r = 0.24, t(32) = 7.80, p <.00001) and the Stroop task (mean r = 0.18, t(32) = 

6.84, p <.00001).4 Visual inspection of the commonalities across the predicted and actual 

regional vectors (see Fig. 5a) highlights the cross-task recovery of the canonical task-

negative deactivation of the default mode network (DMN) and task-positive activation of the 

cognitive control networks (CCNs; including the frontoparietal control network, FPN, 

cingulo-opercular network, CON, dorsal and ventral attention networks, DAN and VAN).

Non-parametric permutation tests were also conducted to demonstrate the importance of 

region-to-region correspondence between the activation and restFC terms to the activity flow 

predictions, and deal with any violation of the independence assumption in the parametric 

tests (see Methods). The pattern of results obtained with this non-parametric approach was 

identical to that obtained with parametric methods: for the APOE segregation, prediction 

overlap was significant at both the group level (p <.001 for both tasks) and the subject level 

(p <.001 for both tasks).

Activity flow mapping was extended to predict task activations at every voxel in the brain 

(Fig. 5b). To prevent circularity arising from spatial autocorrelation of fMRI data, voxels 

within the same functional region as the to-be-predicted region were excluded as well as all 

voxels within a 9 mm radius of that region (see Methods). The overlap between the group-

averaged predicted and actual voxelwise activations was significant for both tasks: animacy r 
= 0.46, p <.00001; Stroop r = 0.47, p <.00001. Significant prediction accuracy was 

maintained when computing the voxelwise overlap at the subject level (as per the regionwise 

analyses above): animacy r = 0.13, t(32) = 6.20, p <.00001; Stroop r = 0.09, t(32) = 4.76, p 
<.0001. We also conducted permutation tests for the voxelwise analyses following the same 

rationale as the regionwise results. This yielded an identical pattern as the parametric 

4Note that the lower subject-level prediction accuracy for the Stroop versus the animacy task was found to be statistically significant 
(via paired ttest of the fisher-transformed r values): t(32) = 2.39, p =.023. This is consistent with the Stroop activations being less 
related to AD dysfunction in this cohort, as suggested by the lower accuracy obtained when classifying group status from the actual 
Stroop activations (see section 3.2).
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voxelwise results: prediction overlap was significant at both the group level (p <.001 for 

both tasks) and the subject level (p <.001 for both tasks). Visual inspection of the common 

activation patterns across the predicted and actual voxelwise brainmaps (see Fig. 5b) again 

demonstrates cross-task recovery of canonical task negative (DMN regions e.g. bilateral 

precuneus, posterior cingulate, angular gyrus and ventromedial prefrontal cortex) and task 

positive (CCN regions e.g. bilateral anterior cingulate, superior frontal gyrus, lateral 

prefrontal cortex and inferior parietal cortex) activations by the activity flow mapping 

procedure.

Similarly high prediction accuracy was obtained when activity flow was applied to at-risk 

AD subjects identified by the amyloid segregation (see Supplementary Information section 

1.1). In the Supplementary Information (see section 1.2), we also report a “pairwise 

network ” variation of the approach that generated task activation predictions from specific 

networks one at a time, which highlighted prominent involvement of DMN and FPN 

networks in driving activity flow in these at-risk subjects. Overall, the results demonstrate 

accurate prediction of task activations in held-out at-risk subjects by activity flow mapping, 

as estimated at the group and subject level, at regionwise and voxelwise spatial scales, across 

two distinct cognitive tasks and across two distinct ways of identifying at-risk AD subjects.

3.4. Activity flow over at-risk AD restFC transforms a healthy aged activation state into an 
unhealthy one

We next sought more direct evidence that activity flow over an at-risk pattern of restFC 

transforms a healthy activation state into an at-risk one (see Fig. 1a). To clarify, the extent to 

which the activity flow model makes accurate predictions of at-risk AD activations is 

determined by how successfully the model transforms the healthy activation template (via at-

risk restFC) into the actual at-risk activation (see Fig. 6a). We formally tested this 

transformation hypothesis by comparing the similarity between each at-risk subject’s 

predicted activation with i) the group healthy activation versus ii) the actual group at-risk 

activation. If the similarity of the predicted-to-actual at-risk activation was reliably greater 

than the similarity of the healthy-to-actual at-risk activation, this would support a 

mechanistic link between altered restFC and the emergence of dysfunctional task 

activations. The actual group at-risk activations were averaged after excluding the to-be-

compared at-risk subject. The analysis yielded a pair of Pearson r values for each subject (at-

risk task similarity r and healthy task similarity r, averaged across the two tasks), which were 

Fisher-transformed and contrasted via a paired-sample t-test.5

As expected, the predicted at-risk activations were significantly more similar to the actual at-

risk group activation than to the actual healthy group activation (Fig. 6b displays the Pearson 

r difference values). This held for both the APOE segregation (actual at-risk > actual healthy 

similarity, paired-sample t(32) = 4.74, p <.001) and the amyloid segregation (t(19) = 2.41, p 
=.026). These results are noteworthy given that the group healthy activation vector is the 

only activation term the model has access to when predicting at-risk AD subject activations 

(see Fig. 1b). That the activity flow-predicted activations are actually more similar to the 

5Note that this corresponds to a random effects (subject RFX) approach to significance assessment that takes subject variance into 
account. The same approach was employed for the conceptually similar analyses detailed in Sections 3.5 and 3.6.
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actual at-risk group activation hence provides compelling evidence of the power of restFC 

alone in transforming healthy into unhealthy activation states. In the Supplementary 

Information (section 1.4), we demonstrate that this transformation can be further enhanced 

by implementing two cycles of multiplying the healthy activation template with the at-risk 

subject’s restFC.

3.5. Activity flow mapping activation predictions are task-specific

To further validate the accuracy of activity flow mapping, we interrogated whether the 

predicted activations captured features specific to the to-be-predicted task. This property is 

particularly desirable when applied in clinical contexts, as it enables prediction of brain 

activations in different tasks designed to isolate different cognitive processes and associated 

impairment (rather than solely capturing task-general activation patterns).

For each at-risk AD subject, we compared the similarity (Pearson r) of their predicted 

activations to i) the group actual at-risk activation for the same task versus ii) the similarity 

to the group actual at-risk activation for the other task. To clarify, to conduct the analysis for 

the animacy task, we would compute the similarity of the predicted animacy activation for 

an at-risk subject to the group-averaged actual at-risk animacy activation (same task), and 

compare this to the similarity to the group-averaged actual at-risk Stroop activation (other 

task). Both at-risk group activation templates (same task and other task) excluded the at-risk 

subject from which the predicted activation is taken. This yielded a pair of Pearson r values 

for each subject (same task similarity r and other task similarity r, each averaged across the 

two tasks), which were Fisher-transformed and contrasted via paired-sample t-test.

The results reveal that the activity flow-predicted at-risk subject activations were 

significantly more similar to the actual at-risk group activation for the same task than the 

other task (Fig. 6c displays the Pearson r difference values). This held for both the APOE 

segregation (same > other task similarity, paired-sample t(32) = 5.80, p <.001) and the 

amyloid segregation (t(19) = 5.89, p <.001).

3.6. Activity flow mapping activation predictions are subject-specific

As another demonstration of prediction accuracy and potential clinical utility, we sought 

evidence that the activity flow-predicted activation for a given at-risk subject was more 

similar to i) the actual activation for that same subject versus ii) the activation of other at-

risk subjects in the sample. For each at-risk AD subject we compared the similarity between 

their predicted task activation and their actual task activation (same subject similarity) versus 

the similarity with the actual task activations of all other at-risk subjects (other subject 

similarity). The similarity r values computed with the other subjects were averaged to yield 

one ‘other subject’ similarity r value, which was contrasted with the ‘same subject’ 

similarity r value via paired t-test (after Fisher-z transform).

The results confirmed that the activity flow-predicted task activation for a given at-risk 

subject was significantly more similar to their own actual activation pattern (Fig. 6d displays 

the Pearson r difference values): APOE segregation (same > other subject similarity, paired 

t(32) = 2.85, p =.008), amyloid segregation (t(19) = 3.04, p =.007). This illustrates the ability 

of the activity flow framework to capture individualized aspects of at-risk AD task activation 
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patterns. This again enhances the framework’s potential clinical utility, given considerable 

recent biomedical research interest in modeling individual differences to develop 

personalized medicine interventions (Matthews and Hampshire, 2016). Consistent with the 

mechanism proposed to underlie our framework, we employed a similar approach to 

demonstrate the particular utility of subject-specific restFC in generating accurate 

individualized task activation predictions (see Supplementary Information section 1.3).

3.7. Isolation of dysfunctional task activation predictions by regressing out healthy 
activations

Thus far, we have demonstrated high accuracy of activity flow mapping when used to 

predict task activations in at-risk AD subjects. This prediction did not directly characterize 

how the activation patterns differed between at-risk and healthy subject groups. 

Demonstrating that activity flow mapping is able to accurately capture such differences is 

desirable for the aim of modeling dysfunction in AD (and other pathologies). To achieve 

this, we regressed out the actual group healthy task activation from both the predicted and 

actual task activations for each at-risk subject (see Methods 2.8 and flowchart Fig. 2). The 

overlap computed between the predicted and actual residual vectors hence indexed the 

ability for activity flow to capture differences between the healthy group and that at-risk 

subject.

For the APOE segregation, group overlap between predicted and actual dysfunctional 

activations was significant for both the animacy task (Pearson r = 0.35, p <.00001) and the 

Stroop task (r = 0.32, p <.00001). Significant overlap was maintained when treating the 

subjects as a random effect, for both the animacy task (mean r = 0.13, p <.00001) and the 

Stroop task (mean r = 0.07, p =.004).6 As with the main activity flow mapping results 

(Section 3.3), we also assessed the significance of the ‘dysfunction’ predictions via non-

parametric permutation tests (see Methods 2.8). This yielded an identical pattern of results to 

the parametric statistics: dysfunctional prediction overlap was significant at the group level 

(p <.001 for both tasks) and the subject level (p <.001 for the animacy task, p =.005 for the 

Stroop task). The pattern of results was identical for the amyloid segregation type (see 

Supplementary Information section 1.1).

We also predicted task activation dysfunction at every gray matter voxel in the brain. The 

voxelwise overlap between predicted and actual dysfunctional activations was significant for 

both the animacy task (Pearson r = 0.29, p <.00001) and the Stroop task (r = 0.18, p 
<.00001). Significant overlap was maintained when treating the subjects as a random effect 

for both the animacy task (mean r = 0.09, p <.00001) and the Stroop task (mean r = 0.07, p 
<.001). The pattern of significance was identical via non-parametric permutation tests 

(following the same rationale as the regionwise analyses), for both the group-level (p <.001 

for both tasks) and subject-level overlap (p <.001 for both tasks). Overall, these findings 

6Note that the lower subject-level accuracy in predicting dysfunctional activations for the Stroop versus the animacy task was found to 
be statistically significant (via paired ttest of the fisher-transformed r values): t(32) = 2.39, p =.023. Extending the significant cross-
task differences in the main activity flow predictions (see footnote Section 3.3), this suggests the Stroop activations were less related to 
AD dysfunction in this cohort, consistent with the lower accuracy obtained when classifying group status from the actual Stroop 
activations (see Section 3.2).
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support the ability of activity flow mapping to capture activation differences between the at-

risk and healthy groups, suggesting utility in modeling AD-related dysfunction.

3.8. Prediction of between-group contrast images also captures task activation 
dysfunction

The preceding section described our use of activity flow mapping to predict at-risk AD task 

activations directly linked to clinical dysfunction. As an alternative to the regressing-out 

approach, we generated between-group contrast images capturing voxelwise task activation 

differences between the at-risk and healthy subjects (see Methods 2.9 and flowchart Fig. 2). 

This was done both using the activity flow-predicted at-risk activations (predicted contrast 

image = group predicted at-risk minus group healthy) and the actual at-risk activations 

(actual contrast image = group actual at-risk minus group healthy). The predicted-to-actual 

contrast image overlap was quantified via Pearson correlation as before. A non-parametric 

permutation approach was used to assess significance whilst controlling for any inflation of 

the overlap correlation by the subtraction of the group healthy activation (see Methods 2.9).

For the APOE segregation, the overlap between the predicted and actual contrast images was 

r = 0.39 and r = 0.30 for the animacy and Stroop tasks respectively (see Fig. 7). Both overlap 

correlations were significant versus the permuted null (p <.001 for both tasks). A 

thresholded version of these analyses confined the predicted-to-actual contrast image 

overlap to only those voxels that significantly differed in the actual contrast image map (via 

2-sample t-test at p <.001 uncorrected, see Methods 2.9 for details). This also yielded 

significant overlap: animacy r = 0.53, p <.001 (via non-parametric permutation test, see 

Methods 2.9); Stroop r = 0.67, p <.001. This demonstrates that activity flow mapping is able 

to accurately predict the multivariate pattern amongst the most highly dysfunctional 

voxelwise task activations in the at-risk AD subjects. Overall, the generation of between-

group contrast images via activity flow mapping raises another potentially fruitful clinical 

application by providing visually interpretable activation dysfunction brain maps. However, 

in the Supplementary Information we report only modest overlap in peak dysfunctional loci 

identified across the actual and predicted images. This highlights a limitation in a univariate 

extension of our model that will need to be addressed by future refinements (see 

Supplementary Information section 1.5 and Figure S4 for more details).

3.9. Activity flow-predicted activations capture individual differences in task behavior

Thus far we have demonstrated the ability of the activity flow model to accurately predict 

task activations and task activation dysfunction in at-risk AD subjects. Critically, applying 

the model does not require in-scanner task performance from those individual subjects. We 

extended the approach by using the activity flow-predicted task activations to model 

individual differences in behavior (i.e. task reaction time, RT; see Fig. 2). Linking imaging 

measures to behavior (and behavioral impairment) is increasingly recognized as integral to 

clinical biomarker development (Rosenberg et al., 2016; Woo et al., 2017).

We first adapted activity flow mapping to generate predicted activations for the healthy 

subjects (see Methods 2.10 for details), so as to increase our sample size as recommended 

for individual differences analyses (Brydges, 2019). This yielded accurate predictions of task 
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activations in the healthy group, both for the APOE (animacy group overlap r = 0.65, Stroop 

group r = 0.71, both p <.00001) and amyloid (animacy group r = 0.66, Stroop group r = 

0.72, both p <.00001) segregations.

After concatenating activity-flow predicted activations across the healthy and at-risk groups, 

we next trained regression models to predict cross-task behavioral RT from cross-task 

predicted activation features (after averaging regional activations into networks; see Methods 

Section 2.10 and Fig. 4 for details). The accuracy of the behavioral predictions was assessed 

by computing the overlap (Pearson r) between the predicted and actual RT scores. 

Regression models trained on activity-flow predicted activations were able to reliably model 

behavior and this held across different approaches to segregating at-risk subjects: amyloid 

overlap r = 0.20 (p =.041), APOE overlap r = 0.19 (p =.055), concatenated (amyloid or 

APOE) overlap r = 0.21 (p =.038). The results using the predicted activations are 

comparable (albeit numerically weaker) to those obtained when using the actual activations 

as features in the regression: actual activation overlap r = 0.31 (p =.002). Notably, when the 

regression approach was adapted to use the actual restFC information as features (using a 

network-averaged GBC measure of restFC, see Methods), no reliable prediction of 

behavioral RT was observed: restFC overlap r = 0.05 (p =.600).

Overall, this demonstrates the utility of the activity flow approach in reliably modeling 

individual differences in task behavior from subjects’ predicted activations. Again, critically, 

this link to task behavior was achieved without requiring the model to have access to the 

subjects’ actual fMRI task activations (rather, only their restFC). This highlights an optimal 

use-case for applying the activity flow approach in clinical contexts: when actual task fMRI 

data was not collected for a given subject/s, yet modeling their activations on that task and 

how they relate to behavior (and associated cognitive deficits) is desired. This raises clinical 

potential as the absence of fMRI data for a specific task (indeed, often any task) is a 

common occurrence in clinical datasets, given the need to minimize overall scan time to 

ensure participant comfort and lower costs. We demonstrate here that modeling of 

behavioral performance in such cases can be improved when using activity flow-simulated 

activation features rather than the ‘raw’ restFC features. Note that even though behavioral 

prediction accuracy was qualitatively similar when using predicted or actual task activation 

features (in that both surpassed statistical significance thresholds), future refinements of the 

activity flow approach should target quantitative improvements to reach the higher accuracy 

of the actual activation model (see Discussion for future directions for activity flow model 

refinement).

4. Discussion

We report the first extension of the activity flow framework (Cole et al., 2016) to a clinical 

context: modeling dysfunction in individuals at risk for Alzheimer’s disease. The framework 

was applied in an elderly sample segregated into at-risk and healthy subgroups based on 

established AD risk factors (presence of APOE ε4 or high PET amyloid). These group 

definitions were validated by demonstration of reliable group differences in behavior 

(MMSE) and reliable multivariate machine learning classifications of group status based on 

restFC and regional task activations. To model the emergence of this observed dysfunction, 
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activity flow mapping was used to predict activations in held-out at-risk subjects (and held-

out brain regions/voxels) from their individual pattern of restFC altering a healthy task 

activation template. This procedure accurately predicted at-risk AD activations across 

different cognitive tasks, neural spatial scales, and at-risk segregation types, illustrating its 

robustness. Follow-up analyses confirmed key mechanistic properties of our framework: 

healthy activations were transformed by the individual pattern of at-risk restFC alone, and 

this transformation was improved by a second cycle (see Supplementary Information 1.4). In 

support of the framework’s clinical utility, activation predictions were statistically reliable at 

the individual level, and captured task-specific and subject-specific signatures. Activity flow 

mapping remained accurate when predicting overtly dysfunctional activations (those that 

differed for at-risk versus healthy subjects), and was extended to reliably model individual 

differences in task behavior using the predicted task activations.

Our findings have three broad implications. Firstly, the success of activity flow mapping 

provides empirical evidence for a mechanistic role of restFC in defining the pathways over 

which activity flows across the brain and, therefore, pathways underlying activity 

dysfunction. Secondly, our findings highlight the potential of applying activity flow mapping 

to predict features of AD-related pathology. Thirdly, these results provide theoretical 

insights that can guide ongoing efforts to optimize the use of restFC to predict/classify 

disease features more generally.

The first implication relates to much needed insight into the cognitive relevance of restFC, 

which has been questioned given the experimentally unconstrained nature of rest (Mill et al., 

2017). A role for connectivity in driving the emergence of task activations has long been 

formalized in computational models (Hodgkin and Huxley, 1952), and empirically 

demonstrated by local circuit neurophysiology linking connectivity to synaptic modulation 

of action potentials (Laughlin and Sejnowski, 2003; Fries, 2005). A similar role for synaptic 

connectivity in weighting paths of information propagation across computational ‘layers’ 

has been a unifying property of neural network simulations of cognitive function 

(McClelland and Rogers, 2003; Battaglia et al., 2012).Importantly, the success of activity 

flow mapping suggests restFC as a large-scale analogue of such synaptic processes, 

corroborating its utility in mapping intrinsic network organization (Raichle, 2010). By 

extension, incorporating network connectivity is likely central to achieving a full theoretical 

understanding of how the brain activates during cognitive processing. This goes against the 

historical isolation of connectivity and task activation studies into separate neuroscientific 

subfields, and instead promotes their mechanistic unification via activity flow. Future 

research applying activity flow mapping to more direct measures of neural activity than the 

fMRI BOLD response (e.g. human electrocorticography or source-modeled electro-/

magnetoencephalography) could substantiate this association between restFC and synaptic 

processes.

Our findings build on previous successful demonstrations of activity flow mapping (Cole et 

al., 2016; Ito et al., 2017) by extending the approach to a clinical context. Our focus on AD 

was motivated by its grim prognosis, raising an urgent need to develop imaging biomarkers 

that can aid early diagnosis and intervention. It was also motivated by the strong evidence 

base (relative to other disorders; Fox and Grecius, 2010; Woo et al., 2017) characterizing 
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restFC and task activation alterations in at-risk (Hedden et al., 2009; Sheline and Raichle, 

2013; Oh et al., 2016) and later stages of AD (Grady, 2012; Ferreira and Busatto, 2013; 

Campbell and Schacter, 2017). Considered with the accuracy of our restFC-based machine 

learning classification of at-risk subjects (previously highlighted as an understudied AD 

group compared to later-emerging MCI samples; Liu et al., 2018), the success of activity 

flow in the present sample strengthens previous staging models of AD risk factors (Jack et 

al., 2010;Sheline and Raichle, 2013). These suggest that restFC alterations emerge many 

years prior to clinical impairment.

Critically, rather than studying restFC alterations separately from task activations, the 

activity flow framework unifies both measures mechanistically (Fig. 1). The notion that 

individual variation in task activations is associated with individual variation in restFC has 

been raised previously (Chan et al., 2017), and we extend this theoretical association towards 

a formalized computational model that generates accurate task activation predictions in held-

out subjects. The model affords a synthesis of the practical benefits of acquiring resting-state 

data (e.g. reducing overall scanner time, enabling imaging assays for clinical samples unable 

to perform in-scanner tasks) with clearer theoretical grounding via linking to task activations 

and associated cognitive function.

The practical benefits of using restFC in the activity flow approach extends to not requiring 

FC weights in our model to be estimated from task data (i.e. taskFC). Our present use of 

restFC over taskFC is further motivated by documented methodological issues in separating 

real taskFC from spurious coactivation effects (Cole et al., 2019), as well as overall modest 

influences of task states in explaining FC network topology versus larger influences of stable 

group and individual factors captured by restFC (Gratton et al., 2018; see also Geerligs et 

al., 2015b). Nevertheless, it remains to be seen whether taskFC when available, and when 

correctly estimated from task fMRI data of sufficient quality (Gratton et al., 2018), can 

improve prediction accuracy of the activity flow model.

Future research will also need to clarify the chronology of restFC alterations relative to the 

emergence of PET amyloid and other AD signatures (e.g. tau deposition; Jones et al., 2016, 

2017). Relatedly, recent demonstration that connectivity at an earlier timepoint (5 years of 

age) predicts the location of fMRI task activations associated with later development of 

reading ability (assessed at 8 years of age; Saygin et al., 2016), suggests potential to use 

activity flow to predict task activation dysfunction well in advance of its actual emergence. 

This would have clear clinical utility, and calls for the extension of the activity flow 

framework to predict timecourse features of AD (i.e. onset, prognosis). A prerequisite to this 

endeavor is the furthering of recent attempts (e.g., the Alzheimer’s Disease Neuroimaging 

Initiative, ADNI) to collect longitudinal data in larger elderly samples spanning the full 

spectrum of AD-related pathology: healthy aged, at-risk, MCI, and post-AD onset. The latter 

point is pertinent given recent work highlighting the utility of training predictive models in 

larger samples to ensure their generalizability (Poldrack et al., 2019). This recommendation 

is at odds with the present paucity of large AD neuroimaging datasets that also collect 

sufficient resting-state and multi-task data. Indeed, the present Knight ADRC sample was 

the largest AD-related sample available to us at project commencement that had both 

sufficient amounts of resting-state fMRI data and data from multiple tasks (both 
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prerequisites for our analyses). Hence, despite the inherent difficulties in collecting 

elderly/AD-related samples, improving data collection practices should be prioritized 

moving forwards.

In interrogating the general utility of activity flow for clinical neuroscience, another 

promising avenue would be to extend the approach to pathologies beyond AD. Theoretically, 

activity flow modeling can be applied to any meaningful categorization of unhealthy and 

healthy subgroups, given that it makes predictions on the basis of the unhealthy subjects’ 

restFC altering a healthy group activation template. Notably, the mechanistic basis of the 

activity flow framework (Cole et al., 2016) differentiates it from other more data-driven 

‘fingerprinting’ approaches with similar predictive aims (Rosenberg et al., 2016; Saygin et 

al., 2016; Tavor et al., 2016; Lin et al., 2018). These approaches use abstract coefficients to 

translate an individual’s connectivity profile into predicted task activations (or behavior), as 

estimated via intensive optimization/cross-validation during model training. Such abstract 

data-driven provisions risk a lack of theoretical grounding (‘neuroscientific validity’), which 

has been highlighted as an obstacle to integrating connectivity-based predictive models into 

clinical practice (Stephan et al., 2015; Matthews and Hampshire, 2016; Woo et al., 2017). In 

contrast, the activity flow model assumes that the whole-brain activation state translates a 

connectivity profile into a task activation, consistent with the proposed mechanism of neural 

activity (and associated cognitive information) propagating across paths defined by restFC. 

Another limitation to a reliance on data-driven optimization is the evidenced risk of 

overfitting to noise in the training set (Onoda et al., 2017; Teipel et al., 2017; Fountain-

Zaragoza et al., 2019). Whilst the need to test the generalizability of connectivity-based 

predictive models across out-of-set samples and scanner sites also applies to activity flow, it 

is possible that an increased emphasis on neuroscientific theory (e.g. use of the healthy 

activation template rather than abstract coefficients) will not only ease translation of models 

to the clinic, but also quantitatively improve their generalizability.

Nevertheless, it is worth highlighting that the reported activity flow results serve more as a 

proof-of-concept at this stage rather than a ready-to-implement clinical protocol. Future 

extensions specifically targeting improvement in the individualized (subject-level) prediction 

accuracy will be necessary to elevate variance explained to clinically useful thresholds. To 

this end, some of the optimization methods adopted in the more data-driven fingerprinting 

approaches cited above may be integrated with activity flow mapping (e.g. nested cross-

validation of restFC estimation parameters to optimize prediction accuracy). Critically, such 

optimization is only advocated if it complements the model’s underlying theory. Indeed, the 

observed improvement in subject-level prediction accuracy with the two-cycle activity flow 

approach (see Supplementary Information 1.4) highlights potential for future optimization 

that is theoretically grounded (in this case, by similar transformations operationalized in 

neural network models). Collecting higher quality fMRI data (e.g. higher spatiotemporal 

resolution sequences, Smith et al., 2013), longer resting-state scan durations per subject 

(Gordon et al., 2017) and encompassing multiple scanner sites (Woo et al., 2017), all serve 

as important data acquisition refinements that may also improve individualized prediction 

accuracy. Overall, the present findings favor a synergistic approach, wherein the theoretical 

constraints imposed by the activity flow framework allow for considered optimization of 
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predictive frameworks whilst mitigating the risk of overfitting, potentially enabling better 

generalization in large out-of-set populations.

In pursuing these extensions of activity flow mapping, it is worth reiterating the practical 

benefits of the approach: predictions of cognitive task activations (and associated 

dysfunction) are made without having subjects actually perform in-scanner tasks. The 

resulting task activation predictions show promise for use in a variety of clinical contexts: to 

expedite diagnosis, identify targets for stimulation-based intervention (Fox et al., 2014; 

Reinhart and Nguyen, 2019), and for longitudinal assessment of prognosis/response to 

intervention (He et al., 2007). The reported preliminary success of activity flow mapping 

hence provides a theoretical foundation for future developments in the use of restFC as a 

clinical biomarker, aiding the realization of long-upheld goals of incorporating functional 

neuroimaging measures in personalized medicine applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Theoretical and methodological principles underlying application of activity flow mapping 

in an integrated connectivity-activity account of at-risk Alzheimer’s disease (AD). a) 

Abstract theoretical underpinnings of activity flow mapping – which is based on the core 

mechanism underlying neural network simulations – in a clinical context. A ‘healthy’ aged 

task activation pattern is transformed into an ‘unhealthy’ aged activation (i.e. one associated 

with being at-risk for developing AD) by an altered pattern of resting-state functional 

connectivity (restFC) in at-risk subjects disrupting the ability for task activations to flow 

between brain regions. b) Methodological formalization of the activity flow mapping 

approach. Task activation in a held-out brain region (j) in a held-out at-risk AD subject is 

predicted from the dot product between the healthy activation state of the rest of the brain 

(regions i, estimated as the mean activation in the healthy group) and the restFC between i 

and j (estimated from the to-be-predicted at-risk subject). See Methods for further details.
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Fig. 2. 
Flowchart depicting full analysis pipeline. Relevant Results section numbers are also 

provided. Note that generating predicted activations via the main activity flow mapping 

procedure is the basis for the majority of presented analyses. “regs ”=regressors; 

“ML ”=machine learning; “pred ”= predicted; “RT = reaction time ”; “alt. ”=alternative.
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Fig. 3. 
Task design, restFC estimation and activity flow mapping implementation. a) Design 

schematic for the two fMRI tasks: semantic animacy and color Stroop. See Methods for a 

detailed description. Example trials are depicted for each task, with the hand symbol 

denoting the correct response. ‘ITI jitter’ = intertrial interval jitter, which ranged from 1 to 9 

s in increments of 2 s. b) Approach to estimating restFC for each subject using an 

‘optimized’ form of multiple linear regression with PCA dimensionality reduction. After 

extraction of BOLD rest timeseries from functional regions-of-interest (panel i, color-coded 

according to network affiliations from the Power et al., 2011), restFC was estimated for each 

subject via a regression model predicting target j region timeseries from the principal 

components of the remaining source i region timeseries (panel ii). The stability (i.e. matrix 

similarity) of the restFC solutions across the 2 runs was optimized for each subject via a 

cross-validation scheme that is described in Method Section 2.5 . ‘ncomps’ = the number of 

principal components from the PCA of the source i timeseries included in the regression 
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model predicting j. This is the term that is varied as part of the restFC optimization. c) 
Practical implementation of activity flow mapping approach. Note that the restFC term used 

to generate the activity prediction for a given region/voxel j is a single row from that at-risk 

AD subject’s restFC matrix (color-coded in the Figure according to the Power network 

affiliations). ‘subject RFX’ = quantification of prediction accuracy via a subject-level 

random effects approach (see Methods for details).
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Fig. 4. 
Procedure for modeling individual differences in task behavior (reaction time, RT). Note that 

this approach was applied for the model of primary interest that used activity flow-predicted 

task activations as input features, as well as for the alternative models it was compared to 

(i.e. the actual activation features model, and the ‘raw’ restFC features model; see Methods 

2.10 for details). “obs ”= observations, “pred ”= predicted.
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Fig. 5. 
Activity flow mapping results for the prediction of task activations in at-risk AD subjects, as 

identified by the APOE segregation. a) Group-averaged predicted and actual task activation 

vectors for the regionwise analysis, and their overlap (Pearson r). Network affiliations for 

each region from the Power et al. (2011) atlas are provided in the color-coded bar to the left: 

MOT = motor network, CON = cingulo-opercular network, AUD = auditory network, DMN 

= default mode network, VIS = visual network, FPN = fronto-parietal control network, SAL 

= salience network, SUB = subcortical network, VAN = ventral attention network, DAN = 

dorsal attention network. b) Group-averaged predicted and actual task activation brain maps 

for the voxelwise analysis, and their overlap (Pearson r). All regionwise and voxelwise 

activations were z-scored for visualization purposes.
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Fig. 6. 
Activity flow mapping recovers salient task activation properties in at-risk AD subjects. a) 
Schematic demonstration of the transformation analysis: operation with at-risk subject 

restFC transforms a healthy task activation into an at-risk (unhealthy) one. This is 

formalized as the at-risk predictions having greater similarity with the actual at-risk group 

template versus the healthy group template. Panels b-d follow a similar approach of 

computing the Pearson r similarity between the predicted at-risk subject activations with two 

activation templates (denoted for each analysis by the panel legends), followed by group-

level contrasts of the resulting two similarity values (after Fisher-z transform) via paired t-
test. All plots represent the mean +/− the standard error of the paired similarity r difference 

values (the box) and the minimum/maximum (the whisker), with individual data points 

overlaid (r difference values for each at-risk subject). All panels depict results across the 

APOE (left plot) and amyloid (right plot) segregation types. Difference r values with boxes 

above zero suggest recovery of effects in the anticipated direction for each panel. P-values 

reflect paired t-tests contrasting the similarity r values across conditions (equivalent to one-

sample t-tests contrasting the paired difference r values against 0). b) Activity flow mapping 

transforms healthy into at-risk activations: the similarity between the predicted at-risk 

activations for each subject was compared with group-averaged templates of the actual at-

risk and actual healthy activations. c) Activity flow mapping captures activation patterns that 

are specific to a given task. Similarity of predicted at-risk activations to actual at-risk 

Mill et al. Page 34

Neuroimage. Author manuscript; available in PMC 2021 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activations from the same task was compared to similarity with the actual at-risk activation 

from the other task (both group templates). d) Activity flow mapping captures activation 

patterns that are specific to a given subject. Similarity of the predicted activations for a given 

at-risk subject to the actual activations for that subject was contrasted with similarity to the 

actual activations for the other at-risk subjects (averaging the r values across these other 

subjects).
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Fig. 7. 
Generation of between-group activation contrast images via activity flow mapping. Predicted 

(left panel) and actual (right panel) contrast images for the animacy task (upper panel) and 

Stroop task (lower panel) are depicted for the APOE segregation, along with the predicted-

to-actual contrast image overlap (both r values p < .001 via permutation test, see Results for 

details). Activation differences were generated as group averaged predicted/actual at-risk 

AD minus group averaged healthy, and were z-scored for visualization purposes.
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Table 1

Demographic information for the two at-risk AD segregation approaches: APOE and amyloid. MMSE = Mini 

Mental State Exam scores; Std = standard deviation; RT = mean cross-task reaction time (in ms); zRT = mean 

cross-task reaction time after z-scoring across trials; Acc = task accuracy (in%).

Segregation type

APOE Amyloid

Group At-risk Healthy At-risk Healthy

Size (n) 33 68 20 81

Age (years) Mean 64.67 64.76 70.30 63.36

Range 53–78 42–82 55–82 42–79

Gender (n female) 20 43 15 48

MMSE Mean 28.97* 29.50* 28.80* 29.46*

Std 1.51 0.91 1.58 1.00

Cross-task RT Mean 859.65 868.88 876.68 863.19

Std 108.26 97.10 121.99 95.07

Cross-task zRT Mean −0.0074 −0.0073 −0.0069 −0.0074

Std 0.021 0.012 0.019 0.014

Cross-task Acc Mean 96.63* 97.63* 96.28* 97.56*

Std 2.91 1.43 3.42 1.50

*
= at-risk versus healthy group comparison is significant at p < .05 (via paired ttest computed for a given segregation type).
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