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Abstract: Purpose of review: To provide an update on paraneoplastic cerebellar degeneration (PCD),
the involved antibodies and tumors, as well as management strategies. Recent findings: PCD repre-
sents the second most common presentation of the recently established class of immune mediated
cerebellar ataxias (IMCAs). Although rare in general, PCD is one of the most frequent paraneoplastic
presentations and characterized clinically by a rapidly progressive cerebellar syndrome. In recent
years, several antibodies have been described in association with the clinical syndrome related to
PCD; their clinical significance, however, has yet to be determined. The 2021 updated diagnostic
criteria for paraneoplastic neurologic symptoms help to establish the diagnosis of PCD, direct cancer
screening, and to evaluate the presence of these newly identified antibodies. Recognition of the
clinical syndrome and prompt identification of a specific antibody are essential for early detection
of an underlying malignancy and initiation of an appropriate treatment, which represents the best
opportunity to modulate the course of the disease. As clinical symptoms can precede tumor diagnosis
by years, co-occurrence of specific symptoms and antibodies should prompt continuous surveillance
of the patient. Summary: We provide an in-depth overview on PCD, summarize recent findings
related to PCD, and highlight the transformed diagnostic approach.

Keywords: paraneoplastic cerebellar degeneration; immune-mediated cerebellar ataxias; paraneoplas-
tic syndromes; onconeuronal antibodies; Yo-antibody; Tr/DNER-antibody; mGluR1-antibody

1. Introduction

Paraneoplastic cerebellar degeneration (PCD) is a rare disorder but represents the
second most frequent paraneoplastic presentation, as well as the second most common
immune-mediated cerebellar ataxia (IMCA) [1–3]. The first documentation of a patient
with PCD originates from Brouwer, who described the association of cerebellar ataxia
with ovarian cancer in 1919 [4]. Since this first description, several important discoveries
have been made. In 1983, Greenlee and Brashear were the first to describe the association
between PCD and antibodies directed against cerebellar Purkinje cells, also known as Yo-
antibodies, in a patient with ovarian carcinoma [5]. This landmark study demonstrated the
autoimmune nature of PCD and paved the way for the discovery of further antibodies in
patients with PCD such as Hu-, Ri-, and Ma2-antibodies and their association with specific
malignancies [1]. Based on these findings, PCD was defined as a remote effect of cancer
with an autoimmune pathogenesis [6]. The autoimmune response is thought to be elicited
when proteins restricted to immune privileged neurons are presented by the underlying
malignancy [7,8]. In general, two different mechanisms seem to be important for the
development of autoimmunity in PCD. In the majority of patients with PCD, cytotoxic T-
cell responses seem to play a crucial role [8–10]. Associated antibodies are directed against
intracellular antigens and may not be directly pathogenic but rather biomarkers for the
condition [6]. In some patients with PCD, however, antibodies against neural cell surface or
synaptic proteins, e.g., P/Q-type voltage-gated calcium channels-(VGCC) and metabotropic
glutamate receptor 1-(mGluR1) antibodies, can be detected [11–13]. These antibodies are
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thought to be directly pathogenic, as they cause receptor blockage and internalization
which results in symptoms such as cerebellar ataxia [14]. Patients typically present with a
rapidly progressive cerebellar syndrome, which is defined by progression to pancerebellar
dysfunction within three months [8]. Clinical presentation and antibody detection can
precede the diagnosis of an associated cancer in 60 to 70% [15–17]. Furthermore, a strong
association between specific antibodies, neurologic syndrome, and cancer type exists [8].
Therefore, the combination of clinical symptoms and the presence of a specific antibody
should direct the cancer search. Malignancies typically associated with PCD are small cell
lung cancer (SCLC), gynecologic and breast cancer, as well as Hodgkin lymphoma [18].
By definition, diagnosis of PCD requires the exclusion of a direct (e.g., metastasis) or
indirect (e.g., coagulopathy) cancer involvement as well as the exclusion of other metabolic,
iatrogenic, or infectious causes [3,6]. Diagnostic criteria and screening recommendations
have been published, which should guide clinical decision making when a patient presents
with a rapidly progressive cerebellar syndrome [6]. When PCD is suspected, treatment
should be initiated as soon as possible and includes acute immunotherapy, oncologic
treatment, and maintenance immunotherapy. Outcome is typically poor, but differences
exist, as patients presenting with antibodies against cell surface/synaptic proteins respond
well to acute immunotherapy [19].

Over the past years, several new antibodies that associate with a rapidly progressive
cerebellar syndrome have been identified [6]. Furthermore, new diagnostic criteria to diag-
nose paraneoplastic syndromes including PCD, as well as a new classification on IMCAs,
have been published [6,20]. This review gives an in-depth overview on PCD, summarizes
recent findings related to PCD, and highlights the transformed diagnostic approach.

2. Principles of Autoimmunity

The cerebellum is a frequent target of autoimmune reactions and paraneoplastic au-
toimmunity in particular. The pathogenesis is attributed to an autoimmune response, which
is elicited when proteins restricted to immune privileged neurons are presented by the
underlying malignancy [7,8]. In about 80% of the patients presenting with PCD, neuronal
antibodies can be detected [21]. In principle, these antibodies are classified according to
the cellular localization of their target antigens; namely, intracellular, cell-surface, or synap-
tic [22]. Antibodies targeting intracellular structures are usually not considered directly
pathogenic. Rather, they are regarded as biomarkers of a predominantly cell-mediated
cytotoxic process, although the pathogenic role of some antibodies targeting intracellular
structures is still a matter of debate [1,6,22]. In this regard, Yo- and Hu-antibodies have been
studied extensively. Both antigens are expressed within the tumor, as well as neuronal cells,
and the respective antibodies are thus termed onconeural antibodies [1]. Transferring these
antibodies to rodents did not induce ataxic symptoms in several studies and the authors
concluded that the antibodies do not have a direct pathogenic effect [23,24]. Furthermore,
Carpentier et al. showed that Hu-antibodies developed when mice were immunized with
Hu, but no neurological symptoms evolved [25]. This is in line with the notion that Hu-
antibodies can be detected in 20% of patients with SCLC, but less than 0.01% of SCLC
patients develop a paraneoplastic neurologic syndrome (PNS) [26]. On the other hand,
Yo-antibodies are internalized by Purkinje-cells and impede interaction between cerebellar
degeneration related protein 2 (cdr2) with the transcription factor c-Myc, which possibly
results in disruption of cell cycle signaling [27]. Similarly, disruption of cdr2-interaction
with mortality factor-like proteins might induce apoptosis of Purkinje-cells [28]. Therefore,
a possible pathogenic effect of Yo-antibodies is discussed. This assumption is opposed by
the more frequently invoked hypothesis that PCD is caused by cell-mediated cytotoxic
processes [20]. In both, Yo- and Hu-antibody positive patients, high levels of cdr2- or Hu-
specific T-cells are present in the blood and cerebrospinal fluid (CSF) [29,30]. Furthermore,
the cerebellum is mainly infiltrated by CD3+ and CD8+ T-cells, which seem to be antigen-
driven and not attracted non-specifically by a proinflammatory environment [31–33]. It
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has therefore been suggested that PCD is primarily mediated via a CD8+ T-cell immune
response toward an autoantigen which is also recognized by onconeural antibodies [1].

Antibodies targeting cell-surface proteins, on the other hand, are thought to have a
direct pathogenic effect. In the context of PCD, VGCC- and mGluR1-antibodies are relevant
autoantibodies targeting cell-surface proteins and synaptic proteins, respectively [1,22].
Calcium channels targeted by VGCC-antibodies rest on the membrane of Purkinje-cells
and are responsible for calcium homeostasis [14]. They therefore play a relevant role in
cell function and survival [14]. Binding of VGCC-antibodies to its target leads to channel
dysfunction and internalization, whereby passive transfer of VGCC-antibodies to mice
caused cerebellar ataxia [14,26]. Autopsy studies demonstrated that patients with PCD and
VGCC-antibodies have a diffuse loss of Purkinje cells, depletion of VGCC, and binding
of VGCC-antibodies to the remaining channels [26,34]. Therefore, VGCC-antibodies are
thought to have a direct pathogenic effect.

Similarly, antibodies targeting mGluR1 are thought to be responsible for the ataxic
syndrome seen in mGluR1-anitbody positive PCD. mGluR1 is important for rapid signal
transmission in the cerebellum as it regulates calcium signaling in Purkinje cell dendritic
spines [35]. Injection of mGluR1-antibodies into the cerebellum of mice caused reduced
compensatory eye movements and blocked induction of long-term depression, which
is important for motor learning [13]. The authors concluded that mGluR1-antibodies
cause cerebellar ataxia via a combination of rapid effects on acute and plastic Purkinje cell
responses and degenerative effects [13]. The exact mechanism resulting in degeneration of
Purkinje cells, however, remains a matter of debate [13].

3. Epidemiology

Paraneoplastic cerebellar degeneration is rare in general but constitutes the second
most frequent paraneoplastic presentation as well as the second most common immune-
mediated cerebellar ataxia [1–3]. Due to the rarity of the disease, extensive epidemiological
studies are lacking but evidence from single-centers and population-based studies on PNS
and progressive ataxias exist [2,3,36,37].

A recent population-based study in northern Italy reported an incidence of paraneo-
plastic syndromes of 0.89/100,000 person-years [3]. Among 89 patients with definite PNS,
identified over a study period of nine years (2009–2017), 28 (31.5%) had limbic encephalitis,
25 (28.1%) had PCD, and 18 (20.2%) had encephalomyelitis. The median age of patients
was 68 (range 26–90) and 52% of identified patients were female [3]. Hébert et al. reported
a lower incidence rate for PNS of 0.41/100,000 person-years in a French population-based
study, which was conducted between 2016 and 2018 [36]. These differences in crude in-
cidence rates were attributed to the increased challenge of achieving exhaustiveness in a
larger population [36]. However, both studies reported a year-to-year increase in incidence
of PNS which might reflect the increased recognition of these disorders [3,36].

Pertaining to the prevalence of cerebellar ataxias and PCD in particular, there have
been few large-scale studies only. Hadjivassiliou et al. reported prevalence-levels of dif-
ferent etiologies of progressive ataxias within a large single center cohort in the United
Kingdom [2]. Within 1500 patients assessed for ataxia, 1205 cases (80%) had no family
history of ataxia and were classified as sporadic. Among these sporadic cases, 32% were
classified as IMCA. Gluten ataxia was the commonest IMCA accounting for 25% of sporadic
ataxias, followed by PCD (3%), anti-GAD-associated ataxia (2%), postinfectious cerebellitis
(PIC, 1%), and opsoclonus myoclonus ataxia (<1%) [2]. Describing the different etiolo-
gies of sporadic late-onset cerebellar ataxias within a prospective observational study in
80 patients presenting to a tertiary-care center in France, Gebus et al. reported comparable
prevalence rates, including two cases of PCD (3%) and one case of PIC (1%) [38]. In a
Korean population, prevalence rates for IMCAs and PCD in particular differed [37]. Within
a single-center cohort of 820 patients presenting with cerebellar ataxia, 684 (83%) had
no family history of ataxia. Among these non-familial ataxias, 3% could be classified as
IMCA, with post-infectious cerebellar ataxia accounting for 2% of the cases, followed by
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other inflammatory causes (1%), and PCD (<1%). It has to be noted, however, that no
screening for gluten ataxia and anti-GAD-associated ataxia was performed [37]. Conclud-
ing, epidemiological data on PCD is sparse and further studies, including prospective
population-based studies, are needed to describe the incidence and prevalence of PCD in
cerebellar ataxias and populations with different ethnicity.

4. Clinical Presentation

Patients with PCD present with a rapidly progressive cerebellar syndrome, which
can be preceded by a prodromal phase including fever, headache, nausea, and vomiting.
Symptoms at onset typically include a symmetrical limb and truncal ataxia, dysarthria,
and nystagmus, although ataxia can be asymmetrical initially in about 40% of patients [15].
Gait ataxia may be the most prominent or sole initial finding, but affection of the trunk and
upper limbs, over the course of months, is required to establish the diagnosis of a rapidly
progressive cerebellar syndrome [6]. In general, symptoms progress to pancerebellar
dysfunction with severe impairment of activities of daily living within three months before
stabilizing, leaving most patients wheelchair bound [8,15].

The presence of additional clinical features accompanying cerebellar ataxia are impor-
tant clinical evidence, as they point to the associated antibody and underlying malignancy.
An isolated rapidly progressive cerebellar syndrome is typically associated with Yo-(also
known as PCA-1, Purkinje cell antibody 1), DNER-(Tr/delta/notch-like epidermal growth
factor-related receptor) and mGluR1-antibodies [8,39,40]. Yo-antibodies are associated with
ovarian or breast cancer which can be detected in about 80% of patients. DNER-antibodies
associate with Hodgkin lymphoma (detected in 80% of patients) and mGluR1-antibodies
associate with hematologic malignancies (detected in about 30% of patients) [22]. Cognitive
deficits, however, can be detected in approximately 20% of patients with Yo-antibodies and
an otherwise isolated cerebellar ataxia [15]. Symptoms of a more diffuse encephalomyelitis
are associated with Hu-antibodies and SCLC, whereas opsoclonus or laryngeal spasms
indicate Ri-antibodies and ovarian, breast, or small cell lung cancer [41,42]. When cerebellar
ataxia occurs with Lambert-Eaton myasthenic syndrome (LEMS) the presence of VGCC
and SCLC should be suspected [11]. It has to be noted, however, that VGCC antibodies can
also be present in cerebellar degeneration without an underlying malignancy [43]. Here,
SOX-1 antibodies can help to identify patients with an underlying SCLC, as the presence of
SOX-1 has a specificity of 100% and a sensitivity of 49% for SCLC [44].

5. Evaluation
5.1. Diagnostic Criteria

In 2004 Graus and colleagues defined diagnostic criteria for paraneoplastic neurologic
syndromes [45]. Here, “classical syndromes” that frequently associate with cancer were
defined and included encephalomyelitis, limbic encephalitis, subacute cerebellar degen-
eration, and sensory neuropathy. Furthermore, associated antibodies were divided into
“well characterized” and “partially characterized” onconeural antibodies [45]. Based on the
clinical syndrome, antibody type, and presence or absence of cancer, two levels of evidence
were suggested, which included “definite” and “possible” PNS. Due to new insights in
various aspects of PNS in the past 16 years, a group of international experts (PNS-Care
panel) updated these diagnostic criteria in 2021 [6]. The term “classical syndrome” was
substituted with the term “high-risk phenotype” based on the frequent paraneoplastic
etiology of these clinical presentations. Opsoclonus-myoclonus-syndrome, gastrointesti-
nal pseudo-obstruction, and Lambert-Eaton-myasthenic syndrome were added to the list
of “high-risk phenotypes”. Furthermore, the term “subacute cerebellar degeneration”
was substituted by “rapidly progressive cerebellar syndrome” and the term “onconeural”
was replaced by “high-risk”, because not all antibodies are associated with a high risk
for cancer development and not all associated cancers express these antigens [6]. Anti-
bodies associated with PNS were thus subdivided into high-risk-antibodies (association
with cancer >70%), intermediate-risk-antibodies (association with cancer 30–70%), and
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lower-risk-antibodies (association with cancer <30%). Based on a scoring system termed
PNS-Care Score, three levels of diagnostic evidence for a PNS were suggested, including
definite, probable, and possible PNS. The score includes the clinical phenotype, presence or
absence of neuronal antibodies and cancer, as well as time of follow-up [6]. For a definite
PNS, nowadays, the presence of cancer is obligatory. If cancer was not detected at baseline
assessment and high-risk antibodies were identified, cancer screening should be repeated
every 4–6 months over a period of 2 years (c.f. Section 5.4). In the context of a rapidly
progressive cerebellar syndrome, a definite diagnosis of PCD can be made when a high-
or intermediate-risk antibody is found, as well as a tumor consistent with the phenotype
and antibody. If the tumor is not consistent with the phenotype of a cerebellar syndrome
or the antibody (e.g., gastric adenocarcinoma in a patient with cerebellar ataxia and Yo-
antibodies), cognate antigen expression by the tumor has to be demonstrated [6]. Notably,
the exclusion of alternative causes is required to establish the diagnosis of a PNS.

5.2. Laboratory Testing
5.2.1. Antibodies Associated with Paraneoplastic Cerebellar Degeneration

Identification of autoantibodies in the setting of a rapidly progressive cerebellar syn-
drome is paramount to (1) establish the diagnosis of PCD, (2) allocate the specific treatment,
and (3) predict the association of cancer and direct cancer search [22]. As described in
Section 2, antibodies can be classified according to the cellular localization of their target
antigens. In this regard, PCD typically associates with intracellular antibodies, but associa-
tions with extracellular and synaptic antibodies have been described [1]. Recently, Mitoma
and colleagues published a classification for antibodies in IMCAs and suggested two major
antibody categories which included (1) antibodies suggestive of specific etiologies and
(2) nonspecific autoantibodies found in other neurological and systemic conditions [1].
Additionally, antibodies reported in case reports or case series which were associated with
cerebellar ataxia were classified as “not-well-characterized” antibodies [1]. To provide a
comprehensive overview on antibodies associated with cerebellar ataxia and PCD in par-
ticular and to support clinical diagnosis, we adopted this classification, added antibodies
recently described, and complemented it with the classification into high-, intermediate-,
and low-risk antibodies according to Graus and colleagues [6]. Here, well-characterized
antibodies associated with PCD are summarized in Table 1. Antibodies within this cate-
gory are “high-risk antibodies” according to Graus et al. and thus represent an important
diagnostic factor in the PNS-Care Score [6]. Table 2 lists nonspecific autoantibodies which
are present in other neurological conditions but typically present with the additional symp-
tom of cerebellar ataxia. Among this group, “high-risk antibodies” are Kelch-like protein
11- (KLHL11), Purkinje cell cytoplasmic antibody type 2- (PCA2), and Amphiphysin-
antibodies, although the presence of Amphiphysin-antibodies is only considered to be a
high-risk situation for the association of cancer when polyradiculoneuropathy, sensory
neuronopathy, encephalomyelitis, or stiff-person syndrome are present [6]. According
to Graus et al., VGCC- and Contactin-associated protein-like 2-antibodies (CASPR2) are
associated with an intermediate risk of an underlying tumor. Here, presence of CASPR2-
antibodies is considered to be an intermediate risk situation, when the patient presents with
Morvan syndrome [6]. “Lower-risk” antibodies comprise dipeptidyl-peptidase-like protein
6-antibodies (DPPX, if encephalitis with CNS hyperexcitability is present), leucine-rich
glioma-inactivated 1-antibodies (LGI1, if limbic encephalitis is present), and mGluR1-
antibodies (if isolated cerebellar ataxia is present) [6]. Antibodies whose significance must
be established but, when detected, can be a clue to the autoimmune etiology of the ataxia
are listed in Table 3. When lower-risk antibodies or antibodies whose significance must
be determined are found in a patient with a rapidly progressive cerebellar syndrome,
probable PCD can only be diagnosed, when antigen expression by a detected tumor can be
demonstrated [6].
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Table 1. Well-characterized antibodies in PCD.

Antibody Target Neurologic Phenotype
Gender

Predominance,
Age-Range

Associated Cancer Frequency
of Cancer Source

Intracellular target

CV2/CRMP5 EM, SNN, CA
No gender

predominance,
Age: 60–70

SCLC, thymoma >80% [46–48]

Hu (ANNA-1)
SNN, CA, EM, LE, chronic

gastrointestinal
pseudo-obstruction

Slight female
predominance,

Age: 60–70

SCLC > NSCLC,
neuroendocrine tumors,

neuroblastoma
85% [22,49]

Ma2 LE, diencephalitis, CA,
brainstem encephalitis

70% male,
Age: 60–70 in women,

30–40 in men

Testicular cancer (young
men), lung cancer (older

patients)
>75% [50,51]

Ri (ANNA-2) CA, OMS Female predominance,
Age: 60–70

Breast (women) > lung
cancer (men) >70% [22,42,

52]

Yo (PCA-1) CA Almost all female,
Age: 60–70 Ovary and breast cancer >90% [22,40]

Extracellular target

TR (DNER) CA >70% men,
Age: 60–70 Hodgkin lymphoma 90% [39,53]

Table adopted from Mitoma et al. and Graus et al. [1,6]. Abbreviations: CV2/CRMP5: collapsin response-mediator protein 5, Hu
(ANNA-1): antineuronal nuclear antibody-1; Ma2: metabotropic glutamate receptor2; Ri (ANNA-2): antineuronal nuclear antibody-2;
Yo (PCA-1): Purkinje cell antibody; TR (DNER): delta/notch-like epidermal growth factor–related receptor; CA: cerebellar ataxia; EM:
encephalomyelitis; LE: limbic encephalitis; NSCLC: non-small-cell lung cancer; OMS: opsoclonus myoclonus syndrome; SCLC: small-cell
lung cancer; SSN: subacute sensory neuronopathy.

5.2.2. Antibody Detection

Detection of an antibody in a patient presenting with rapidly progressive cerebel-
lar ataxia is of extraordinary help to diagnose PCD and to determine further manage-
ment. Gold standard methods for initial screening include immunohistochemistry and
immunofluorescence, whereby presence of antibodies is typically detected initially by a
technique named tissue-based immunofluorescence (TIF) [22]. Here, sections of brain and
non-brain tissue of rodents are incubated with the serum or CSF of the patient tested [22].
Presence of specific autoantibodies can be demonstrated by the application of a second
anti-human-antibody. This second antibody binds to the autoantibody and is tagged with
a fluorescent label that emits upon photoexcitation [22]. Thus, different staining patterns
can be detected, which are characteristic for an antibody (e.g., diffuse neuropil staining
specific for neurexin-3alpha-antibodies, see Figure 1). Confirmatory studies employing
immunoblot (IB, for most antibodies directed against intracellular proteins) or cell-based
assays (CBA, for most antibodies directed against cell surface or synaptic proteins) are
employed subsequently [6,22]. As sensitivity and specificity of these techniques varies
depending on the sample (serum or CSF) and the antibody tested, it is recommended
to perform antibody testing in both, serum and CSF [6]. This is particularly important
when suspicion for antibodies against neuronal surface antigens is raised. When neuronal
surface antibodies are detected in serum only (and not in CSF), confirmatory TIF or a
re-examination in a research laboratory should be pursued before a definite diagnosis is
made [6].
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To standardize approaches in antibody testing and increase diagnostic reliability, rec-
ommendations for antibody testing have been published by the PNS-Care panel. These
recommendations include the following: testing in serum and CSF (especially for antibod-
ies against surface antigens); focused testing to reduce false-positive and false negative
results; consideration of IgG antibodies only (disregard IgA, IgM antibodies as biomarkers);
reevaluation in a reference laboratory when antibodies against surface antigens are positive
in serum but negative in CSF; the use of above mentioned gold standard methods (TIF,
CBA, IB); critical evaluation of incongruences between positive antibodies and neurologic
symptoms or cancer; reexamination in research laboratories, when negative antibodies in
patients with highly suspicious PNS occur [6].

5.2.3. Cerebrospinal Fluid Analysis

CSF analysis typically shows pleocytosis, elevated proteins, and intrathecal synthesis
of IgG [8,20]. Absence of inflammatory signs, however, has been reported in case reports
and frequency might decrease with age and depends on the associated antibody [110–112].
In a study on 155 patients with antibody-associated CNS-syndromes (not specific for PCD)
aged 60 years and older, 22.6% did not show signs of inflammation in CSF analysis [112].
When considering seronegative patients, i.e., patients with PCD and without detection
of onconeural antibodies, CSF abnormalities could be detected in 88%. Importantly, the
frequency of oligoclonal bands was significantly lower in seronegative versus seropositive
patients (52% vs. 80%, p = 0.03) [21]. It is of note that some patients with PCD show
14-3-3 protein elevation in the CSF, detected by immunoblotting, which could raise the
suspicion of Creutzfeldt–Jakob disease (CJD) [113]. In a study of 80 patients with PNS,
12.5% showed positive staining for 14-3-3 protein. The immunoblots, however, showed
a double-band pattern in 90% of patients positive for 14-3-3 protein and PNS, whereas a
single-band pattern was observed in CJD patients [113]. Therefore, it has been suggested
that 14-3-3 protein in the setting of PNS and PCD reflects excessive CNS damage rather
than CJD [113].

5.3. Imaging Studies

Magnetic resonance imaging (MRI) represents the gold standard of imaging in patients
presenting with cerebellar ataxia, while computed tomography has a limited role [114]. MRI
findings depend on the phase of disease. While in acute PCD, MRI can be normal or shows
T2-hyperintensity of the cerebellar hemispheres, chronic disease often shows cerebellar
atrophy, which is best seen in T1 sequences [114–116]. Case reports of additional imaging
findings associated with specific antibodies have been described. In reports of a patient
with Hu- or Yo-antibodies, MRI showed rather diffuse white matter lesions [117–119] and
diffuse leptomeningeal enhancement of both cerebellar hemispheres. Furthermore, diffuse
swelling and slight hyperintensity of cerebellar folia, mimicking acute post-infectious
cerebellitis, has been described in a patient with Hodgkin lymphoma and PCD [120].

In line with MRI findings, 18F-fluorodeoxyglucose positron-emission tomography
(FDG-PET) reveals cerebellar hypermetabolism in acute [121–123] and cerebellar hy-
pometabolism in chronic PCD [122].

5.4. Cancer Search

Tumors typically associated with PCD are lung cancer (SCLC), gynecological cancers
(breast and ovarian cancer) in women, genitourinary cancers (testicular) in men, thymoma,
and Hodgkin lymphoma, whereby an association with other tumors (NSCLC, non-Hodgkin
lymphoma, prostate cancer, neuroendocrine bladder cancer, Merckel cell tumor, gastric
cancer, malignant mesothelioma) have been reported [21]. In up to 70% of the patients
with PCD, cerebellar ataxia is the first manifestation of a neoplasm [18] and in 62% of
seronegative patients with PCD, symptoms preceded the diagnosis of a tumor with a
median time of three months [21]. These findings highlight the necessity for a systemic
evaluation for an occult malignancy when patients present with a rapidly progressive
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cerebellar syndrome. Strong associations between this neurological syndrome, specific
antibodies, and cancer type exist (please refer to Tables 1–3) and should guide the tumor
screening [8]. In 2011 the European Federation of Neurological Societies (EFNS) Task Force
published guidelines for cancer search when a PNS, including PCD, is suspected [124].
When screening for a malignancy in the thoracic region (lung cancer, thymoma), a CT-
thorax is recommended, which if negative should be followed by an FDG-PET. Breast cancer
should be screened for by mammography followed by MRI and FDG-PET, if negative.
When screening for a malignancy of the pelvic region or testicular tumors, ultrasound is
recommended, followed by a CT-scan, which can be complemented by a FDG-PET [124].
If a patient presents with a rapidly progressive cerebellar syndrome and no antibodies
are found, screening by conventional methods (CT-Thorax and ultrasound of the pelvic
region) should be performed. In case of a negative screening, a whole-body FDG-PET is
recommended [124].

Table 2. Antibodies associated with cerebellar ataxia and additional neurologic syndromes.

Antibody Target Neurologic Phenotype
Gender

Predominance,
Age-Range

Associated Cancer Frequency
of Cancer Source

Intracellular target

Amphiphysin Polyradiculo-neuropathy,
SNN, EM, SPS, CA

Slight female
predominance,

Age: 60–70
SCLC, breast cancer 80% [54,55]

GAD65 LE, SPS, CA 70% women,
Age: 50–60

SCLC, neuroendocrine
tumors, thymoma <15% [56,57]

KLHL11 CA, brainstem syndrome 100% men,
Age: 40–50 Testicular cancer 80% [58–60]

MAG
n = 5 Neuropathy, CA 100% men,

Age: 60–80
Unknown,

MGUS association Unknown [61]

PCA2 (MAP1B)

Limbic/brainstem
encephalitis, LEMS,

SIADH, Neuropathy, CA
(37% of reported cases)

Female
predominance,

Age: 22–89

SCLC, NSCLC, breast, renal,
skin squamous cell,

pancreas, extrapulmonary
small-cell, prostate,

intrahepatic primary ductal,
nasopharyngeal, Ewing

sarcoma, lymphoma

80% [62,63]

Extracellular target

CASPR2 LE, Isaac syndrome,
Morvan syndrome

>70% men,
Age: 60–70 Thymoma <30% [64–66]

DPPX Encephalitis, CNS
hyperexcitability, PERM

>60% men,
Age: 50–60 B-cell malignancies <10% [67,68]

LGI1 LE, CA >60% men,
Age: 60–70

Malignant thymoma,
neuroendocrine tumors <10% [22,69,70]

mGluR1 CA, dysgeusia
No gender

predominance,
Age: 50–60

Hematologic 20–30% [22,71]

P/Q VGCC LEMS, CA
Slight female

predominance,
Age: 50–60

SCLC

50%
(LEMS),

90% (in pts.
w/CA)

[11,72]

Table adopted from Mitoma et al. and Graus et al. [1,6]. Abbreviations: CASPR2: contactin-associated protein-like 2; DPPX: dipeptidyl
peptidase-like protein; GAD65: glutamic acid decarboxylase, KLHL11: Kelch-like protein 11; MAG: myelin-associated glycoprotein;
mGluR1: metabotropic glutamate receptor 1; PCA2: purkinje cell antibody 2; VGCC: voltage-gated calcium channel CA: cerebellar ataxia;
CNS: central nervous system; EM: encephalomyelitis; LE: limbic encephalitis; LEMS: Lambert-Eaton myasthenic syndrome; NSCLC:
non-small-cell lung cancer; OMS: opsoclonus myoclonus syndrome; PERM: progressive encephalomyelitis with rigidity and myoclonus;
SCLC: small-cell lung cancer; SPS: stiff-person syndrome; SSN: subacute sensory neuronopathy.
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Table 3. New, rarely characterized antibodies of unknown significance associated with cerebellar ataxia.

Antibody Target Neurologic Phenotype Gender Predominance,
Age-Range Associated Cancer Frequency of

Cancer Source

ARHGAP 26 (GRAF1-IgG,
Anti-ca)
n = 24

subacute CA, neuropathy,
psychotic symptoms,
cognitive dysfunction,

hyperekplexia, parkinsonism

No gender
predominance,

Age: 14–76

Ovarian, Breast, Melanoma,
B cell lymphoma, prostate,
gastric, squamosa cell of

nasopharyngeal/
respiratory tract

30–40% [22,73–75]

CARP VIII
n = 3 CA, headache Female predominance,

Age: 69–77
Ovarian cancer,

melanoma, breast 3/3 [76–78]

Glycin R
n = 187

PERM/SPS 40–50%; epilepsy
20–30%; CA, movement

disorders, encephalitis (30%)

No gender
predominance,

Age: 40–60

Thymoma, breast cancer,
Hodgkin lymphoma, SCLC,
marginal B-cell lymphoma

10–20% [22,79]

Homer-3
n = 5 CA, encephalitis, papilledema

No gender
predominance,

Age: 38–65
SCLC 1/5 [73,80–83]

mGluR2
n = 2 CA Female predominance,

Age: 3–78
Small cell tumor, alveolar

rhabdo-myosarcoma 2/2 [84]

Nb/AP3B2
n = 13

CA, peripheral
neuropathy, myelopathy

Female predominance,
Age: 24–58

Renal cell cancer,
B-cell lymphoma 2/13 [73,85–87]

Neurochondrin
n = 14

CA, brainstem, myelopathy,
psychosis, SFN

Male predominance,
Age: 2–69 Uterine cancer 1/14 [73,88–90]

NIF
n = 41 (11 CA)

Encephalopathy, CA (27%),
myelopathy, neuropathy

Male predominance,
Age: 43–88

Merkel cell carcinoma, SCLC,
neuroendocrine (pancreas),

Hodgkin lymphoma,
hepatocellular carcinoma

8/11 [91]

PKCy
n = 10 CA Male predominance,

Age: 47–73
NSCLC, adenocarcinoma of

hepatobiliary origin unknown [92,93]

Septin-5
n = 6 CA, oscillopsia

No gender
predominance,

Age: 47–72
No association none [73,94]

SEZ6L2
n = 6

CA, extrapyramidal symptoms,
retinopathy

No gender
predominance,

Age: 54–69
Breast cancer 1/6 (4 year

after CA) [95–97]

Sj/ITPR-1
n = 23

(11 CA)

CA, polyneuropathy,
encephalopathy, myelopathy

No gender
predominance,

Age: 7–83

Breast, lung, renal,
endometrial

cancer, myeloma

7/23
1 breast cancer

11 years
after CA

[73,80,98–101]

SOX1 (AGNA1)
n ≈ 520

(20 PCD)
LEMS (30%), CA (18.2%), limbic
encephalitis (18.2%), neuropathy

Male predominance,
Age: 17–87

SCLC >> NSCLC>, Hodgkin
lymphoma, breast, prostate,
thyroid, esophageal cancer

>90% [102]

TRIM 9, 67
n = 3 CA, gaze palsy

No gender
predominance,

Age: 65–78
Lung cancer, Melanoma 2/2 [103–105]

TRIM 46
n= 3

Progressive encephalomyelitis,
CA, rapidly

progressive dementia

No gender
predominance SCLC 2/3 [104]

ZIC4
n = 20

CA, OMS, SSN, dementia, SPS,
brainstem encephalitis, pain,

limbic encephalitis, LEMS
Male predominance

SCLC, B-cell lymphoma,
multiple myeloma, breast,
ovarian cancer, head and

neck squamosa
cell carcinoma

14/20 [7,106,107]

Table adopted from Mitoma et al. and Graus et al. [1,6]. Abbreviations: Ca/ARHGAP26: Ca/Rho GTPase-activating protein, CARP
VIII: carbonic anhydrase-related protein VIII; mGLUR2: metabotropic glutamate receptor2; NB/AP3B2: Nb/adaptor complex 3B2; NIF:
Neuronal intermediate filament light chain; SEZ6L2: seizure-related 6 homolog like 2; Sj/ITPR-1: inositol 1,4,5-triphosphate receptor type 1;
SOX-1: sex-determining region Y-related high-mobility group box 1; TRIM 9, 67, 46: tripartite motif-containing protein 9, 67, 46; ZIC4: zinc
finger protein of the cerebellum 4 CA: cerebellar ataxia; LEMS: Lambert-Eaton myasthenic syndrome; NSCLC: non-small-cell lung cancer;
OMS: opsoclonus myoclonus syndrome; PERM: progressive encephalomyelitis with rigidity and myoclonus; SCLC: small-cell lung cancer;
SIADH: syndrome of inappropriate antidiuretic hormone secretion; SPS: stiff-person syndrome; SSN: subacute sensory neuronopathy.

If a tumor, which is not consistent with the clinical phenotype and antibody, has
been detected, cancer screening should be continued because of the possibility of dual
pathology. Furthermore, antigen expression by the tumor should be demonstrated [6]. If
the initial screening is negative, the EFNS task force recommended to repeat the screening
4 months after the initial assessment in patients with rapidly progressive cerebellar ataxia
and the presence of paraneoplastic antibodies followed by a screening every 6 month
up to 4 years [124]. The PNS-Care Panel recommended a screening depending on the
detected antibody and clinical phenotype: patients with high-risk phenotype and high-
risk antibodies (or intermediate-risk antibodies and additional risk factors, e.g., smoking)
should undergo investigations every 4–6 months for 2 years. Patients who do not fulfill
these criteria should undergo an extensive screening at initial presentation and rescreening
should be considered if patients are refractory to treatment or relapse [6]. Importantly,
these are general recommendations that have to be adapted individually.
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Figure 1. Detection of specific autoantibodies using tissue-based immunofluorescence. (A). Immu-
noreactivity of a patient’s CSF with sagittal mouse brain sections is demonstrated via TIF (Cerebel-
lum, magnification: 100×, counterstaining of nuclei by Hoechst 33342 at 1:10,000). (B). Patient’s 

Figure 1. Detection of specific autoantibodies using tissue-based immunofluorescence. (A). Immunoreactivity of a patient’s
CSF with sagittal mouse brain sections is demonstrated via TIF (Cerebellum, magnification: 100×, counterstaining of nuclei
by Hoechst 33342 at 1:10,000). (B). Patient’s antibodies show a prominent immunolabeling of the neuropil of the granular
layer (GL), whereas binding to the white matter (WM), Purkinje cell layer (Pu), and the molecular layer (ML) is less evident
(magnification: 400×). This staining pattern is specific for neurexin-3alpha-antibodies and has been described in the first
report of neurexin-3alpha-antibody associated autoimmune encephalitis [108]. Presence of antibodies targeting neurexin-
3alpha (a synaptic protein) in patient’s CSF was subsequently confirmed via CBA (Figure adapted from Loehrer et al. [109],
reproduced with permission from John Wiley and Sons).

5.5. Differential Diagnosis

When patients present with cerebellar ataxia, initial differential diagnoses are wide [8].
Although metastasis, cerebrovascular, and demyelinating disease can be detected by MRI,
it can be more difficult to differentiate toxic, metabolic (e.g., vitamin deficiency (B12, B1, E),
hypothyroidism), infectious/postinfectious (HIV, CJD, Miller-Fisher-Syndrome), autoim-
mune (e.g., GAD-associated-syndromes, PACA (primary autoimmune cerebellar ataxia),
and degenerative etiologies [8]. For newly discovered antibodies with unknown clinical
significance, differentiation between PCD and PACA can be challenging. Diagnostic criteria
for PACA include a predominantly subacute or acute cerebellar syndrome, a MRI which
is normal or shows cerebellar vermian atrophy, and two of the following criteria: CSF
pleocytosis and/or positive IgG CSF restricted oligoclonal bands, autoimmune disorders in
the patient’s history or family history, and detection of an autoantibody that supports au-
toimmunity but has not yet shown to be directly involved in the pathogenesis of ataxia [73].
Furthermore, alternative causes must be excluded [73]. Toxins that cause cerebellar damage
are alcohol, carbon tetrachloride, heavy metals, phencyclidine, thallium, and toluene. Med-
ications associated with cerebellar ataxia include antibiotics/virostatics/antihelminthics
(metronidazole, piperazine, zidovudine), antiepileptics drugs (phenytoin), sedative drugs
(barbiturates, benzodiazepine, bromides), chemotherapeutic agents/immunosuppressive
drugs (asparaginase, cyclosporine, cytarabine, fluorouracil, tacrolimus) and others (amio-
darone, bismuth, glucocorticoids, lithium; this list is not exhaustive) [8,125]. Therefore,
thorough medical history taking, laboratory testing (including vitamin levels, thyroid
function tests, HIV serology, anti-gliadin, and anti-GAD-antibodies), and CSF analysis (as
mentioned above) are important to establish the diagnosis of PCD. Furthermore, genetic
testing should be considered in the appropriate clinical setting. As described above, Had-
jivassiliou et al. reported prevalence-levels of different etiologies of progressive ataxias
within a large single center cohort in the United Kingdom [2]. Among sporadic atax-
ias, following etiologies were reported (numbers in brackets represent percentage out of
total sporadic cases): gluten ataxia (25%), genetic cause (13%, without family history),
alcohol-related (12%), multiple system atrophy-cerebellar type (11%), myoclonic ataxia
(3%), paraneoplastic cerebellar ataxia (3%), anti-GAD-associated ataxia (2%), phenytoin-
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related (2%), cerebellitis (1%), superficial siderosis (1%), opsoclonus-myoclonus ataxia,
episodic ataxia (negative genetics), ataxia with palatal tremor, HIV-related, and Wernicke’s
disease (each <1%) [2].

6. Treatment and Management

Therapeutical approaches have to be distinguished between symptomatic therapy,
acute and maintenance immunotherapy, and treatment of the underlying oncologic diag-
nosis in terms of curative or palliative therapies. Therapeutical approaches of symptoms
(e.g., ataxia, nystagmus, psychological symptoms) are not different from standard treat-
ment of these symptoms due to other diseases and are therefore not subject of this review.
Treatment strategies have to take into account the detection of autoantibodies, underlying
conditions, and current state of the disease. Due to the rarity of cases, current data lack
the evidence of large randomized clinical trials. Therefore, therapeutical approaches are
mainly based on (supposed) pathophysiology, case reports, and clinical experience.

6.1. Oncologic Treatments

In most cases, treatment of the underlying oncological disorder is paramount for the
treatment of the paraneoplastic syndrome as well. An effective, early oncologic treatment
can lead to treatment of the paraneoplastic syndrome by reducing the autoimmune driving
force by reduction of antigen presentation [18,126,127]. These effects cannot be expected to
develop immediately, and thus oncologic treatment does not substitute acute immunother-
apy in most cases. Early and effective oncologic treatment, therefore, should be prioritized
and is associated with overall survival from an oncologic viewpoint as well as with better
treatment responses and neurological outcome [128]. Of course, choice of oncological
treatment options (surgery, chemotherapy, radiotherapy) depends on tumor entity, staging,
and individual aspects [127]. Unfortunately, neurological symptoms may develop slowly,
precede other symptoms, or may be misdiagnosed as other neurological disorders delaying
correct diagnosis and treatment until a substantial neurological damage has occurred.

6.2. Acute Immunotherapy

If a patient presents with a typical clinical syndrome and specific antineuronal antibod-
ies are detected or suspected, acute therapeutical settings aim to reduce brain inflammation
and levels of circulating antibodies.

In most cases, corticosteroids are chosen as first-line approach due to their easy
administration, wide and fast availability, rare acute adverse effects (mostly hyperglycemia
and psychosis), and few strict contraindications. Intravenous methylprednisolone should
be chosen in a dosage of 1000 mg daily for 3–5 days. Courses may be repeated. Equivalent
oral administration of prednisolone may be considered but in general exhibit a higher risk
of adverse effects. From a pathophysiological point of view, corticosteroids target brain
inflammation, edema, and disruption of the blood-brain barrier on the one hand and lead
to apoptosis of antibody-producing plasma cells on the other hand [129,130].

Reduction of circulating autoantibodies can also be addressed by intravenous im-
munoglobulins (IVIG) [131] or plasma exchange (PLEX) [132]. Both strategies can be used
as add-on therapy to corticosteroids in severe cases or as a second-line approach in case
of lacking therapeutical effects of corticosteroids. The choice between IVIG and PLEX
is mostly based on availability and possible adverse effects. IVIG are contraindicated
in patients with IgA deficiency and severe kidney failure and have to be used carefully
in patients with acute or chronic heart failure and in thrombogenic states [133]. They
are easy to administer in a dosage of 0.4 g/kg daily for 5 days and are widely available.
PLEX is in need of invasive high-volume central line placement, may induce or aggravate
hypotension, and may be difficult or not possible due to its need of (temporary) anticoagu-
lation, mainly with unfractionated heparin. PLEX is usually performed for 5–7 exchanges.
Therapeutical effects of both regimen (IVIG or PLEX) seem to be of equivalent efficiency,
although randomized clinical trials in antibody mediated paraneoplastic syndromes are
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still missing. Many case reports [134,135] and clinical experience show efficacy of both
regimens. Since good data for IVIG and PLEX is available in other antibody-mediated
peripheral and central entities such as Guillian-Barré-syndrome and non-paraneoplastic
autoimmune encephalitis [136,137], one can extrapolate the potential benefit of IVIG and
PLEX based on pathophysiological considerations.

In summary, we recommend intravenous methylprednisolone (1000 mg/d for 5 days)
as first-line treatment. Addition of either IVIG or PLEX should be considered simultane-
ously in patients with severe symptoms or rapid clinical worsening. In case of missing
effect of monotherapy with corticosteroids, IVIG or PLEX should be initiated.

6.3. Maintenance Immunotherapy

Maintenance immunotherapy is initiated either to maintain and enhance positive
effects of the initial immunotherapy or to prevent relapses. Oral corticosteroids are mostly
used as a bridging concept in case of good clinical response to first-line therapy with
methylprednisolone. Tapering regimens beginning with a dosage of 1 mg/kg prednisolone
are mostly used.

If a specific antibody has been detected, one can distinguish between antibodies
directed against intracellular antigens and antibodies directed against cell-surface antigens.
In the first case, regimens targeting T-cell based mechanisms might be of advantage.
Therefore, regimens targeting B-cells alone (e.g., anti-CD20 antibody rituximab) might
not be as effective in these cases. Concepts targeting B-cells alone are primarily used if
antibodies against cell-surface antigens have been detected. In the case of an unknown
target antigen, prediction of the effectiveness of either strategy may not be possible ex ante.
According to a recent survey, most therapist chose rituximab over cyclophosphamide in a
setting with a supposed and unknown antibody [138].

Strategies targeting all types of immune cells (mainly T- and B-cells) include sub-
stances such as azathioprine (at a daily dosage of 2–3 mg/kg), mycophenolate mofetil
(2000 mg/d) [139], and cyclophosphamide (975 mg/m2 intravenous, monthly) [140]. Aza-
thioprine and mycophenolate mofetil are oral inhibitors of purine synthesis and need
several weeks to establish their clinical effectiveness. Cyclophosphamide induces apopto-
sis and leads to effective and fast immunosuppression.

In case of intended depletion of CD20 positive plasma cells, rituximab is a well-
tolerated substance. Regimens typically include infusions of 1000 mg on day 0 and 14 and
are repeated every 6 months. Effectiveness and dosage intervals can be monitored by B-cell
count. Especially after good clinical response by PLEX, even in the absence of a specific
antibody, this is a feasible therapeutical approach.

In case of contraindications or adverse effects under therapy with immunosuppres-
sants, monthly administrations of IVIG or performance of PLEX can be considered in the
presence of good clinical response.

7. Outcome and Prognosis

Overall prognosis of paraneoplastic neurologic syndromes and PCD in particular
is poor [1,17,18,127,141,142]. Early detection and treatment of the underlying neoplastic
condition is, as a matter of course, the main predictor of overall survival [47]. For exam-
ple, analysis of 50 patients with antibody positive PCD showed that antitumor treatment
may result in complete remission [17]. The functional outcome was best in Ri-antibody
positive patients, but only 4/19 patients with Yo-antibodies and 4/16 patients with Hu-
antibodies remained ambulatory. Median survival differed between 7 months (anti-Hu) and
>113 months (anti-Tr) [17]. The therapeutic effect of acute and maintenance immunother-
apy is often scarce. Many patients show a rapid progression of symptoms over the initial
weeks and may stabilize under therapy on low level. Detection of cerebellar atrophy in
the early course or at the time point of stabilization predicts a low prognosis regarding
substantial improvement. An older study on 22 patients presenting with cerebellar degen-
eration due to anti-Yo showed <10% clinical improvement under treatment regimens with
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PLEX, corticosteroids, and cyclophosphamide [15]. Different case series reported better
clinical outcome when immunotherapy was administered in the very early course of the
disease [143,144].

Paraneoplastic cerebellar degeneration often results in a rapidly progressive and
devastating neurological course. Treatment should be started as early as possible before
pronounced cerebellar degeneration has taken place. It is paramount, that absence of a
specific antibody is not equated with absence of autoimmunity and therefore should not
prevent early immunotherapy. Especially, acute immune-therapeutical approaches such
as corticosteroids, IVIG, or PLEX have a moderate probability of adverse effects and may
therefore be used even in situations when a definite diagnosis has not been established.

8. Conclusions

Paraneoplastic cerebellar degeneration is a rare but devastating disease. Diagnosis and
management of patients with PCD requires detailed knowledge and an interdisciplinary
approach. Newly identified antibodies associated with a rapidly progressive cerebellar
syndrome have been described in small numbers of patients, making it difficult to estimate
clinical significance and broadening differential diagnosis. Recently published diagnostic
criteria help to establish a diagnosis of PCD and to guide tumor screening as well as
treatment approaches. General treatment approaches, primarily based on immunotherapy
and oncologic treatment, exist but lack evidence. Therefore, several aspects have to be
addressed in future research: (1) the significance of recently described antibodies associated
with a rapidly progressive cerebellar syndrome has to be clarified and possible pathogenic
effects of these antibodies detected, (2) targeted treatments for antibody mediated PCD
should be developed, and (3) large-scale, multi-center, multi-national studies are needed to
evaluate different treatment options and prognostic factors.
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