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Although many insects successfully live in dangerous environments exposed to di-
verse communities of microbes, they are often exploited and killed by specialist pathogens.
In the process of co-evolution of insects and entomopathogenic microorganisms, they
develop various adaptive systems that determine the sustainable existence of dynamic
host–parasite interactions at both the organismic and population levels. Many different
species of fungi are associated with insects. It should be noted that the diversity of fungi
largely depends on the specific insect–fungus system. Thus, in the population of Chilo
suppressalis, a serious pest of rice, in northern Iran Beauveria bassiana, Akanthomyces lecanii,
Akanthomyces muscarious, Metarhizium anisopliae, Hirsutella subulata, and Trichoderma sp.
persisted [1]. Lepidopteran forest-pest species Ematurga atomaria, Cabera pusaria, Hypome-
cis punctinalis, and Orthosia gothica were associated with members of Cordycipitaceae
(Akanthomyces muscarius and Cordyceps farinosa) and fungi from families Aspergillaceae,
Nectriaceae, Mortierellaceae, Hypocreaceae, etc. [2]. The host defences are designed to exclude
the pathogen or mitigate the damage inflicted, while the pathogen counters with immune
evasion and utilization of host resources. Transcriptome (RNAseq) analysis of immune
response uncovers new abilities to study host–parasite systems. Study of cricket Gryllus
bimaculatus transcriptome demonstrated high tissue-specific variety in inducing antifungal
immune factors [3]. Entomopathogenic fungi (EPF) neutralize their immediate surround-
ings on the insect integument and benefit from the physiochemical properties of the cuticle
and its compounds that exclude competing microbes. Interestingly, in some cases EPF
have low virulence because plant phytochemicals can demonstrate antimicrobial activity
on insects cuticle [4]. EPF interplay host defence with factors which regulate adhesion to
the cuticle, cuticle degradation, stress management and toxins [5]. Thus B. bassiana express
bassianolide and beauvericin toxins during infection of the bug Triatoma infestans [6] and
proteases, chitinases and lipase in the presence of C. suppressalis cuticle probably to pass the
insects defence faster [1]. It was found that EPF peroxisome-type and hexagonal crystal-like
organelles (Woronin bodies) are required for appressorium differentiation and the topical
infection of insect hosts [7]. Insects’ immune, detoxification, and antioxidant systems
work synergistically to combat infections and mitigate stress. Some proteins demonstrate
multifunctional properties, participating in metabolism, homeostasis, and pathogen recog-
nition [8]. Besides, insect hormones such as juvenile hormone [9] and dopamine [10] have
been suggested to be a potential mediator in the insects’ immunity against fungi.

The application of EPF in the field needs high-quality scientific support to establish the
mechanisms of action and ways to improve fungal biological preparations [11,12]. There
are some cases in which an insect’s microbiota [13] and nematodes [14] may influence the
development of fungal infections. These facts could open new abilities for the development
of a complex approach to plant biological protection.
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