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The development of novel biological 
therapies has fostered a renaissance in 
the treatment of autoimmune disease. 
For example, tumor necrosis factor–
blockers, anti–B cell therapy, CTLA4-
imunoglobulin (Ig), and interleukin 6 
(IL-6) blockade, all introduced within 
the past decade, have made diseases such 
as rheumatoid arthritis much easier to 
control by limiting joint pain, swelling, 
and stiffness, as well as preventing joint 
damage and deformity (Smolen et al., 
2010). However, because these treat-
ments are not curative, years of therapy 
result in high costs for patients and the 
potential for serious infections, cancer, 
and other adverse outcomes. In this  
issue, studies by Grinberg-Bleyer et al. 
and Nishio et al. demonstrate (using  
animal models of type I diabetes) that 
long-lasting cure of autoimmune disease 
may be feasible through treatments that 
depend on IL-2 to expand or improve 
the function of CD4+ T reg cells.

Antigen-specific versus nonspecific 
treatments for autoimmunity
As autoimmunity is often restricted to 
certain tissues, an appealing treatment 
would specifically target the pathogenic 
cells that cause autoimmunity without 

inducing global immunosuppression. Al
though this approach has been suc
cessful in certain animal models, the  
diversity of HLA proteins and possible 
autoantigens recognized by self-reactive 
T cells has made it difficult to generalize 
these approaches to treating individual 
human patients. More recently, the re-
alization that T reg cells suppress effec-
tor T cell responses led to the suggestion 
that administration of self-antigen spe-
cific T reg cells may represent a “magic 
bullet” that shuts down autoimmune  
responses without globally affecting im-
munity to foreign pathogens (Roncarolo 
and Battaglia, 2007; Bluestone et al., 
2010). This approach is particularly ap-
pealing, as T reg cells also appear to sup-
press the general local immune response, 
rather than just individual responses to 
the antigens recognized by the T reg 
cells. In this case, knowing the exact 
self-antigens being targeted by an indi-
vidual patient’s T cells may not be re-
quired. This approach was successfully 
tested in mice; T reg cells expressing a 
transgenic TCR specific for a single  
islet-specific antigen that were expanded 
in vitro protected against autoimmune 
diabetes in a disease model where it is 
clear that other self-antigens are also 
likely to be involved (Tang et al., 2004; 
Tarbell et al., 2004). This approach may 
soon be testable in humans (Putnam  
et al., 2009).

However, translating these murine 
studies into tailored therapies for indi-

vidual human patients will require  
overcoming several technical hurdles. 
First, some suitable target antigens need 
to be identified. Although this process  
is advanced in certain diseases, such as 
type 1 diabetes (Roncarolo and Battaglia, 
2007; Bluestone et al., 2010), these anti
gens are poorly characterized in other 
diseases, such as rheumatoid arthritis. 
Second, good manufacturing processes 
are required to ensure that in vitro cul-
ture results in a very pure population of 
antigen-specific T reg cells. Certainly, 
one adverse outcome to be avoided is 
the accidental introduction of effector 
cells that may exacerbate autoimmu-
nity. However, this is complicated by 
the fact that Foxp3, the best available  
T reg cell–specific marker, is intracel-
lular and cannot be directly used to pu-
rify human T reg cells. Finally, there is 
the possibility that this “individualized 
medicine” would be prohibitively ex-
pensive, precluding treatment of large 
numbers of patients. Thus, developing 
antigen-nonspecific approaches to ma-
nipulating the T reg cell population 
may be a more practical and useful 
treatment modality.

IL-2: from T cell growth factor to  
the “everything” factor for T reg cells
IL-2 was originally identified as crucial 
factor for T cell growth in vitro, as it 
facilitated the development of primary 
T cell clonal lines. It is also important 
for natural killer (NK) cell maturation 
and function. However, the observa-
tion that IL-2–deficient mice devel-
oped spontaneous autoimmunity rather 
than the predicted immunodeficiency 
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ment boosted T reg cell markers on  
T reg, but not effector, cells in the pan-
creatic islets, which is consistent with the 
differential sensitivity of these cell popu-
lations to IL-2. Interestingly, low-dose 
IL-2 appeared to primarily affect the  
activation status, rather than dramatically 
increase the number, of pancreatic T reg 
cells. Thus, these data suggest that short-
term treatment of diabetic mice with 
low-dose IL-2 can result in a long-term 
cure in some cases.

The relatively low frequency of 
cure may be related to the efficiency 
with which low-dose IL-2 generates a 

Grinberg-Bleyer et al. (2010) ex-
ploited the established T reg cell– 
boosting activities of IL-2 by using  
a short-term, low-dose IL-2 treatment 
strategy to preferentially target T reg 
cells rather than effector T or NK cells in 
NOD mice. This 5-d treatment was 
used at the onset of diabetes, analogous 
to when patients would clinically present  
with clinical symptoms. Remarkably, this  
resulted in long lasting normoglyce-
mia in 30% of the mice 2.5 mo after  
treatment. A small cohort of mice fol-
lowed for a long-term period was still  
diabetes-free for up to 8 mo. This treat-

suggested that the major role of this cy-
tokine may be in immune tolerance (for 
review see Malek, 2008). Several stud-
ies demonstrated a role for IL-2 in vir-
tually all aspects of T reg cell biology 
(Malek et al., 2002), including develop-
ment (Burchill et al., 2008; Lio and 
Hsieh, 2008; Schallenberg et al., 2010),  
survival, expansion, and function (D’Cruz 
and Klein, 2005; Fontenot et al., 2005; 
Knoechel et al., 2005), as well as phe-
notypic stability (Duarte et al., 2009; 
unpublished data). Moreover, a defi-
ciency in local IL-2 has been suggested 
to play a role in the progression of auto
immune diabetes in the murine NOD 
model (Tang et al., 2008).

An explanation for the pro- and 
antiinflammatory effects of IL-2 may 
arise from the fact that most T reg cells 
express surface CD25, the IL-2 receptor 
 chain component of the high-affinity 
IL-2 receptor and the marker by which 
T reg cells were originally defined on 
their surface (Sakaguchi et al., 1995). 
This competitive advantage for captur-
ing IL-2 in the local microenvironment 
has been suggested to be one mechanism 
by which T reg cells prevent spontane-
ous immune activation (Pandiyan et al., 
2007). The constant “soaking-up” of  
IL-2 by T reg cells is supported by the 
observation that exogenous IL-2 can 
dramatically increase the size of the  
peripheral T reg cell population, which 
implies that in vivo levels of IL-2 are 
normally limited (Fontenot et al., 2005; 
Knoechel et al., 2005). Furthermore, 
naive T cell activation in peripheral 
lymph nodes results in IL-2 produc-
tion, which induces a rapid activation 
of the resident T reg cells (O’Gorman 
et al., 2009); this observation suggests 
that IL-2 capture is not simply a cyto-
kine clearance mechanism. Thus, it may 
be hypothesized that initial activation  
of naive T cells automatically triggers 
cell-extrinsic T reg cell–mediated nega-
tive feedback regulation (Fig. 1 A)  
in the absence of other factors that  
signal pathogenic infection (Pasare and  
Medzhitov, 2003). Recognition of self-
antigens by these IL-2–stimulated T reg 
cells would further enhance suppression, 
thereby preventing inappropriate im-
mune activation.

Figure 1.  Simple models of T reg cell-dependent immune homeostasis. (A) Simplified diagram 
of feedback regulation illustrating effector T cell activation leading to IL-2 production, which can 
enhance T reg cell development, expansion, survival, stability, and function. T reg cells inhibit the 
effector response via myriad mechanisms on both T cells and APCs. In the absence of external forces, 
equilibrium may be established between effectors and regulators. (B) Digital model. Here,  
T reg and effector cells represent opposing forces that weigh against each other. In this model, the 
equilibrium point is quite small, resulting in essentially a binary response. (C) Analogue model with 
set-point autoregulation. Feedback regulation (A) would stabilize the net immune response around  
a “set-point” (blue arrows); set-points can move along a continuous scale (x axis). The net immune 
response reflects effector versus T reg cell numbers (depicted below x axis), as well as function  
(not depicted). In normal individuals, thymic production of self-reactive T reg cells would establish  
a tolerant set-point. However, genetics or environmental insults may change the set-point such that 
insulitis may occur, with or without tissue damage. Treatment with IL-2, anti-CD3, etc., can alter the 
set-point such that it falls within the tolerant range.
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did not reveal gross differences between 
anti-CD3–expanded and naturally aris-
ing T reg cells, although there were  
a few. Nevertheless, both of these pos-
sibilities could be consistent with the 
observed lower levels of interferon- 
and higher levels of T reg cell CD25 
expression after low-dose IL-2 therapy 
(Grinberg-Bleyer et al., 2010). The 
specific mechanisms by which anti-
CD3 exerts long-lasting perturbation  
of the T reg cell niche remain to  
be determined.

The homeostasis between effector  
and regulatory T cells
In both of these studies, tolerance  
lasted well beyond the time frame in 
which the drug was active. This sug-
gests that the balance between effectors 
and regulators can be altered such that 
a new set-point can be reached. One 
simplistic model is that effector and 
T reg cells represent opposing forces  
(Fig. 1 B), such as two weights on op-
posite ends of a teeter-totter (Bluestone  
et al., 2010). However, this model would 
predict a binary response; e.g., once the 
desired effector/regulator balance point 
is reached, the teeter-totter would flip 
from autoimmunity to tolerance. How-
ever, this simplistic “digital” model is 
inconsistent with the complex outcome 
that treatment with low-dose IL-2 did 
not reverse insulitis, a prediabetic inflam-
matory state in the pancreas.

We therefore favor a model in which 
effector and T reg cells are always in 
homeostasis because of the negative 
feedback loop mediated in part by ef-
fector cell–derived IL-2 (Fig. 1 a). This 
ensures that in the absence of external 
perturbation, the interaction between 
these two cell types gravitates toward a 
certain set-point, analogous to the body 
maintaining a fixed level of thyroid 
hormone. This set point, however, can 
exist in an “analogue” continuum of 
effector-to-T reg cell ratios and func-
tional efficacies, ranging from complete 
suppression of immune activation to 
frank autoimmunity (Fig. 1 C), and can 
be influenced by environmental stimuli 
or genetics. At a certain set-point, tissue  
damage will occur, and over time,  
lead to autoimmune manifestations such  

tive to pretreatment levels. Adoptive 
transfer studies suggested that the 
BDC2.5 TCR Rag/ transgenic line 
normally contains few T reg cells be-
cause of intraclonal competition for a 
small antigen-dependent niche, akin to 
results observed for thymic T reg cell 
development (Bautista et al., 2009; 
Leung et al., 2009). Continued competi-
tive pressure in the periphery for these 
antigenic niches likely explains why the 
thymic and peripheral T reg TCR rep-
ertoires, although largely overlapping, 
are not identical (Hsieh et al., 2006; 
Pacholczyk et al., 2006); and why T reg 
cells from different anatomical locations 
often use different TCR repertoires, 
presumably reflective of the nature of 
the local antigen pool (Lathrop et al., 
2008). However, although an antigen-
specific niche may be important for lim-
iting the number of T reg cells in 
untreated mice, it is unclear why the 
niche size is stably increased after anti-
CD3 treatment.

One possibility is that the anti-CD3 
treatment enlarged the antigen-specific 
niche for BDC2.5 T reg cells via TCR 
activation. However, the niche size 
would be predicted to shrink once anti-
CD3 was eliminated from the body. 
Alternatively, anti-CD3 could expand 
the antigen-specific niche by increasing 
the presentation of BDC2.5 antigens, 
perhaps via concurrent activation of 
effector cells. Sustaining this antigenic 
boost would presumably require con-
tinued islet destruction, which seems 
unlikely as the mice remain normogly-
cemic. The burst of IL-2 presumably 
responsible for anti-CD3–driven en-
hancement of T reg cell numbers is also 
likely to return to baseline after the drug 
has been cleared.

Another possibility is that anti-CD3 
induces the generation of effector cells 
that produce greater levels of IL-2 and 
less effector cytokines. In addition,  
it may be possible that anti-CD3– 
expanded T reg cells are less dependent 
on IL-2 or TCR engagement for their 
survival and maintenance. Could this 
anti-CD3–mediated expansion and only 
partial contraction of T reg cell popula-
tions represent the generation of memory 
T reg cells? Gene expression profiling 

tolerogenic state. However, although 
higher levels of cytokines achieved using 
IL-2–anti–IL-2 monoclonal antibody 
complexes resulted in substantial in-
creases of T reg cell frequency, it did 
not increase the cure rate beyond low-
dose IL-2 (Grinberg-Bleyer et al., 2010). 
This may be caused by the concurrent 
activation of effector T or NK cells at 
higher levels of IL-2, resulting in no  
further shift toward immune tolerance. 
Pharmacologically improving the selec-
tivity of IL-2R ligands for T reg versus 
effector or NK cells may overcome this 
limitation. Another possible reason for 
treatment failure is the high degree of 
tissue damage required to observe hy-
perglycemia; there may simply be too 
few islets left to save. Thus, identifying 
patients at prediabetic stages of inflamma
tion will likely be important for increasing 
the efficacy of immunomodulatory ther-
apies with long lasting benefits.

The T reg cell niche: cytokines  
and antigens
Nishio et al. (2010) used a different  
reagent, anti-CD3, which is currently 
being evaluated for the treatment of  
autoimmune disease. In the BDC2.5 
TCR transgenic Rag/ model of type I  
diabetes, they found that anti-CD3 
treatment could reverse hyperglycemia 
in 50% of the mice for up to 80 d, the 
length of the observation period. This 
protection was dependent on the dra-
matic 30-fold increase in the percent-
age of T reg cells induced by anti-CD3 
therapy, as T reg depletion resulted in 
relapse of diabetes within 5 d. Somewhat 
surprisingly, this T reg expansion was 
not dependent on transforming growth 
factor-, which would have been ex-
pected based on previous studies (Li  
et al., 2006; Marie et al., 2006). T reg cell 
expansion was also dependent on IL-2 
signaling. Although not proof of causal-
ity, these data also support the notion 
that IL-2 augmentation can result in en-
hanced T reg cell numbers and function 
for the treatment of autoimmunity.

An interesting observation was that 
the enhancement of T reg cells persisted 
long after the anti-CD3 treatment was 
stopped, with the percentage of T reg 
cells stabilizing 10-fold higher rela-
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