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The increasing prevalence of non-alcoholic fatty liver disease (NAFLD),

which is a progressive disease, has exerted huge a healthcare burden

worldwide. New investigations have suggested that the gut microbiota

closely participates in the progression of NAFLD through the gut–liver

axis or gut–brain–liver axis. The composition of the microbiota can be

altered by multiple factors, primarily dietary style, nutritional supplements,

or exercise. Recent evidence has revealed that gut microbiota is involved in

mitochondrial biogenesis and energy metabolism in the liver by regulating

crucial transcription factors, enzymes, or genes. Moreover, microbiota

metabolites can also affect mitochondrial oxidative stress function and

swallow formation, subsequently controlling the inflammatory response and

regulating the levels of inflammatory cytokines, which are the predominant

regulators of NAFLD. This review focuses on the changes in the composition

of the gut microbiota and metabolites as well as the cross-talk between

gut microbiota and mitochondrial function. We thus aim to comprehensively

explore the potential mechanisms of gut microbiota in NAFLD and potential

therapeutic strategies targeting NAFLD management.

KEYWORDS

NAFLD, gut microbiota, mitochondria, metabolites, probiotics, prebiotics

Introduction

Non-alcoholic fatty liver disease (NAFLD) is a progressive disease initiated by
an increase in hepatic lipid content, which may progress to various chronic liver
diseases such as hepatic steatosis (HS), steatohepatitis, cirrhosis, and NAFLD-related
hepatocellular carcinoma (HCC) (1–3). Due to its close relationship with metabolic
dysfunction, NAFLD has been defined as metabolic dysfunction-associated fatty liver
disease (MAFLD) (4). The prevalence of NAFLD is increasing at an alarming rate
worldwide, severely affecting 20–30% of North American adults, 80% of individuals
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with obesity, and most patients with type 2 diabetes (T2D) (5).
Remarkably, the prevalence of NAFLD may exceed 70% among
children with obesity. Studies have suggested that chronic liver
diseases in children, such as liver fibrosis and hepatocellular
ballooning, are mainly induced by NAFLD (6). Given the
overwhelming burden of NAFLD, the significant threat it poses
to individuals’ health, and its poor clinical management, there is
an urgent need to comprehensively illustrate its pathogenesis,
develop novel non-invasive diagnostic markers, and identify
potential therapeutic targets for patients with NAFLD.

At present, a large body of evidence has revealed a strong
relationship between NAFLD and imbalance of the microbiota,
especially alterations in the gut microbiome (6). The gut
microbiota comprises of multiple types of bacteria, fungi,
viruses, archaea, and protists (7). Under normal circumstances,
a balanced gut microbiota is beneficial for human health as
it maintains metabolic balance of energy metabolites, lipid
metabolism, and glucose metabolism (8). Moreover, the host
cellular physiology and immune response are modulated by the
gut microbiota (9). In contrast, imbalance of the microbiota
leads to a passive increase of intestinal permeability and
alteration of the homeostasis of the gut microbiota, which
promotes the translocation of bacterial endotoxins or other
bacterial metabolites into the systemic circulation, affecting the
function of the whole body (10). The liver is the first organ
exposed to the gut tract system; consequently, the liver receives
the portal vein blood from the gastrointestinal tract, which
contains multiple microbiota components and metabolites.
However, cross-talk between the intestinal tract and the liver is
mutual. For instance, the liver continuously transports bile into
the small intestine through the biliary system. Consequently,
the maintenance of liver homeostasis is a beneficial effect of the
commensal gut microbes, whereas liver damage may result from
an imbalance in the gut microbiota (11). In short, the association
between the gut microbiota and NAFLD may be illustrated
by the following progress (Figure 1): (1) The individual’s
diet and antibiotic drugs administered during treatment affect
the composition of the gut microbiota, which accelerates the
development of NAFLD. (2) Metabolites produced by the
microbiota, such as short-chain fatty acids (SCFAs) and bile
acids (BAs), interact with the functioning of the mitochondria
or genes or influence the level of inflammatory factors that
promote the NAFLD process. (3) Imbalance of the gut
microbiota increases intestinal epithelial barrier permeability,
subsequently resulting in the influx of various substances such
as harmful metabolites, lipopolysaccharide (LPS), bacteria, and
bacterial DNA into the liver. (4) Serum or liver LPS levels also
increase following the imbalance of the gut microbiota to evoke
hepatic inflammation (12).

Furthermore, an interesting description of the “gut–brain–
liver” axis, which is composed of the intestine, intestinal vagus
nerve, hepatic vagus nerve, and brain, has been extensively
explored to elucidate the mechanism of NAFLD pathology

(13). A previous report proved that the alteration of the gut
microbiota and its related bioactive metabolites may signal
the processes related to the development of obesity, diabetes,
and NAFLD via the gut–brain–liver cross-talk (13–16). For
example, as shown in Figure 1, the gut microbiota can affect
brain function and alter brain–gut peptides such as ghrelin,
cholecystokinin (CCK), and glucagon-like peptide (GLP)-1
and subsequently regulate food intake and hepatic glycolipid
metabolism via a negative feedback loop (17).

Recently, a close interaction between the microbiota and
mitochondria has been comprehensively described in multiple
diseases (18–21). Gut microbiota and their metabolites play vital
roles in mitochondrial biogenesis, metabolism, and oxidative
stress (18). However, the specific mechanisms by which the
cross-talk between microbiota and mitochondria contributes
to the progression of NAFLD are poorly understood. In this
review, we elucidate the role of the gut microbiome and the
metabolites of the microbiota in NAFLD based on published
evidence between 2018 and 2022; we focused on the changes
in the composition of the microbiota and metabolite as well
as the fascinating inter-talk between the gut microbiota and
mitochondria. Moreover, the potential effects are discussed in
the context of exploring novel therapeutic strategies to alter the
intestinal microbiome for the treatment of NAFLD.

Link of microbiota to the
non-alcoholic fatty liver disease
via gut–liver axis

Changes in the composition of the gut
microbiota

Gut microbiota consists of multiple microbes, such
as bacteria, fungi, archaea, and viruses. Bacteroidetes and
Firmicutes are the dominant phyla among the gut bacterial
microbiome (22). In general, the gut microbiota plays several
pivotal roles in maintaining a healthy homeostasis, including
preventing pathogen colonization, metabolizing xenobiotics,
and producing vitamins, particularly those involved in energy
regulation and maintaining a mature immune system such as
folate and biotin (23). Subsequently, unbalanced gut microbiota
may promote the occurrence and development of multiple
diseases. Recently, focus has increased on the intestinal bacteria
related to liver diseases, including hepatitis, cirrhosis, and
NAFLD (Table 1). “Dysbiosis” has been used to illustrate the
changes in the composition of the gut microbiota and is also
characterized as the imbalance or alteration of the microbiota in
a way that can be harmful to the host. Indeed, the composition of
the gut microbiota shows marked dynamic changes from birth
to adulthood and old age (24). However, most alterations in the
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FIGURE 1

Gut microbiota imbalance contributes to the development of NAFLD. High-fat diet or high-cholesterol diet may lead the nutrition imbalance
and change the gut microbiota composition and its metabolites, such as SCFAs, bile acids, and TAMVA. Simultaneously, the intestinal
permeability was enhanced, and microbiota and its metabolites reach the liver through the portal vein. This abnormal biology results in
dysfunction of lipid metabolism, inflammation, and then NAFLD. The gut–brain–liver axis is also involved in NAFLD. Microbiota disorders
promote the intestinal endocrine L cells to secrete GLP-1 to act on the vagus nerve to activate the gut–brain–liver nerve pathway and regulate
the insulin sensitivity, glucose production, fatty acid oxidation. GABA, gamma-aminobutyric acid; DA, dopamine; NA, noradrenaline; SCFAs,
short-chain fatty acids; TMAVA, N,N,N-trimethyl-5-aminovaleric acid; GLP-1, glucagon-like peptide-1.

gut microbiota are closely related to environmental influences
such as sex, diet, and drugs administered during treatment (25).

High-fat diet-induced changes in the
microbiota in non-alcoholic fatty liver disease

We have summarized recent studies on the alteration of the
composition of the microbiota in the development of NAFLD
through the gut–liver axis (Table 1). For example, NAFLD is
commonly induced by nutritional imbalance, which results
from dietary disorder-induced overnutrition and malnutrition.
Moreover, comprehensive examination of the NAFLD etiology
induced by overnutrition and obesity showed that an alteration
of the gut microbiota has emerged as a crucial element in
promoting the occurrence of NAFLD (6). The levels of alanine
aminotransferase (ALT), aspartate aminotransferase (AST),
and triglycerides (TG) were significantly elevated by a high-fat
diet (HFD) in C57BL/6 mice with NAFLD (26). Consequently,
HFD decreased the special operational taxonomic units
(OTUs) and Shannon diversity index of the microbiota, which
suggested that HFD caused an imbalance in the homeostasis
of the gut microbial community. HFD remarkably enhanced
the abundance of Firmicutes and reduced the abundance of
Bacteroidetes. Moreover, participants with obesity exhibited
a significantly higher ratio of Firmicutes to Bacteroidetes
(27). In another study, Li et al. (28) found that the high-fat

high-cholesterol (HFHC) group upregulated the abundance
of Firmicutes and Verrucomicrobiota and downregulated the
abundance of Bacteroidetes, Actinobacteria, and Proteobacteria.
However, a gradual decrease in the abundance of Firmicutes,
Verrucomicrobiota, and Actinobacteriota and a gradual increase
in the abundance of Bacteroidetes were identified during the
progression of NAFLD from non-alcoholic steatohepatitis
(NASH) to NASH with fibrosis. In fact, the levels of TG and
total cholesterol (TC) in the liver were strongly correlated
with the abundance of Firmicutes and Bacteroidetes in HFD-
induced NAFLD mice. Moreover, the alteration of serum
lipid levels was also related to imbalanced bacterial microbiota,
including Erysipelotrichaceae, Coriobacteriaceae, Enterorhabdus,
Lachnoclostridium, and Alistipes in C57BL/6J mice fed with
HFD. Furthermore, the gut microbiome profile differs according
to the severity of NAFLD. A previous cross-sectional analysis
that included NAFLD-cirrhosis, NAFLD without advanced-
fibrosis, and non-NAFLD controls investigated alterations in
the composition of the microbiota (29). The β-diversity of
the gut microbiota was lower among patients with NAFLD
without advanced fibrosis than among participants of the
healthy control group, whereas it was higher among patients
with NAFLD-cirrhosis than in patients with NAFLD without
advanced-fibrosis. Consequently, a decrease in gut microbiota
diversity was identified in proportion to NAFLD severity.
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TABLE 1 Investigations into NAFLD and microbiota composition and function in humans.

Study Design and participant
details

Microbial findings and
summary of results

Upregulated microbiota Downregulated
microbiota

Caussy et al. (63) • Prospective discovery cohort
• 203 participants were divided
into NAFLD- cirrhosis, NAFLD
without AF, non-NAFLD controls

Identified a specific stool
microbiome-derived signature of
NAFLD-cirrhosis
Assessed microbial biomarker
could present an adjunct tool to
determine stage of liver disease.

Streptococcus, Megasphaera,
Enterobacteriaceae,
Streptococcus, Gallibacterium

Bacillus and Lactococcus,
Pseudomonas,
Faecalibacterium prausnitzii,
Catenibacterium,
Rikenellaceae,
Mogibacterium,
Peptostreptococcaceae

Behary et al. (39) • Prospective discovery cohort
• 90 subjects were divided into:
32 with NAFLD-HCC, 28 with
NAFLD-cirrhosis and 30
non-NAFLD control

Gut dysbiosis characterizes liver
Cirrhosis NAFLD-HCC was
characterized by expansion of
Proteobacteria compared to
non-NAFLD controls.

Proteobacteria, Coriobacteriaceae Oscillospiraceae,
Erysipelotrichaceae,
Bacteroidetes,
Muribaculaceae,
Odoribacteraceae,
Prevotellaceae

López-Salazar et al. (109) • Animal model
• SO, OO, CO was fed with
NAFLD C57BL/6 mice,
respectively

SO showed the highest microbial
diversity, high insulin sensitivity
and low grade inflammation.
CO showed the lowest bacterial
diversity, increase in the LPS
concentration, hepatic steatosis,
increased lipogenesis.

Akkermansia muciniphila,
Bifidobacterium, Bacteroides
acidifaciens, Faecalibacterium
prausnitzii, Mucispirillum
schaedleri

Verrucomicrobia phyla

Ding et al. (26) • Animal model
• Mice were randomized into:
CHOW, CHOW + NAC,
HFD + NAC

NAC potentially alleviated
HFD-induced NAFLD via the
homeostasis of the gut
microbiota.

Firmicutes
norank_f_Erysipelotrichaceae,
Coriobacteriaceae_UCG-002

Bacteroidetes,
Enterorhabdus,
Lachnoclostridium, Alistipes

Liu et al. (50) • Prospective discovery cohort
• Female NAFLD patients and
normal controls.
• Female C57BL/6 mice were
divided into: normal diet,
sham-operated + HFD,
OVX + HFD,
OVX + HFD + FMT.

The structure of the gut
microbiota was changed in
NAFLD patients and mice
induced by OVX.
FMT attenuated estrogen
deficiency induced NAFLD in
mice.

Bacteroidetes, Proteobacteria,
Bacteroides, Alistipes,
Verrucomicrobia,
Faecalibaculum, Helicobacter,
Epsilonbacteraeota

Muribaculaceae,
Lactobacillus

Zeybel et al. (4) • Prospective discovery cohort
• MAFLD were classified into: no
steatosis, mild steatosis, moderate
steatosis, severe steatosis.

The alterations in the microbial
compositions start at early stages
of the clinical spectrum and cause
metabolic disturbances
underlying HS.

Firmicutes (Streptococcus mitis
and Roseburia inulinivorans) and
Bacteroidetes (Barnesiella
intestinihominis and Bacteroides
uniformis)

Bacteroidetes (Prevotella sp.
CAG 520, Prevotella sp.
AM42 24, Butyricimonas
virosa, and Odoribacter
splanchnicus), Proteobacteria
(Escherichia coli),
Lentisphaerae (Victivallis
vadensis), and Firmicutes
(Holdemanella biformis,
Dorea longicatena, Allisonella
histaminiformans, and
Blautia obeum)

Zhang et al. (38) • Animal model
• Male C57BL/6 were fed with
NC, HFLC, HFHC

High dietary cholesterol induces
spontaneous and progressive
development of NAFLD–HCC in
male mice by modulating the gut
microbiota.

M. schaedleri_Otu038,
Desulfovibrio_Otu047,
Anaerotruncus_Otu107,
Desulfovibrionaceae_Otu073

Akkermansia, Lactobacillus,
Bifidobacterium, Bacteroides

Carbajo-Pescador et al. (56) • Wistar rats were separated into:
Control, semi-purified high fat
diet (HFD)

The consumption of oils with
high monounsaturated and
polyunsaturated fats and
probably the presence of phenolic
compounds that protects gut
barrier integrity allows the
maintenance of healthy gut
microbiota.

Firmicutes Clostridia (Firmicutes
phylum), Deltaproteobacteria and
Gammaproteobacteria
(Proteobacteria phylum)

Bacteroidetes, Bacteroidia
(Bacteroidetes phylum) and
Bacilli (Firmicutes phylum)

(Continued)
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TABLE 1 (Continued)

Study Design and participant
details

Microbial findings and
summary of results

Upregulated microbiota Downregulated
microbiota

Zhang et al. (84) • C57BL/6J male mice were
divided into: normal diet, HFD,
HFID (high-fat plus resistant
dextrin diet)

Resistant dextrin mitigates
hepatic steatosis through
modifying the intestinal
microbiome and fecal
metabolome in mice.

Bifidobacteriaceae, Dietziaceae,
and Prevotellaceae, Firmicutes
phylum, Turicibacter,
Faecalibaculum, and
Streptococcus

Bifidobacterium, Dietzia,
Globicatella, Enterococcus,
Lactobacillus, Leuconostoc,
Lactococcus, Streptococcus,
Lachnoclostridium,
Parabacteroides, Catabacter,
Blautia, Dubosiella,
Erysipelatoclostridium,
unidentified_
Erysipelotrichaceae

Li et al. (28) • Male C57BL/6 mice were
divided into: normal diet, HFHC
diet, HFHC diet supplemented
with UCDA.

UDCA could resistance hepatic
inflammation in a dose
dependent pattern and improve
the dysbiosis of the gut
microbiota induced by HFHC.

Firmicutes, Verrucomicrobiota Bacteroidetes,
Actinobacteriota,
Proteobacteria

SO, soybean oil; OO, olive oil; CO, coconut oil; NAC, N-acetylcysteine; CHOW, chow diet; HFD, high-fat diet; NC, normal chow; HFLC, high-fat/low-cholesterol diet; HFHC, high-
fat/high-cholesterol diet; OVX, ovariectomy.

Furthermore, Streptococcus abundance increased in patients
with both NAFLD-cirrhosis and NAFLD without advanced
fibrosis; Megasphaera abundance only increased in participants
with NAFLD-cirrhosis. However, Bacillus and Lactococcus
abundance increased in patients with NAFLD without advanced
fibrosis and in healthy participants. Meantime, the abundance
of Enterobacteriaceae, Streptococcus, and Gallibacterium
was enhanced in patients with NAFLD-cirrhosis, while
Faecalibacterium prausnitzii, Catenibacterium, Rikenellaceae,
Mogibacterium, and Peptostreptococcaceae were only identified
in healthy participants. The composition of the gut microbiome
also significantly differed with different severities of HS (4). The
abundance of Bacteroidetes, Proteobacteria, Lentisphaerae, and
Firmicutes was largely decreased in patients with mild steatosis.
In contrast, the abundance of Firmicutes and Bacteroidetes
was significantly increased in patients with moderate steatosis.
The abundance of Actinobacteria, Bacteroidetes, Lentisphaerae,
Firmicutes, and Proteobacteria was also notably decreased
in patients with severe steatosis. The abundance of the
Firmicutes bacterium CAG 95 was also significantly decreased
in patients with both severe and moderate steatosis. Similar
to previous studies, some species of the phylum Firmicutes,
including Ruminococcus bromii, Dorea longicatena, and
Roseburia sp. CAG 182, could regulate AST, ALT, and uric acid
levels.

Sex-dependent gut microbial features related
to non-alcoholic fatty liver disease

Sex hormones and sex chromosomes are the two major
factors driving sex-based characterization of the differences
in the microbiome between the male and female sexes (30).
A previous study revealed that sex-specific microbiomes may
play an essential role in the incidence of NAFLD and
obesity (31). For instance, the genus Holdemanella and family

Erysipelotrichaceae were negatively related to the android fat
ratio in females, whereas a positive relationship was identified
in males. Meanwhile, the family Ruminococcaceae was positively
related to the gynoid fat ratio only in females. Male and
female sexes have different microbiome species associated
with fat distribution, and sometimes, the same family and
genus of microbiomes have different associations with fat
distribution in the two sexes (32). Postmenopausal females
with estrogen deficiency display a higher risk for NAFLD
progression to fibrosis owing to the alteration of gut microflora
(30). Male patients with NAFLD showed a decreasing trend
in microbial α-diversity, an increasing trend in the abundance
of genera Dialister, Streptococcus, and Bifidobacterium species,
and a decreasing trend in the abundance of the genera
Phascolarctobacterium, Mogibacteriaceae, Rikenellaceae, and
Peptococcaceae. In contrast, female patients with NAFLD had
an increasing trend in microbial α-diversity and the abundance
of these taxa and showed an opposite trend (33). As previously
described, Dialister is a genus of Firmicutes that increases
in abundance in patients with liver cirrhosis (3). The genus
Phascolarctobacterium showed association with control of the
body weight of patients with NAFLD (34). RF39 elicits a
potential health benefit in controlling BMI, blood TG, and frailty
among older adults (35). The specific changes in microbiota
induced by different maternal diets were also notable. For
example, the abundance of Firmicutes and Tenericutes was
increased and that of Bacteroidetes, Verrucomicrobia, and
Cyanobacteria was decreased among male mouse offspring due
to HFD. Female mouse offspring had a higher abundance
of Firmicutes, Saccharibacteria, and Deferribacteres and lower
Bacteroidetes and Verrucomicrobia in the HFD group than in
the control group (36). However, the mechanism underlying the
alteration of microbiota induced by differences in sex remains
poorly explored.
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The alteration of microbiota in non-alcoholic
fatty liver disease-hepatocellular carcinoma

Non-alcoholic fatty liver disease is one of the main factors
contributing to HCC (37). The prevalence of NAFLD-HCC
has increased more than that of hepatitis, and the frequency of
liver transplantations is rapidly growing worldwide. The gut
microbiome is a crucial factor that promotes the occurrence
of NAFLD and NAFLD-HCC (3, 38, 39). NAFLD-HCC is
characterized by an increased abundance of Proteobacteria
compared to that in healthy individuals. An increase in
Enterobacteriaceae and decrease in Oscillospiraceae and
Erysipelotrichaceae abundances were identified in patients with
NAFLD-HCC. However, the microbiome signature differed
between patients with NAFLD-cirrhosis and NAFLD-HCC. An
increase in Eubacteriaceae abundance was observed in NAFLD-
cirrhosis group, which was not found in either NAFLD-HCC
or the non-NAFLD control groups. Furthermore, an elevated
abundance of Coriobacteriaceae and a lower abundance of
Muribaculaceae, Odoribacteraceae, and Prevotellaceae were also
detected in those with NAFLD-cirrhosis (3, 39). Moreover,
supplementation of the diet with cholesterol spontaneously
promoted the occurrence of NAFLD-HCC, followed by
dysbiosis of the gut microbiota. This report confirmed that
an increase in Helicobacter ganmanii and a decrease in
Bacteroides play an essential role in NAFLD-HCC onset. In
contrast, the imbalanced gut microbiota regulates cholesterol
levels in NAFLD-HCC. For example, some bacteria such
as Mucispirillum schaedleri, Desulfovibrio, Anaerotruncus,
and Clostridium celatum were positively correlated with
cholesterol levels. However, Bifidobacterium, Bacteroides
acidifaciens, Bacteroides uniformis, Akkermansia muciniphila,
and Lactobacillus were negatively correlated with serum and
liver cholesterol levels. Similar results were also observed in
cases of hypercholesterolemia; Bifidobacterium and Bacteroides
negatively regulate the levels of TC and low-density lipoprotein
(LDL) cholesterol in the serum (38).

Notably, the abundance of bacterial species is closely
associated with host gene expression in NAFLD. First,
Barnesiella, Oscillibacter sp. CAG 241, and Roseburia related
to HS could regulate the expression of inflammatory genes.
For example, Campylobacter concisus and Porphyromonas
endodontalis negatively regulated the expression of CXCL9 and
LIF-R, respectively, and Veillonella atypica positively regulated
the expression of CD244. Based on these data, we can infer
that these inflammation-related proteins are responsible for
enhancing antigen presentation to lymphocytes, which break the
liver immune tolerance and stimulate both cellular and humoral
immune responses in NAFLD (4, 39). In addition, some
species of bacteria, including Bacteroides caecimuris, Bacteroides
xylanisolvens, and Clostridium bolteae, were able to regulate
the levels of IL-10+ Tregs and CD8+ T-cells in patients with
NAFLD-HCC, suggesting that these bacteria participate in the
modulation of adaptive immunity (39). Second, members of the

predominant bacterial phyla, Firmicutes and Bacteroidetes, also
influence the lipid metabolism pathway in the liver by regulating
the related genes. Firmicutes positively regulate the expression
of Mogat1 and CD36 in the liver. In contrast, Bacteroidetes
negatively regulate the expression of Cidea, CD36, Acnat2,
Mogat1, and GPAT3. In addition, Erysipelotrichaceae positively
regulated the expression of Cidea, CD36, Acnat2, Mogat1, and
GPAT3. Previous studies have suggested that Cidea, CD36,
and GPAT3 are involved in the lipid metabolism pathway that
drives the occurrence of HS (26). Third, F. prausnitzii can also
regulate genes related to other pathways, such as IRS-1/2, IL-6,
SOCS3, LEPR, and steroid response element binding protein-
α (SREBP-α), to prevent the development of NAFLD (40).
In addition, F. prausnitzii regulates the immune response by
mediating the expression of PRKCZ, STAT3, and IRS2. Another
bacterium, Ruminococcus spp., has also been found to regulate
the expression of AKR1B10, which is related to apoptosis
(41). The abundance of Ruminococcus spp. is also positively
related to JUN and JUNB, which attenuates the pathogenesis of
NASH (42).

Changes in the metabolites of the gut
microbiota due to non-alcoholic fatty
liver disease

Metabolites in the circumstance system were also altered,
following the changes in the gut microbiota, which highlighted
the etiological mechanisms of NAFLD. Data are available
describing specific metabolite signatures related to the
different stages of NAFLD (4). Furthermore, gut bacterial
metabolites participate in maintaining homeostasis and affect
the development of NAFLD through the gut microbiota–liver
axis (Table 2). The following descriptions focus on the foremost
metabolites of the gut microbiota recently described to be
involved in NAFLD progression.

N,N,N-trimethyl-5-aminovaleric acid
N,N,N-trimethyl-5-aminovaleric acid (TMAVA) is a novel

metabolite identified in patients with HS which is useful for
characterizing the different severities of HS (43). Zhao et al.
(43) found that plasma trimethyl lysine (TML) is a precursor
of TMAVA. Enterococcus faecalis and Pseudomonas aeruginosa
can promote TML metabolism into TMAVA (44). Interestingly,
increased levels of TML were observed in patients with steatosis.
In another clinical trial (4), the plasma level of TMAVA was
positively dependent on the abundance of Bacteroides stercoris,
B. uniformis, and Parabacteroides distasonis and negatively
dependent on the abundance of Prevotella copri. However,
TMAVA was significantly decreased by the combined metabolic
activators (CMAs). In contrast, TMAVA can bind and inhibit the
expression of γ-butyrobetaine hydroxylase (BBOX) to decrease
carnitine synthesis (45). Thus, TMAVA participates in energy
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TABLE 2 Investigations into NAFLD and microbiota metabolites.

Study Design and participant details Microbial findings and summary of results

Caussy et al. (63) • Prospective cohort study
• 156 well-characterized Twins and Families with NAFLD

NAFLD individuals had a microbial origin and derive potentially
from the gut microbiome: 3-(4-hydroxyphenyl) lactate,
N-formylmethionine, phenyllactate, mannitol, allantoine,
N-(2-furoyl)glycine.

Zhao et al. (43) • Prospective cohort study
• 15 patients with liver steatosis and 15 controls
• 1157 subjects with liver steatosis 766 subjects control

The intestinal bacteria Enterococcus faecalis and Pseudomonas
aeruginosa to metabolize trimethyllysine to TMAVA.
TMAVA to bind and inhibit BBOX, reducing synthesis of carnitine.

Behary et al. (39) • Prospective discovery cohort
• 90 subjects were divided into: 32 with NAFLD-HCC, 28 with
NAFLD-cirrhosis and 30 non-NAFLD control

Isocitrate was lower in NAFLD-HCC subjects
The feces of NAFLD-HCC subjects were enriched in acetate,
Oxaloacetate, acetylphosphate, butyrate, and formate, propionate,
malonate.

Liu et al. (50) • Prospective discovery cohort
• Female NAFLD patients and normal controls.
• Female C57BL/6 mice were divided into: normal diet,
sham-operated + HFD, OVX + HFD, OVX + HFD + FMT.

Peptococcus and Romboutsia were positively, while
Ruminiclostridiun-6 and Muribaculum were negatively correlated
with SCFA.
The butyrate content was much lower in the NAFLD patients.
OH group had a significantly greater expression of the lipid intake
related gene VLDLR, and lower expression of the lipid oxidation
related genes, PPAR-α and ACAA.

Zeybel et al. (4) • Prospective discovery cohort
• NAFLD were classified into: no steatosis, mild steatosis, moderate
steatosis, severe steatosis.

TMAVA plasma level was significantly increased in moderate
steatosis vs. no steatosis

Zhang et al. (38) • Animal model
• Male C57BL/6 were fed with NC, HFLC, HFHC

Cholesterol induces increased TCA and decreased IPA through gut
microbiota alteration, thereby promoting lipid accumulation, cell
proliferation in the liver, leading to NAFLD–HCC development.

Carbajo-Pescador et al. (56) • Wistar rats were separated into: Control, semi-purified high fat
diet

Exercise increased SCFAs production in the early obesity and
NAFLD model.
Exercise improves HFD-mediated barrier disruption and
counteracts endotoxemia, oxidative stress, gut-liver axis activation
and inflammatory response in our in vivo model of early obesity and
NAFLD.
Exercise improves HFD-induced obesity and hepatic steatosis
through its capacity to modulate bile acids metabolism and
enterohepatic circulation.

Zhang et al. (84) • C57BL/6J male mice were divided into: normal diet, HFD, HFID
(high-fat plus resistant dextrin diet)

HFID-fed increased the levels of lactitol, maltitol, trigonelline,
carvone, and dehydroepiandrosterone, decreased testosterone,
lipoic acid, oleic acid, and tryptophan.

TMAVA, N,N,N-trimethyl-5-aminovaleric acid; TCA, taurocholic acid; IPA, 3-indolepropionic acid; SCFAs, short-chain fatty acids; NAC, N-acetylcysteine, CHOW, chow diet; HFD,
high-fat diet; NC, normal chow; HFLC, high-fat/low-cholesterol diet; HFHC, high-fat/high-cholesterol diet; OVX, ovariectomy; OH, sham-operated + high-fat diet.

production and conversion and the metabolism and transport
of carbohydrates and lipids in the liver. Therefore, TMAVA
can be considered a potential metabolite signature for the
prediction of NAFLD.

Short-chain fatty acids
Short-chain fatty acids are a primary type of bacterial

metabolite produced by bacterial fermentation of otherwise
indigestible fibers in the colon (46). Many previous studies
have illustrated the role of aberrant levels of SCFAs in
NAFLD progression (39, 40, 47–50). SCFAs can disrupt the
functioning of the intestinal barrier impairing the translocation
of LPS and increasing the level of liver endotoxemia to
promote the pathogenesis of NAFLD (50). Butyrate and
propionate are the main components of SCFAs, which can
decrease gut inflammation and improve gut barrier integrity
to limit LPS translocation (51). Liu et al. (50) confirmed

that butyrate was significantly reduced in female patients
with NAFLD and in ovariectomized (OVX) mice. Butyrate
was also positively correlated with Tregs and effector IL-
10 and negatively correlated with cytotoxic CD8 T-cells in
participants with NAFLD-HCC (39). Indeed, previous studies
have indicated that gut microbiota directly regulates T-cell
immunity through SCFAs (52, 53). Moreover, supplementation
of a high fiber diet increases the levels of SCFAs, especially
butyrate, to promote hepatocyte proliferation (49, 54). Butyrate,
nicotinate, and 2-oxoglutarate positively regulate hepatic
oxidative phosphorylation and negatively regulate TG content
through oxidative metabolism. The intermediates of SCFAs,
oxaloacetate and acetylphosphate, were also increased in
patients with NAFLD-HCC (39).

Short-chain fatty acids are closely related to specific bacterial
species. For example, F. prausnitzii can produce SCFAs to
induce apoptosis by regulating mitochondrial death, reactive
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oxygen species (ROS), and the caspase pathway during the
progression of NAFLD to NASH (55). SCFA levels were
also positively dependent on Peptococcus and Romboutsia and
negatively dependent on Ruminiclostridiun-6 and Muribaculum
(40). SCFAs and these bacteria were found to positively regulate
the levels of TC, leptin, and body weight in female participants.
In addition, Olivibacter, Clostridium, and Dysgonomonas may
be related to levels of other SCFAs, such as acetate and
propionate (56).

Bile acid
In addition to SCFAs, BA can also regulate inflammation

due to HS by agonizing or antagonizing their cognate receptors
(38, 51, 57). Primary BAs, such as taurocholic acid (TCA),
tauroursodeoxycholic acid (TUDCA), glycocholic acid (GCA),
and taurochenodeoxycholic acid (TCDCA), were aberrantly
elevated in patients with NASH and mice fed a HFHC diet.
Indeed, it had been confirmed that TCA, GCA, TCDCA, and
TUDCA are critical metabolites that affect the accumulation
of hepatic lipids and inflammation. Xiang et al. (38) reported
that an increase in the abundance of M. schaedleri, Roseburia,
and H. ganmanii possibly elevated TUDCA, TCDCA, TCA, and
GCA levels, whereas decreased abundance of A. muciniphila due
to HFHC diet elevated TCDCA and TUDCA levels. Increased
abundance of Anaerotruncus due to a HFHC diet depleted the
level of indolepropionic acid (IPA) (57). In addition, other
bacteria such as Roseburia intestinalis, P. distasonis, Bacteroides
vulgatus, and B. uniformis are also involved in the secondary
BA metabolism pathway (4). In participants with NAFLD,
primary BA levels were negatively related to the abundance of
R. bromii, a species beneficial to human health. In addition, the
enrichment of Bilophila wadsworthia lead to BA dysmetabolism,
inflammation, and intestinal barrier dysfunction in the host,
inducing higher glucose dysmetabolism and HS (58). Thus,
Bifidobacterium and Bacteroides, the predominant bacteria of
the gut microbiota, also participate in BA metabolism in NAFLD
induced by HFHC feed (38). These species could prevent
the transformation of taurine- and glycine-conjugated BAs
into their unconjugated free forms (59). Collectively, previous
findings suggest that treatment strategy exploration for NAFLD
may be realized by reversing impaired BA metabolism, thereby
preventing the development of NAFLD-HCC.

Other metabolites
Fatty acid (FA), which may be produced as a result of

metabolism by Firmicutes bacterium CAG 95 and Firmicutes
bacterium CAG 110, is also involved in the development of
NAFLD (4). The expression of crucial hepatic genes, including
SREBP1, PPAR-γ, FAS, and CHREB, is involved in FA synthesis
in HFD-fed mice and patients with estrogen reduction (56).
Lipid accumulation in the liver is partly responsible for the
uptake of circulating FA and decreases in the rate of FA
oxidation and secretion (60). Indeed, butyrate can reverse

PPAR-α activation to enhance FA β-oxidation, inhibit lipid
synthesis, and deplete the level of nuclear factor-kappa B (61,
62), which was also observed in NAFLD-OVX mice (50).

In addition, 3-(4-hydroxyphenyl) lactate is a newly defined
amino acid involved in tyrosine metabolism in NAFLD
(63). Interestingly, circulating 3-(4-hydroxyphenyl) lactate
may be generated by Escherichia coli, which also produces
hydroxyphenyllactate in vitro (64). Moreover, members of
Firmicutes, Bacteroidetes, and Proteobacteria phyla can also
produce 3-(4-hydroxyphenyllactacte and phenyllactate) in
NAFLD. Furthermore, many other dysfunctional metabolites
are related to bacterial abundance. For example, carnosine,
nicotinate, methylamine, trimethylamine, and arabinose were
associated with the abundance of Bacteroides in HFD-induced
NAFLD. Olivibacter, Clostridium, and Dysgonomonas have been
correlated with acetate and propionate (56).

Link between microbiota and
non-alcoholic fatty liver disease
via gut–brain–liver axis

The gut, brain, and liver interact closely with each other.
For example, intestinal signals can activate the hypothalamic
lipid-sensitive signals via the vagal afferent nerves, which
in turn controls food intake (65). Simultaneously, the brain
inhibits hepatic glucose production to suppress the onset of
obesity. In turn, the liver inhibits hepatic glucose output via
the insulin signaling pathway to reduce brain glucose uptake
and the impairment of neuronal cell activity (66). On the
one hand, gut dysbiosis induced by high-fat/high-sugar diet
increases intestinal permeability and promotes the production
of inflammatory cytokines in colonic epithelial cells (13).
As a result, the vagal gut–brain communication is altered.
The gut-vagal afferent nerve is continuously activated due to
inflammation, which signals a response in the brain to induce
a series of inflammation-associated sickness-causing behaviors
in the liver, such as insulin sensitivity and HS (67). On the
other hand, GLP-1 and GLP-1R play a predominant role in
the gut–brain–liver axis by predominantly promoting insulin
secretion in a glucose-dependent manner and reducing the
body weight through a variety of channels (68). Importantly,
the gut microbiota is closely related to GLP-1 secretion during
NAFLD development. Studies have suggested that gut microbial
dysbiosis and its related metabolites can stimulate GLP-1
secretion through the GPR41/43 pathway and ultimately lead to
the accumulation of fat, which leads to NAFLD (69).

In addition, SCFAs, the main metabolites of the gut flora,
can simulate vagus nerve signaling and regulate the levels
of neurochemicals, such as serotonin, dopamine (DA), and
noradrenaline to influence brain function (70). Moreover,
SCFAs are also responsible for the modulation of the host’s
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appetite and food intake to promote the release of GLP-1 and
peptide YY (via interaction with G-coupled proteins expressed
by enteroendocrine cells to activate the gut–brain–liver axis)
(71). This contributes to the occurrence of NAFLD.

Gut microbiome signaling to
mitochondria in non-alcoholic
fatty liver disease

Non-alcoholic fatty liver disease is characterized as a
liver metabolic syndrome (MS), which is characterized by
obesity, high blood levels of TG levels, low blood levels
of high-density lipoprotein (HDL) cholesterol, and fasting
glucose (72, 73). The HFD or HCFD dietary lifestyle obviously
contributes to the alteration of these biochemical parameters
to promote liver damage (73). However, a healthy metabolic
status is important for cellular mitochondrial function (74).
Mitochondria are the energy pool for continuous synthesis
of adenosine triphosphate (ATP). Moreover, cellular ROS are
mainly produced by the mitochondria. Subsequently, alteration
of mitochondrial function can promote liver fat deposition,
lipid peroxidation, hepatic oxidative stress, and liver insulin
resistance (IR) (74). Recently, alteration of gut microbiota
and its metabolites has been shown to induce accumulation
of ROS in mitochondria and lead to alterations in oxidative
stress and mitochondrial damage, which have been described
in HS or NASH progression to fibrosis (75–77). In addition to
metabolites such as SCFAs and BA, bacteria can also promote
cross-talk between the microbiota and mitochondria by directly
regulating the expression of cellular genes (Figure 2).

Previous investigations have illustrated members of
Bacteroides, Firmicutes, and other bacteria alternating the
level of SCFAs (78), which are utilized by the mitochondria
to synthesize energy (79). For instance, the application of
sodium butyrate (NaB) can significantly enhance mitochondrial
DNA content in HepG2 cells, increase membrane potential
function, and ameliorate mitochondrial dysfunction. Parallelly,
NaB can elevate the activity of superoxide dismutase (SOD)
and glutathione peroxidase (GPX) and deplete the levels
of prooxidative NADPH oxidase 2 (NOX2), ROS, and
malondialdehyde (MDA). Furthermore, deacetylation of
histones may also be regulated by NaB to improve energy
metabolism in NAFLD (80, 81).

In addition to SCFAs, BAs can influence mitochondrial
energy metabolism and biogenesis. Bifidobacterium and
Bacteroides are the main gut microbiota that transform
conjugated BA into secondary BA during the progression of
NAFLD in HFHC-fed or HFD-fed rats (38, 59). Secondary BAs
regulate mitochondrial function by controlling transcription
factors, including those involved in carbohydrate and lipid
metabolism. For example, HFD-induced impairment of
enterohepatic BA recycling was observed in the small intestine

of HFD-fed rats (56). Consequently, the small heterodimer
partner (SHP) and farnesoid X receptor (FXR) are robustly
alternated (38). FXR is a target of sirtuin-1 (SIRT1), an NAD-
dependent protein deacetylase, that regulates the expression of
FXR (82) to regulate carbohydrate response element binding
protein (ChREBP), steroid response element binding protein-
1c (SREBP-1c), and PPAR-α to stimulate FA uptake and
oxidation (83).

Supplementation with TMAVA promotes the development
of HFD-induced NAFLD by influencing metabolic processes
(4, 43). TMAVA decreases carnitine levels, which can be
converted into acylcarnitine intermediates by carnitine
acyltransferases involved in β-oxidation and the maintenance
of mitochondrial structure. In contrast, TMAVA can inhibit
endogenous carnitine synthesis and absorption in conjunction
with γ-BB for BBOX binding. In addition, an HFD-fed
diet altered the abundance of Streptococcus, Globicatella,
Leuconostoc, Lactococcus, Bifidobacterium, and Lactobacillus
in the report by Zheng et al. (84), which positively correlated
with tryptophan, L-tyrosine, and skatole. Commonly, the
gut microbiota metabolizes tryptophan into indoles, which
promotes inflammation and causes severe HS. Therefore,
the metabolites of the microbiota that benefit mitochondrial
homeostasis should be further investigated to explore treatment
strategies in patients with NAFLD.

Microbiota and mitochondria:
potential therapeutic strategies in
non-alcoholic fatty liver disease

Approaching NAFLD treatment on a molecular basis
involving the microbiota and mitochondrial functions
in tandem with lifestyle changes has proven promising.
Traditionally, drugs cannot achieve adequate long-term effects
and patients have presented with drug resistance. Exploring
new therapeutic approaches, such as probiotics, prebiotics,
symbiotics, or transplantation of fecal microbial communities,
might overcome this limitation. We have identified some novel
treatments targeting the microbiota and mitochondria for
NAFLD, as shown in Table 3.

Probiotics

Probiotics are live organisms that benefit host health. They
can stabilize the intestinal barrier, regulate immunomodulation,
alter small intestinal bacterial overgrowth to inhibit
inflammation in NAFLD, and contribute clinical benefits
(85). Previous investigations have suggested that probiotics
enhance the barrier function of epithelial cells and decrease
intestinal permeability and endotoxemia in patients with
liver disease. Probiotic therapy can significantly decrease the
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TABLE 3 Trials on the exploring of therapeutic strategy target to gut microbiota.

Study Participant details and Treatment strategy Effect of treatment

Zhao et al. (43) Male C57BL/6J mice were fed an HFD for 8 weeks along with
the indicated interventions. BBOX-knockout mice (BBOX−/−)
were administered TMAVA.

Improve energy production and conversion, and carbohydrate transport
and metabolism, and a decrease in lipid transport and metabolism.
Improve hepatic mitochondria function

Xie et al. (12) C57BL/6 mice were divided into four groups: CTL group,
model (M) group, model + VVYP 10 mg/kg (M-VVYP), VVYP
10 mg/kg (VVYP).

VVYP inhibited the increased level of LPS and reversed the liver
mitochondria dysfunction.
VVYP increased the abundance of Eubacteriaceae, coriobacteriaceae,
Desulfovibrionaceae, S24-7 and Bacteroidia VVYP reduced the
abundance of Lactobacillus.
VVYP conferred the protective effect of intestinal barrier via promoting
the expression of the mucins and tight junction (TJ)-associated genes,
inhibited subsequent liver inflammatory responses.

Craven et al. (1) 21 patients with NAFLD were randomly assigned to receive an
allogenic or autologous FMT for 6 months post-transplant.

Allogenic FMT patients with elevated small intestinal permeability at
baseline had a significant reduction 6 weeks after allogenic FMT.
No significant changes in HOMA-IR or hepatic PDFF in patients who
received the allogenic or autologous FMT.

Geng et al. (95) Zebrafish model, and NAFLD rats model were divided into:
control, high-fat (HF) diet, and HF diet plus different probiotics
including ZW3.

Supplementation with ZW3 could improve the liver impairments and
reduce inflammation through TLR4-MyD88 and JNK signaling
pathways.
ZW3 modulated gut microbiota by promoting relative abundance of
Firmicutes and Lactobacillus, decreasing the abundance of Escherichia
Shigella and Bacteroides.

Lensu et al. (49) Male Wistar rats were divided into four dietary treatment
groups: (1) HFD, (2) HFD supplemented with XOS, (3) control,
and (4) LFD supplemented with XOS

XOS increased the growth of F. prausnitzii, lowered the level of cecal
tyrosine, XOS decreased triglycerides on the. HFD, XOS increased the
hepatic activity of β-HAD on the HFD, XOS supplementation seemed to
ameliorate mitochondrial respiration injury induced by HFD, XOS had
increased respiratory capacity available for the production of ATP
through the electron flow from complex I, improved coupling of
electron transport through complex I and oxidative phosphorylation.
XOS diminished the epithelial injury caused by the HFD

Carbajo-
Pescador et al.
(56)

Wistar rats were separated into two subgroups (n = 24):
Control, semi-purified high fat diet (HFD)

Exercise performance counteracted the HFD induced microbial
imbalance, modifying Firmicutes/Bacteroidetes ratio.

Zhang et al. (84) C57BL/6J male mice were divided into: normal diet, HFD,
HFID (high-fat plus resistant dextrin diet)

Resistant dextrin ameliorated mitochondrial function and hepatic
steatosis by manipulating the intestinal microbiota and its metabolites.
Resistant dextrin supplementation via an HFID diet restored the
structure of the intestinal microbiota, ameliorated microbial metabolic
changes including to tryptophan and bile acid metabolism, decreased
intestinal permeability and inflammatory cytokine levels, retained a
healthy gut microenvironment, improved mitochondrial function, and
ameliorated hepatic steatosis.

Li et al. (28) Male C57BL/6 mice were divided into: normal diet, HFHC diet,
HFHC diet supplemented with UDCA.

UDCA could ameliorate hepatic inflammation, and partially restore the
dysbiosis of the gut microbiota for the treatment of NASH.
UDCA could protect against intestinal barrier disruption and reduce
serum levels of LPS and inflammatory cytokines in NASH mice.

Derosa et al. (89) NAFLD patients were randomized to take placebo or VSL#3,
2 sachets/day for 3 months.

Tg, Hs-CRP, γ-GT, AST/ALT decrease, hepatic steatosis index (HSI)
were improved.

Nor et al. (87) NAFLD patients were supplemented with either a probiotics
sachet (MCP R© , BCMC R© strains) for 6 months.

Decrease the expression of CD8+ T lymphocytes and ZO-1 (Z-score), no
improvement in the hepatic steatosis, fibrosis, and inflammatory activity
scores.

Crommen et al.
(86)

Obese patients with NAFLD received a combination of
probiotic and a specific micronutrient mixture or a basic care
micronutrient mixture for 12 weeks.

Improve serum AST, NAFLD fibrosis score, Tg and the visceral
adiposity index.

Chong et al. (88) Patients with NAFLD were randomly to take 2 sachets VSL#3 R©

probiotic or placebo twice daily for 10 weeks.
VSL#3 R© probiotic supplementation did not significantly improve
insulin resistance, endothelial dysfunction, oxidative stress,
inflammation or liver injury in patients with NAFLD.

TMAVA, N,N,N-trimethyl-5-aminovaleric acid; HFD, high-fat diet; NC, normal chow; HFLC, high-fat/low-cholesterol diet; HFHC, high-fat/high-cholesterol diet; FMT, fecal microbiota
transplantation; XOS, xylo-oligosaccharides; PDFF, hepatic proton density fat fraction; IR, insulin resistance; UDCA, ursodeoxycholic acid; TG, triglycerides; Hs-CRP, high-sensitivity
C-reactive protein; γ-GT, transaminases and gamma-glutamyltransferase; HIS, hepatic steatosis index; HOMA-IR, insulin resistance.
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FIGURE 2

Potential targets in improvement of mitochondria function induced by imbalanced gut microbiota to attenuate NAFLD. Treatment strategy
target to mitochondria had been explored. For example, application with sodium butyrate (NaB) can significantly enhance mitochondrial DNA
content in HepG2 cell and increase the membrane potential function and the content of mitochondria to ameliorate its impaired dysfunction.
NaB can elevate the activity of SOD and GPX and deplete the levels of prooxidative NOX2, ROS, and MDA; XOS enhanced the level of complex I
and promote oxidative phosphorylation to improve mitochondrial respiratory capacity and evaluate the production of ATP; VVYP can decrease
fragmentation of vacuolate and swollen mitochondria and improve the lipid metabolism.

levels of ALT, AST, TC, HDL, and TNF-α and improve IR in
patients with NASH (86). In addition, a randomized controlled
study revealed that patients with NAFLD treated daily with
Lactobacillus and Bifidobacterium species showed decreased
levels of ALT and γGT, decreased counts of CD4+ T-cells and
CD8+ T-cells, and improved HS fibrosis (87). Chong et al. (88)
and Derosa et al. (89) found that NAFLD patients treated with
VSL#3 R© had a decreased AST/ALT ratio and hs-CRP level and
improved IR and endothelial dysfunction. In addition, patients
with NAFLD supplemented with metformin and probiotics
showed improved serum AST and ALT levels and ultrasound
grading of NASH (90). Furthermore, no studies have reported
adverse effects during the study period, which suggests that this
is a non-harmful therapeutic option for managing patients with
NAFLD/NASH.

However, probiotic treatment could not improve all the
alterations in biochemical indices induced by NAFLD; it could
only attenuate some of them. For example, Chong et al. found
that probiotic treatment did not improve the high levels of
HDL, LDL, and TC in patients with NAFLD (88). Therefore, the
clinical efficacy of probiotic therapies for NAFLD still needs to
be confirmed in large-scale, multicenter clinical trials.

Prebiotics

Xylo-oligosaccharides (XOS), a potential prebiotic target of
F. prausnitzii, have been explored for the treatment of NAFLD
induced by HFD diet (49). Lensu et al. (49) showed that

XOS could increase the abundance of F. prausnitzii, which
controlled hepatic fat content in humans (91). Moreover, XOS
reduced intestinal inflammation by reversing the effects of
HFD (92), enhanced hepatic β-HAD activity and complex
I levels, and promoted oxidative phosphorylation, which
improved mitochondrial respiratory capacity and elevated ATP
production. In addition, XOS contributed to the improvement
of hepatic fat oxidation by depleting the levels of tyrosine
and isovalerate in NASH patients (93). ZW3, another probiotic
strain isolated from Tibetan Kefir grains, a traditional Chinese
food, improved the gut microbiota imbalance (94) and
cleared the endotoxins produced by the gut microbiota and
inflammasomes. It aided the resistance to infections induced
by the methionine- and choline-deficient (MCD) diet by
increasing the abundance of Firmicutes, Lactobacillus, and
Ruminococcaceae and depleting that of Escherichia, Shigella, and
Bacteroides (95). Moreover, ZW3 could repair the impaired
intestinal mucosal barrier to significantly clear blood LPS in
rats with NAFLD (96). In addition, supplementation with
ZW3 also affected the levels of IL-4 and IL-10, which in
turn attenuated the inflammatory response (95). Resistant
dextrin (indigestible dextrin) is also a prebiotic explored for
the treatment of NAFLD (84). Resistant dextrin ameliorated
impaired mitochondrial function and cleared ROS by regulating
the gut microbiota and improving HS in HFD-fed mice.
Resistant dextrin helped maintain host liver health by increasing
the abundance of Blautia and Dubosiella, which positively
modulated the metabolite levels of dimethyl fumarate, lactitol,
cafestol, and 4-hydroxyphenylacetic acid (97, 98). Resistant
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dextrin also prevented ROS accumulation, depleted secondary
BAs and tryptophan, and enhanced the abundance of indole
derivatives, which act as endogenous metabolites to reduce
intestinal permeability and inflammatory responses in NAFLD
(99–101). Active peptides or metabolites of the gut microbiota
can also be used to improve the imbalance of gut microbiota
induced by HFD (12, 28). For example, Val-Val-Tyr-Pro
(VVYP) is a component of the globin digest (GD) (12),
which can resist steatohepatitis by improving gut microbiota
imbalance. For example, it can enhance the abundance
of Eubacteriaceae, Coriobacteriaceae, Desulfovibrionaceae, and
Bacteroidia to influence the levels of BAs and SCFAs. VVYP
can also improve acetaldehyde-induced intestinal permeability
and deplete endotoxemia to attenuate NAFLD. Interestingly,
it is responsible for decreasing the fragmentation of vacuolate
and swollen mitochondria and improving lipid metabolism by
regulating LPS, TNF-α, and IL-6 (12).

Fecal microbiota transplantation

Given the relationship between gut microbiota and
NAFLD, another novel treatment approach–fecal microbiota
transplantation (FMT)–has been explored to treat NAFLD (1).
FMT from healthy donors increased the lactulose/mannitol ratio
in 6 weeks in patients with NAFLD (102). Arguably, IR and
the fatty liver phenotype improved by FMT in a mouse model
(28). This result was also verified in 18 patients with MSs who
were administered FMT (103). FMT can markedly alleviate
lipid accumulation caused by estrogen deficiency within the
liver tissue and attenuate the levels of ALT, AST, and TG in
NAFLD. Finally, lifestyle changes can improve various chronic
diseases (50). For example, exercise intervention effectively
attenuated hepatic homeostasis damage and imbalanced gut
microbiota induced by HFD. Exercise can repair the intestinal
barrier disrupted by HFD, suppress oxidative stress, gut–liver
axis activation, and inflammation, and modulate BA metabolism
and enterohepatic circulation to attenuate the progression of
NAFLD (56).

Lifestyle intervention

Although many studies have explored the efficacy of
probiotics, prebiotics, or FMT in the treatment of NAFLD,
physical activity and dietary modifications are the only effective
therapeutic options for NAFLD management, which have
been confirmed to be associated with the modulation of gut
microbiota and its metabolites (9). For instance, participants
with obesity and NAFLD, who were administered an isocaloric
low-carbohydrate diet as the intervention, showed improved
fatty liver metabolism and rapid shifts in the composition of
the gut microbiota. This was achieved via decreasing hepatic

de novo lipogenesis, increasing serum β-hydroxybutyrate
concentrations and mitochondrial β-oxidation, and rapidly
increasing Streptococcus abundance (104). Regular aerobic
exercise intervention also increased gut microbial diversity and
altered the composition and functional capacity of the gut
microbiota in participants with NAFLD (105). Calabrese et al.
investigated the impact of different lifestyle interventions on
the composition of the gut microbiota in NAFLD, including
a low glycemic index Mediterranean diet (LGIMD), aerobic
activity program (ATFIS_1), and LGIMD plus ATFIS_1.
Consequently, different microbiota alterations were observed
according to the different lifestyles. For example, the abundance
of Ruminococcus, Oscillospiraceae-UCG002, Oscillospiraceae-
UCG005, Dialister, Alistipes, and Eubacterium eligens showed
an increasing trend, whereas that of Collinsella showed a
decreasing trend in LGIMD-ATFIS_1 intervention, which was
not found in other groups (106). In addition, a randomized
controlled trial revealed that microbial diversity deteriorates
with increased hepatic fat content, while exercise and diet
may help maintain the diversity of the gut microbiota
(107). The abundance of Ruminococcus, Bacteroides, and
Lachnospiraceae (ASV5361) increased during both exercise and
dietary interventions. However, some ASVs isolated from the
same family or genus exhibit different behaviors. For example,
the abundance of ASV 4432, a Lachnospiraceae, increased
by aerobic exercise combined with diet but decreased after
fiber-enriched low-carbohydrate diet intervention. Therefore,
lifestyle therapies based on dietary or exercise interventions
should be personalized according to ethnicity, eating habits, and
exercise habits.

Limitations and future prospects

The prevalence of NAFLD has become an alarming
pandemic, contributing to a high social burden as well as an
increased risk of morbidity and mortality. Previous studies
have comprehensively hinted at the influence of gut microbiota
on the pathogenesis of NAFLD through their involvement
in metabolic pathway alteration, inflammatory damage, or
immune response. Simultaneously, the metabolites generated
by the microbiota, including SCFAs, BAs, and TML, also
participate in the modulation of liver health homeostasis
by cross-talk with mitochondria. Emerging evidence suggests
that novel treatment strategy targets for NAFLD may focus
on gut microbiota–mitochondria cross-talk to modulate liver
health homeostasis. Recent studies have investigated novel
therapeutic interventions, including prebiotics, probiotics, and
metabolites, to modulate imbalances in the gut microbiota,
improve mitochondrial biogenesis function, and inhibit the
accumulation of ROS.

However, there are several limitations in NAFLD therapy
that target the microbiota. The baseline gut microbiota is
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generally influenced by numerous factors, including age, sex,
race, geographic location, diet, and lifestyle (108). Moreover,
the gut microbiome of an individual is dynamic. Consequently,
establishing causality in microbiome-NAFLD host interactions
remains challenging. More effort is needed to explore potential
microbiota markers related to NAFLD. Another challenge is
that not all patients respond to intervention or treatment in
a similar manner during the construction of the relationship
between the gut microbiota and the improvement of NAFLD.
Previous reports have revealed that individual variations exist
in response to exercise intervention (107). As a result, some
patients with low or no response may show more improvement
than others. Therefore, the establishment of an effective
intervention strategy should be based on the evaluation of
individual microbiota, as well as the differences between
responders and low/non-responders to various interventions.
Furthermore, the need to predict the responsiveness of each
subject to develop personalized pre- or probiotic treatment,
dietary, or lifestyle intervention is of great clinical importance.
Currently, the application of these novel treatments for
NAFLD is still in its early stages. More large-scale multicenter
studies on microbiota–mitochondria cross-talk are required to
confirm and illustrate the mechanisms and potential treatment
effects in NAFLD.
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