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Background: The effect of diagnosing Graves’ ophthalmopathy (GO) through traditional measurement 
and observation in medical imaging is not ideal. This study aimed to develop and validate deep learning 
(DL) models that could be applied to the diagnosis of GO based on magnetic resonance imaging (MRI) and 
compare them to traditional measurement and judgment of radiologists.
Methods: A total of 199 clinically verified consecutive GO patients and 145 normal controls undergoing 
MRI were retrospectively recruited, of whom 240 were randomly assigned to the training group and 104 to 
the validation group. Areas of superior, inferior, medial, and lateral rectus muscles and all rectus muscles on 
coronal planes were calculated respectively. Logistic regression models based on areas of extraocular muscles 
were built to diagnose GO. The DL models named ResNet101 and Swin Transformer with T1-weighted 
MRI without contrast as input were used to diagnose GO and the results were compared to the radiologist’s 
diagnosis only relying on MRI T1-weighted scans.
Results: Areas on the coronal plane of each muscle in the GO group were significantly greater than those 
in the normal group. In the validation group, the areas under the curve (AUCs) of logistic regression models 
by superior, inferior, medial, and lateral rectus muscles and all muscles were 0.897 [95% confidence interval 
(CI): 0.833–0.949], 0.705 (95% CI: 0.598–0.804), 0.799 (95% CI: 0.712–0.876), 0.681 (95% CI: 0.567–
0.776), and 0.905 (95% CI: 0.843–0.955). ResNet101 and Swin Transformer achieved AUCs of 0.986 (95% 
CI: 0.977–0.994) and 0.936 (95% CI: 0.912–0.957), respectively. The accuracy, sensitivity, and specificity 
of ResNet101 were 0.933, 0.979, and 0.869, respectively. The accuracy, sensitivity, and specificity of Swin 
Transformer were 0.851, 0.817, and 0.898, respectively. The ResNet101 model yielded higher AUC than 
models of all muscles and radiologists (0.986 vs. 0.905, 0.818; P<0.001).
Conclusions: The DL models based on MRI T1-weighted scans could accurately diagnose GO, and 
the application of DL systems in MRI may improve radiologists’ performance in diagnosing GO and early 
detection.
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Introduction

Graves’ ophthalmopathy (GO) is an autoimmune disease 
that commonly appears in 30% of patients with Graves’ 
disease, which negatively affects the patient’s quality 
of life (1-4). The diagnosis of GO is mainly based on 
ophthalmic clinical features such as eyelid retraction and 
exophthalmos (5,6). However, these symptoms are relatively 
subjective, and orbital imaging is not often performed in 
clinical practice unless serious symptoms appear such as 
double vision (7). Ambiguous ophthalmic characteristics 
in patients could occasionally lead to an unclear diagnosis. 
The mechanism of GO may be lymphocyte infiltration and 
activation inside orbital tissue caused by a cross-reaction 
of thyroid-stimulating hormone receptor antibodies and 
antigens (8). With the development of GO, extraocular 
muscles become infiltrated by inflammatory cells. It is 
likely to find changes in the muscles on medical imaging. 
Therefore, it is necessary that objective modalities such 
as computed tomography (CT) and magnetic resonance 
imaging (MRI) are applied to improve the accuracy of 
diagnosis and evaluation of treatment effectiveness.

Compared to CT, the advantages of MRI such as the 
absence of radiation and the excellent soft tissue resolution, 
are notable. MRI has been widely applied to the diagnosis 
of GO, treatment effect evaluation, and follow-up (9). 
Exophthalmos in the transverse section and extraocular 
muscle involvement in the coronal section are commonly 
regarded as diagnostic criteria through radiographic 
observation. However, the measurement of exophthalmos 
is relatively complex and prone to error (an accurate 
measurement of the vertical distance from the front of 
the eye to the inter-zygomatic line is necessary) (10,11). 
Extraocular muscle involvement with minor modifications 
is difficult to differentiate, especially in the early stages of 
the disease. The inferior rectus muscle is often regarded as 
the most typically enlarged extraocular muscle in GO (12). 
However, there are few comprehensive assessment methods 
of GO that incorporate information from all extraocular 
muscles. Therefore, to interpret MRI findings and produce 
objective findings for determining the diagnosis and 
prognosis of patients with GO, a stable and synthesized 
method is required.

Artificial intelligence (AI)-based image diagnosis has 
improved significantly in the medical field during the past 
few years (13,14), with diagnostic accuracy on par with 
or exceeding that of human experts for several diseases. 
The application of AI systems in MRI sequences improves 

radiologists’ performance in the task of differentiating 
lesions, especially in the fields of breast and brain (15,16). 
Although 2 researchers (7,17) previously used deep learning 
(DL) methods to diagnose GO, they only used CT scans 
as input, and did not compare their results with those of 
traditional measurement methods. Besides, it is important 
to consider that measurements and result reporting are still 
not standardized, even though several studies have been 
conducted for GO assessment utilizing various techniques 
and methodologies (18). In this study, we adopted DL 
structures that could be applied to the diagnosis of GO 
and compared with traditional measurement and judgment 
of radiologists. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-24-80/rc).

Methods

Patients

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved 
by the Institutional Review Board of The Fifth Affiliated 
Hospital of Sun Yat-sen University (No. K152-1), and the 
requirement for individual consent for this retrospective 
analysis was waived. The dataset was collected from The 
Fifth Affiliated Hospital of Sun Yat-sen University in May 
2023 and 223 patients who were diagnosed with GO and 
177 patients who were normal as the control group in our 
hospital from September 2015 to September 2021 were 
included. The GO patients were identified using Bartley’s 
criteria (5). Figure 1 shows the inclusion and exclusion 
criteria. Patients who were diagnosed with GO and who 
underwent T1-weighted MRI scans were included in this 
study. The time from outpatient reception to the MRI 
examination is less than 3 days. Patients were excluded if: 
(I) they were younger than 18 years old, (II) had malignant 
tumors, (III) had other eye diseases, (IV) their MRI quality 
was inadequate for measurements, or (V) they had a history 
of treatment for GO. MRI examinations were performed 
with a 3.0-Tesla Siemens Verio MR Scanner (Siemens 
AG, Erlangen, Germany). Normal people in the control 
group were enrolled if they went to the hospital for an 
exophthalmos assessment by MRI and were confirmed to 
have no eye disease. They were excluded if: (I) they were 
younger than 18 years old, (II) had malignant tumors, (III) 
MRI quality was inadequate for measurements, or (IV) 
they had abnormal thyroid hormone or thyroid stimulating 

https://qims.amegroups.com/article/view/10.21037/qims-24-80/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-80/rc
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hormone levels. Finally, all cases were randomly separated 
into a training group and a validation group at a ratio of 7:3.

Extraocular muscle measurement

Extraocular muscle involvement including the superior 
rectus muscle, inferior rectus muscle, medial rectus muscle, 
and lateral rectus muscle was observed and measured on 
T1-weighted MRI scans (Figure 2). The axial scans were 
taken at an angle of 10–15° to the orbitomeatal line. We 
chose the coronal plane posterior to the eyeball and 5 mm 
posterior to the eyeball to calculate the area of 4 extraocular 
muscles. The inferior and superior oblique muscles were 
not included because of their oblique path to the coronal 
plane. Areas of 4 extraocular muscles were calculated by 
1 radiology resident and reviewed by a radiologist with 

more than 10 years of experience. Based on the coronal 
cross-sectional area of the extraocular muscles obtained by 
conventional measurement methods mentioned above, we 
constructed logistic regression models to predict GO.

DL models development 

To propose DL models that can diagnose GO, we applied 
a traditional convolutional neural networks (CNNs) model 
named ResNet101 and a transformer-based architecture 
named Swin Transformer respectively (19,20). Figure 3 
illustrates the construction of pretrained 2 models. In data 
preprocessing, we placed a square shape of a bounding box 
manually on the orbit in the coronal plane, ensuring that all 
extraocular muscles were involved within the box. Coronal 
planes were the same as the ones chosen to measure muscles. 
These bounding boxes were resampled to 224×224 pixels as 
the input of 2 DL models. Transfer learning was applied 
in 2 models and the swin-tiny-patch4-window7-224 
weights were used in Swin Transformer for subsequent 
training. Swin Transformer’s source code is accessible at 
https://github.com/microsoft/Swin-Transformer. Python 
3.11.0 and PyTorch 2.0 (https://pytorch.org) were used to 
implement the models. They were trained on a workstation 
equipped with a single RTX 4090 GPU. In order to 
elucidate the rationale behind the predictions generated 
by the network model and the contributions of extraocular 
muscles towards the diagnosis of GO, a gradient-weighted 
class activation mapping (Grad-CAM) analysis was utilized.

Radiologists’ evaluation

We requested 2 radiologists (average of 5 years’ experience) 
to conduct an independent diagnosis of GO only relying 
on T1-weighted MRI scans without clinical information. 

Patients undergoing the MRI scan from 
September 2015 to September 2021

177 patients who were 
normal as the control group

223 patients who were 
diagnosed with GO

Control group (n=145)GO group (n=199)

Other eye diseases (n=2)
No MRI T1 (n=22)

Other eye diseases (n=9)
No MRI T1 (n=20)
<18 years (n=3)

Figure 1 The flowchart for the patient recruiting process. GO, Graves’ ophthalmopathy; MRI, magnetic resonance imaging.

Figure 2 Calculation of muscle areas on MRI T1-weighted 
coronal planes (red line). MRI, magnetic resonance imaging.

https://github.com/microsoft/Swin-Transformer
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If the results were inconsistent, a specialist radiologist with 
more than 15 years’ experience made the final decision. The 
diagnostic performance was compared to the DL models 
using the area under the curve (AUC).

Statistical analysis

Statistical analysis was conducted with SPSS 26.0 (IBM 
Corp., Armonk, NY, USA). The Shapiro-Wilk test was used 
to determine the normality and homogeneity of variance 
in the continuous variables, then the independent t-test or 
Mann-Whitney U test was utilized. Areas of muscles were 
calculated by 3D-Slicer (version 5.2.0; https://www.slicer.
org/). The chi-square test was used to analyze differences in 
categorical variables in clinical information. The threshold 
at the greatest Youden index was used to calculate sensitivity, 
specificity, positivity, and accuracy. The Cohen Kappa 
coefficient was used to determine consistency between 2 
radiologists. AUCs for different models were compared by 
the DeLong test. We calculated the 95% confidence interval 
(CI) for this performance by bootstrapping (1,000 bootstrap 
intervals). A P value <0.05 was considered significant.

Results

The patient characteristics are listed in Table 1. Totals 
of 199 consecutive cases of GO and 145 cases of normal 
controls were included in this study. The average age of 
the GO group was older than that of normal controls. 
There is no significant difference in gender ratio between 
the 2 groups. Table 2 illustrates areas of superior, inferior, 
medial, and lateral rectus muscles on 2 MRI coronal planes 
in 2 groups. Areas of superior, inferior, medial, and lateral 
rectus muscles were 0.407±0.187, 0.322±0.147, 0.286±0.088, 
and 0.305±0.123 mm2, respectively, on the coronal plane 
posterior to the eyeball. Areas of superior, inferior, medial, 
and lateral rectus muscles were 0.419±0.182, 0.432±0.167, 
0.350±0.103, and 0.345±0.160 mm2, respectively, on the 
coronal plane 5 mm posterior to the eyeball. Each muscle 
in the GO group was significantly bigger than the same 
muscle in the normal group (the corresponding P-value is 
listed in Table 2).

Tables 3,4 show the performance of models in the 
training group (139 GO patients and 101 normal controls) 
and validation group (60 graves patients and 44 normal 
controls). In the training group, the AUCs of logistic 
regression models by superior, inferior, medial, lateral 
rectus, and all muscles were 0.891 (95% CI: 0.848–0.930), 
0.746 (95% CI: 0.684–0.809), 0.771 (95% CI: 0.710–
0.828), 0.615 (95% CI: 0.547–0.686), and 0.906 (95% CI: 
0.864–0.943). The Swin Transformer achieved an AUC 
of 0.999 (95% CI: 0.999–1), and its accuracy, sensitivity, 
and specificity were 0.986 (95% CI: 0.979–0.994), 0.987 
(95% CI: 0.978–0.996), and 0.985 (95% CI: 0.972–0.995), 
respectively, and ResNet101 yielded 1 (95% CI of accuracy, 
sensitivity, and specificity: 1–1; 95% CI of AUC: 0.999–1) 
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Figure 3 Architecture of ResNet101 and Swin Transformer for diagnosing GO. Conv, convolution; GO, Graves’ ophthalmopathy.

Table 1 Clinical characteristics of GO group and normal control 
group

Characteristics GO Normal P value

Number of participants 199 145

Age (years), mean ± SD 45.07±13.22 41.80±12.97 0.017

Gender (male/female) 86/113 63/82 0.966

GO, Graves’ ophthalmopathy; SD, standard deviation.

https://www.slicer.org/
https://www.slicer.org/
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for each index. In the validation group, the AUCs of 
logistic regression models by superior, inferior, medial, and 
lateral rectus muscles and all muscles were 0.897 (95% CI: 
0.833–0.949), 0.705 (95% CI: 0.598–0.804), 0.799 (95% 
CI: 0.712–0.876), 0.681 (95% CI: 0.567–0.776), and 0.905 
(95% CI: 0.843–0.955), respectively. Swin Transformer 
achieved an AUC of 0.936 (95% CI: 0.912–0.957), and its 
accuracy, sensitivity, and specificity were 0.851 (95% CI: 

0.815–0.885), 0.817 (95% CI: 0.767–0.863), and 0.898 (95% 
CI: 0.851–0.938), respectively. ResNet101 yielded an AUC 
of 0.986 (95% CI: 0.977–0.994), and its accuracy, sensitivity, 
and specificity were 0.933 (95% CI: 0.906–0.957), 0.979 
(95% CI: 0.960–0.996), and 0.869 (95% CI: 0.819–0.923), 
respectively. Figure 4 shows the ROC curves in the 
validation group. It was revealed that 2 DL models achieved 
higher AUC than models of muscles in both groups. 

Table 2 Areas calculation of superior rectus muscles, inferior rectus muscles, medial rectus muscles, and lateral rectus muscles on coronal planes  
0 and 5 mm posterior to the eyeballs 

Groups
0 mm 5 mm

Normal GO P value Normal GO P value

Areas of superior rectus muscles 0.266±0.062 0.407±0.187 <0.001 0.271±0.060 0.419±0.182 <0.001

Areas of inferior rectus muscles 0.250±0.069 0.322±0.147 <0.001 0.337±0.065 0.432±0.167 <0.001

Areas of medial rectus muscles 0.264±0.047 0.286±0.088 0.008 0.279±0.054 0.350±0.103 <0.001

Areas of lateral rectus muscles 0.259±0.058 0.305±0.123 <0.001 0.300±0.063 0.345±0.160 0.009

Data are presented as means ± standard deviations. GO, Graves’ ophthalmopathy.

Table 3 The model performances of muscles and DL in the training group

Models Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) AUC (95% CI)

Superior rectus muscles 0.813 (0.763–0.858) 0.842 (0.780–0.901) 0.772 (0.689–0.857) 0.891 (0.848–0.930)

Inferior rectus muscles 0.654 (0.596–0.713) 0.813 (0.752–0.874) 0.436 (0.337–0.530) 0.746 (0.684,0.809)

Medial rectus muscles 0.683 (0.625–0.746) 0.892 (0.841–0.944) 0.396 (0.305–0.494) 0.771 (0.710–0.828)

Lateral rectus muscles 0.563 (0.500–0.625) 0.957 (0.921–0.986) 0.020 (0.000–0.051) 0.615 (0.547–0.686)

All eye muscles 0.838 (0.788–0.883) 0.871 (0.810–0.920) 0.792 (0.708–0.867) 0.906 (0.864–0.943)

ResNet101 1 (1–1) 1 (1–1) 1 (1–1) 1 (0.999–1)

Swin Transformer 0.986 (0.979–0.994) 0.987 (0.978–0.996) 0.985 (0.972–0.995) 0.999 (0.999–1.000)

DL, deep learning; AUC, area under the curve; CI, confidence interval.

Table 4 The model performances of muscles and DL in the validation group 

Models Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) AUC (95% CI)

Superior rectus muscles 0.779 (0.644–0.889) 0.817 (0.714–0.908) 0.727 (0.587–0.854) 0.897 (0.833–0.949)

Inferior rectus muscles 0.577 (0.481–0.663) 0.767 (0.656–0.865) 0.318 (0.184–0.459) 0.705 (0.598–0.804)

Medial rectus muscles 0.683 (0.587–0.769) 0.867 (0.779–0.947) 0.432 (0.286–0.588) 0.799 (0.712–0.876)

Lateral rectus muscles 0.548 (0.452–0.644) 0.900 (0.823–0.968) 0.069 (0.0–0.147) 0.681 (0.567–0.776)

All eye muscles 0.817 (0.731–0.885) 0.850 (0.750–0.934) 0.773 (0.644–0.889) 0.905 (0.843–0.955)

ResNet101 0.933 (0.906–0.957) 0.979 (0.960–0.996) 0.869 (0.819–0.923) 0.986 (0.977–0.994)

Swin Transformer 0.851 (0.815–0.885) 0.817 (0.767–0.863) 0.898 (0.851–0.938) 0.936 (0.912–0.957)

DL, deep learning; AUC, area under the curve; CI, confidence interval.
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AUC was significantly different between ResNet101 and 

the model of all muscles (Delong test: P<0.001), but not 

between Swin Transformer and the model of all muscles 

(Delong test: P=0.291). Figure 5 illustrates the Grad-GAM 

derived from 2 DL models. Extraocular muscles were 

highlighted as important regions.

In terms of diagnostic performance for radiologists, 
the Cohen kappa coefficient for the 2 radiologists was 
0.884, and 2 DL models were better than the diagnostic 
performance of radiologists (AUC: 0.986 and 0.936 vs. 
0.818, Delong test: P<0.001), with accuracy, sensitivity, 
and specificity of 0.808 (95% CI: 0.769–0.844), 0.75 (95% 
CI: 0.693–0.803), and 0.886 (95% CI: 0.832–0.927), 
respectively. ResNet101 yielded the best performance; the 
results are shown in Table 5.

Discussion

This is a novel article to apply DL methods to MRI 
diagnosis of GO. We evaluated whether 2 DL models 
could adequately distinguish individuals with GO from 
normal controls compared with traditional measurements 
and decisions of radiologists. The ResNet101 model’s 
performance showed a higher AUC 0.986 (95% CI: 
0.979–0.994) than traditional measurements 0.905 (95% CI: 
0.843–0.955) and radiologists 0.818 (95% CI: 0.781–0.854). 
Since DL models are very quick to judge GO, our findings 
imply that using AI to aid with diagnosis may minimize the 
error rate and relieve doctors’ burden in actual clinical use. 
Estcourt et al. (21) revealed that the period elapsed between 
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the onset of symptoms and the diagnosis of GO was more 
than 12 months in 26% of respondents and just 25% of 
patients received recommendations to a specialized GO 
clinic. The diagnosis and referral were both delayed. In GO 
treatment, early detection is crucial to preventing patients’ 
irreversible damage (proptosis, sight impairment) (22). 
However, Some GO cases do not have thyroid dysfunction 
and clinical symptoms are late onset or absent. If the model 
takes patient MRIs of early GO as input and then is trained 
and validated, it would play an important role in early 
detection of GO.

MRIs can be used to evaluate the extraocular muscle 
and other eye components. Similar to CT examinations, 
extraocular muscles can be examined primarily using 
volumetry, diameter, thickness, diffusion, and signal intensity 
ratio. Although the volumetry, diameter, and thickness results 
were fairly comparable to the CT results, the utilization of 
MRI allows the investigator to approach the disease using 
different methodologies, such as diffusion and signal intensity 
ratio. Diffusion tensor imaging investigations can detect 
microstructural changes in extraocular muscles and suggest 
disease activity using mean diffusivity measures for medial 
extraocular muscles (23). Diffusion-weighted imaging of 
the extraocular muscles is employed for diagnosis, with the 
apparent diffusion coefficient as a metric (24). Chen et al. (25)  
found that the medial rectus muscle is the best place to 
obtain the metric, and Kilicarslan et al. (26) discovered that 
the metric also correlates with ophthalmologic tests, making 
the method a promising option. The diffusion-weighted 
imaging sequence can be used in a routine examination, 
providing more information about the disease. Indicating 
disease activity, the signal intensity ratio of the T1 and T2 
scans was also encouraging. Since T1 and T2 pictures are 
commonly recorded sequentially, 2 studies (27,28) have 
provided light on the methodology used to signal disease 

activity in extraocular muscles, which aids in determining 
the optimal treatment approach.

Proptosis of GO is not measured uniformly, which 
resulted in a very slight the difference in length between the 
2 groups, especially in the mild GO. Therefore, we chose 
the coronal plane as the level of observation and input of 
DL. It is also the main reference for radiologists to diagnose 
GO. Generally, there is no numerical type of standard for 
eye muscle enlargement, which leads radiologists to rely 
primarily on empirical judgment. A diagnosis of GO can 
be suspected if 1 or 2 thickened eye muscles. However, in 
the early stages of GO muscle thickening is not apparent 
and there is no comprehensive model for evaluating muscle 
enlargement. In our study, we performed logistic regression 
to diagnose GO, which includes all muscles that can be 
used as a reference. The performance of models achieved 
AUCs of 0.906 (95% CI: 0.864–0.943) and 0.905 (95% 
CI: 0.843–0.955) in the training group and validation 
group, respectively. This indicated that the model has good 
generalization ability to predict unseen data. DL models 
have made significant advancements in image recognition 
tasks in recent years. They provide reliable medical picture 
analysis and interpretation, whereas human vision can 
be subjective and sensitive to inter-observer variation. 
Furthermore, DL models can assess medical pictures in-
depth, taking into account all of the pixels, areas, and 
patterns in the image. There are many features that the 
human eye cannot analyze or miss easily. In this study, 
because of the good contrast on T1-weighted images by 
extraocular muscles with the surrounding tissue, DL models 
were suitable for our tasks.

Previous studies have demonstrated that based on CT 
images, DL models can be used for GO diagnosis and 
severity evaluation (7,17). However, both of these studies 
lacked a direct comparison of DL models with traditional 
measurements. Hanai et al. (7) chose the maximum diameter 
to assess the extraocular muscles; by this, some useful 
information would be missed, and muscle cross-section is 
usually irregular. In our study, measurements and model 
inputs were in the same coronal planes, and radiologists also 
diagnosed only from T1-weighted images. Furthermore, CT 
may not be indicated for evaluation of treatment efficacy and 
follow-up because of radiation, especially for high severity 
of GO. Kvetny et al. (9) discovered that the thickness of 
muscles on T1-weighted sequences was substantially related 
to the patient’s clinical activity score (CAS) and active illness 
duration. Tortora et al. (29) investigated the signal intensity 
of muscles on short tau inversion recovery (STIR) and T1-

Table 5 Comparison among ResNet101, Swin Transformer, all eye 
muscles and radiologists

Delong test AUC P value

ResNet101 vs. Swin Transformer 0.986 vs. 0.936 <0.001

ResNet101 vs. all eye muscles 0.986 vs. 0.905 <0.001

ResNet101 vs. radiologists 0.986 vs. 0.818 <0.001

Swin Transformer vs. all eye muscles 0.936 vs. 0.905 0.291

Swin Transformer vs. radiologists 0.936 vs. 0.818 <0.001

AUC, area under the curve.
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weighted post-contrast sequences associated with CAS. DL 
methods have the potential to evaluate activity and severity 
in GO based on MRI multiple sequences, and this is 
important for the subsequent selection of treatment options. 
Further research would focus on multisequence MRI to 
evaluate activity assessment of GO and the effectiveness of 
treatment relying on DL methods. 

CNNs have been widely employed in medical imaging 
disciplines such as detection, classification, and semantic 
segmentation (30). ResNet is an advanced CNN which has 
excellent model performance in image classification and 
recognition. Although transformer-based models may be 
more interpretable than typical CNN and have gradually 
been applied in the computer vision field in recent  
years (20), the advantages of Swin Transformer have not 
been reflected on specific tasks and the transformer model 
usually requires large samples. In our study, ResNet101 
outperformed Swin Transformer in terms of AUC (0.986 
vs. 0.936). This variability in model performance is largely 
influenced by datasets and sizes. Another possible reason is 
our study mainly focused on changes in muscle morphology, 
a relatively uncomplicated task. Gai et al. (31) also highlighted 
the superior effectiveness of CNNs. Appropriate networks 
should be selected based on different types of medical tasks. 

There are some limitations to our study. First, this study 
involved a single center, the sample size was relatively 
small; multi-institution datasets and independent external 
validation groups would be considered to confirm the 
generalization of the 2 DL models. Second, because 
not every patient underwent the coronal MRI T2-
weighted scans and MRI coronal contrast-enhanced T1-
weighted scans, models constructed by T2-weighted or 
other sequences and comparison of different sequences 
were lacking. T2 MRI sequence had the advantage of the 
hyperintense signal of edema. Ollitrault et al. (32) showed 
that Dixon-T2-weighted scans had greater sensitivity 
and specificity, as well as fewer artifacts, than a standard 
technique when assessing GO. Third, the measurement of 
extraocular muscle involvement and input of 2 DL models 
depended on 2-dimensional MRI images. More information 
was provided if axial and sagittal planes were considered 
as references and the model’s efficacy may be improved as 
parameters increase from different views. Furthermore, 
finding and cropping is time-consuming; in further study, 
we would utilize AI segmentation to automate cutting to 
achieve fully automated diagnosis, and if the outcomes are 
good, we would conduct a prospective study to support the 

actual clinical value.
In conclusion, we have proposed DL models based on 

MRI to diagnose GO relying on T1-weighted MRI in terms 
of diagnostic efficiency. In regular clinical use, the models 
may provide a useful diagnostic reference for diagnosing GO. 
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