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Abstract
Observers can quickly estimate the quantity of sets of visual elements. Many aspects of this ability have been studied and 
the underlying system has been called the Approximate Number Sense (Dehaene, 2011). Specific visual properties, such as 
size and clustering of the elements, can bias an estimate. For intermediate numerical quantities at low density (above five, 
but before texturization), human performance is predicted by a model based on the region of influence of elements (occu-
pancy model: Allïk & Tuulmets, 1991). For random 2D configurations we computed ten indices based on graph theory, and 
we compared them with the occupancy model: independence number, domination, connected components, local clustering 
coefficient, global clustering coefficient, random walk, eigenvector centrality, maximum clique, total degree of connectivity, 
and total edge length. We made comparisons across a range of parameters, and we varied the size of the region of influence 
around each element. The analysis of the pattern of correlations suggests two main groups of graph-based measures. The 
first group is sensitive to the presence of local clustering of elements, the second seems more sensitive to density and the 
way information spreads in graphs. Empirical work on perception of numerosity may benefit from comparing, or controlling 
for, these properties.

Keywords  Numerosity · Graph theory · Principal component analysis · Occupancy model

Introduction

Humans and other animals can estimate the quantity of sets 
of visual elements. This ability has been called the number 
sense (Cantlon, Platt & Brannon, 2009; Dehaene, 2011). 
However, estimations can be systematically biased by visual 
properties, such as size and clustering of the elements. Many 
studies have investigated the effect of visual properties of 
2D configurations of elements on perceived numerosity. In 
this paper, we focus on various indices from graph theory 
and their relevance for the perception of numerosity. We 
will start with a review of the numerosity literature and an 
introduction to the relevant aspects of graph theory. Then 
we report a series of analyses. This analysis identifies two 

main groups of measures; one sensitive to presence of local 
clustering of elements, the other more sensitive to density.

Perception of numerosity

The capacity to estimate the difference in quantity or numer-
osity between two sets of elements without the use of count-
ing or symbolic representation, is an important ability pre-
sent in humans and in other species (Dehaene, 2011; Neider, 
2019). There are two separate mechanisms. For small sets 
(N < 5), the precise number is rapidly determined without 
the need to individually attend to each item (Kaufman et al., 
1949; Trick & Pylyshyn, 1994). For larger sets, when count-
ing or immediate apprehension of quantity is not possible, a 
different mechanism allows numerosity estimation (Burr & 
Ross, 2008; Dehaene, 1992; Izard & Dehaene, 2008). This 
approximate number system (ANS) is responsible for non-
symbolic representation of large numerosities, and it is used 
in basic operations such as estimation, subtraction, and com-
parison (Cantlon & Brannon, 2007). A feature of the ANS is 
that with increasing difference in numerosity between two 
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configurations, the task of choosing the larger set becomes 
easier: the distance effect. Furthermore, if the size of both 
sets increases, the task of extracting the larger set becomes 
harder: the size effect. Hence, the most important param-
eter is the ratio of the two numerosities, in accordance with 
Weber's law.

Studies of the ANS in humans and non-human animals 
have found converging results. For instance, mosquitofish 
can discriminate between social groups if the ratio in group 
size is at least 1:2 (Agrillo et al., 2008). In non-human pri-
mates, numerosity performance decreases when the numeri-
cal distance between sets becomes smaller (Barnard et al., 
2013). When it is difficult to process separate elements 
within dense patterns, they are perceived as texture and the 
properties of the estimation process change (Anobile et al., 
2014, 2015).

It is well known that several properties of the stimuli 
affect perceived numerosity. In particular, the geometric con-
figuration of the elements biases judgements of numerosity. 
We can see evidence of this in two phenomena: the solitaire 
illusion (Frith & Frith, 1972) and the regular-random numer-
osity illusion (Ginsburg, 1976; Ginsburg, 1980), see Fig. 1. 
For the solitaire illusion, a regular pattern of black-and-white 
dots (similar to the pieces in the game of peg solitaire) leads 
to a striking impression that the dots in the center are more 
numerous. For the regular-random effect, the elements that 
are spaced evenly are perceived as more numerous than the 
randomly distributed elements. In both cases, and also in 
more generic configurations, it is the groupings or clustering 

of the items that influences perceived numerosity (Allik & 
Tuulmets, 1991; Bertamini et al., 2016; Cousins & Gins-
burg, 1983; Im et al., 2016).

The observation that grouping leads to underestimation 
led to the occupancy model (Allik et al., 1991; Allïk & Tuul-
mets, 1991). According to this model, each element is sur-
rounded by a region of influence whose effect decays with 
the distance to the element (Burgess & Barlow, 1983). If two 
or more elements are close together, then their respective 
regions of influence will overlap, and their combined con-
tribution to the perceived numerosity diminishes. Allïk and 
Tuulmets (1991) approximated these regions by circles of 
fixed radius r. If two elements are at a distance smaller than 
2r, then the circles of influence will overlap and their com-
bined area, or occupancy value, will decrease. The model 
predicts that configurations with a greater occupancy value 
will be perceived to have greater numerosity.

Both the Solitaire illusion and the Regular-Random 
Numerosity illusion show the importance of configuration. 
Frith and Frith (1972) already explicitly mentioned grouping 
and Gestalt formation. Proximity has a key role in group-
ing (Kubovy & Wagemans, 1995), and as we have seen the 
occupancy model provides a measure based on proximity. 
Proximity may also lead to crowding, as a possible cause of 
underestimation (Chakravarthi & Bertamini, 2020; Valsec-
chi et al, 2016). Not everything, however, can be reduced to 
proximity. If we look at the Solitaire illusion in Fig. 1, for 
example, the average distance between elements is greater 
for the white than for the black dots, and yet the black dots 
are judged as more numerous. This is the opposite of the 
effect of average distance in the Regular-Random Numeros-
ity illusion. Another curious and unexplained effect occurs 
when we compute the area of the convex hull. The area 
is larger for the white compared to the black dots in the 
Solitaire illusion. Therefore, although in the general case 
the larger area leads to an increase in perceived numeros-
ity (Hurewitz, et al., 2006), in the case of this particular 
configuration we have the opposite effect. More work is 
therefore still necessary to understand the interactions 
between elements when they are organized in Gestalts or 
form sub-structures.

Graph theory

Graph theory is a branch of mathematics that dates back 
to, at least, Euler (1707–1783) and the famous Königsberg 
bridges problem (which Euler proved to have no solution). 
Its main object of study are collections of objects, modeled 
as dots, points, or vertices, and the relationships between 
these elements, usually represented as edges (lines con-
necting pairs of points). In this paper, we use the term 
vertex for an element, and edge for the line connecting 

Fig. 1   A Solitaire illusion. People perceive that there are more black 
than white dots (Frith & Frith, 1972). B Regular-Random Numerosity 
Illusion. A regular configuration of dots (on the left) is perceived as 
more numerous than the random configuration on the right. Both con-
figurations have the same number of dots (Ginsburg, 1976)
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two vertices. We present some graph-theoretic numeri-
cal measures that could be useful to capture properties 
of configurations, and therefore also explain numerosity 
judgements. We report a correlation analysis between pairs 
of these measures and between these measures and occu-
pancy because the latter is known as an effective model 
for perception of numerosity.

A graph G can be defined as a finite structure formed 
by a non-empty set of vertices {v1, v2, …, vn} and a set of 
edges connecting pairs of vertices. Let G(V, E) denote a 
graph with vertex set V and edge set E. If {vi, vj} is an 
edge, denoted as eij, then both vertices in eij are said to be 
adjacent with each other. The number of edges of a vertex 
vi denotes its degree deg(vi). Matrices offer an alternative 
way to describe graphs. Given a graph G with n vertices 
the adjacency matrix of G is an n × n table AG whose rows 
and columns are indexed by the vertices of G and element 
of avivj of AGwill have a value of 1 if vi and vj are adjacent 
and 0 otherwise.

A walk, defined as W = v0, e0, v1, …, vf − 1, ef, vf is an 
alternating list of vertices and edges, where v0 and vf are 
the endpoints of the walk W on graph G. A walk that has 
no repeated edges is called a trail, and a walk with no 
repeated vertex is a path. The only exception to this is if 
the endpoints are the same vertex, then we have a closed 
path or cycle. Likewise, a trail whose endpoints are the 
same vertex is called a closed trail. If every two vertices 
in graph G, are the endpoints of a walk, then we say that 
the graph G is connected, else the graph is disconnected 
and formed by two or more separate sub-graphs called 
components. When every vertex is adjacent to every other 
vertex, we have a complete graph, denoted by Kn, where n 
is the number of vertices.

A simple visual representation of a graph is shown in 
Fig. 2A. Here edges have a direction. More relevant for us is 
a type of graph called a random geometric graph. In this case 
the vertices are placed in a metric space, e.g., the plane, and 
are connected by an edge if and only if their Euclidian distance 
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Fig. 2   Top A small graph on nine vertices connected by a number of 
directed lines, describing a binary relationship on the set of vertices. 
Here position in the plane is irrelevant. We will focus on a special 
case of graphs (random geometric graphs) in which connectivity is 
related to distance and edges are non-directional. Bottom Compari-

son between the occupancy model and the graph theoretic approach. 
On the left, the connecting edges are based on a distance threshold, 
whereas on the right we show overlapping occupancy regions
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is less than a threshold, i.e., a radius r. A simple example is 
shown in Fig. 2B.

Graph theory and occupancy

Graphs and graph-theoretical measures provide ways to 
quantify the difference between two configurations. If the 
visual system is sensitive to these properties, these differ-
ences may explain perceived numerosity. A few studies have 
already employed some of these indices (e.g. Bertamini 
et al., 2016, 2018; Im et al., 2016), and more recent work 
has computed average edge length on a nearest-neighbor 
graph as an alternative to occupancy (Allik & Raidvee, 
2021). Unlike other measures such as size of the physical 
elements, measures based on graph properties are not based 
on arbitrary units (e.g., pixels, centimeters, inches).

For any 2D configuration, two vertices can be considered 
connected if their Euclidean distance is less than a given 

distance d, thus defining a random geometric graph Gd. Note 
that this distance is closely related to the region of influ-
ence hypothesized in the context of the occupancy model. 
The overlap between two neighboring regions of influence 
occurs when the distance between the vertices is no larger 
than 2r, where r is the occupancy radius; if we set d = 2r 
then the edges of Gd describe exactly those elements whose 
regions of influence intersect. Figure 2B compares the two 
approaches for an example with only nine vertices.

As in the case of the occupancy model, the graph struc-
ture varies with the distance parameter, the larger the value 
of d the more edges there will be in Gd. Figure 3 shows 
a random 40-vertex configuration inside a circle CR of 
radius R. In panel A, at a small connectivity distance of 
d = R/4, the graph is disconnected into ten components, the 
largest of which has 18 vertices. As the connectivity distance 
increases, eventually the graph connects (panel B). If the 
connectivity distance increases, more vertices will be con-
nected, and the graph becomes denser. Finally, at d = 2R all 

Fig. 3   A connectivity distance = R/4, number of edges 43, the graph 
is disconnected, B connectivity distance = R/2, number of edges 171, 
the graph is now connected. C connectivity distance R, number of 

edges 468, the graph is becoming denser. Finally, D, connectivity dis-
tance 2R, number of edges 780, this is the complete graph K40
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vertices are connected, and the last panel (D) describes the 
complete graph K40.

The difference in graph structures between panels sug-
gests that many properties of random geometric graphs 
change with connectivity distance. It is clear from the top 
left panel in Fig. 3 that a small value of d, leads to Gd being 
split into two or more components. The other three panels 
represent a connected graph.

There is an important difference between the occupancy 
model and any index defined on graphs. Graphs are abstract 
entities defined on vertex configurations on the basis of adja-
cencies. Even when edges describe geometrical proximity 
between elements, the existence of the edges of Gd depends 
on the proximity of the vertices with a strict “all-or-none” 
criterion.

It is also important to say what aspects we did not con-
sider in this study. We focus on the properties of the con-
figuration, defined by the relationship between locations. 
The nature of the elements themselves is not relevant. We 
do acknowledge that numerosity perception is affected by 
properties of the elements. For example, 20 dots may have 
twice the surface area of ten dots. The correlation of these 
continuous measures with numerosity is a problem, recently 
discussed by Salti et al. (2017). However, these physical 
properties of the elements are outside the scope of our paper.

Bertamini et al. (2016) used some graph indices in their 
study of numerosity. They considered three numerical meas-
ures of the configurations: the area of the convex hull, total 
degree, and (average) local clustering. They then compared 
these measures to predictions made by the occupancy model. 
The convex hull is a useful measure of overall dispersion. 
In 2D it can be defined as the closed curve with minimum 
perimeter containing all elements. Unlike the other indices 
discussed, it does not depend on the connectivity param-
eter d. The degree of a vertex was defined earlier as the 
number of its edges, to get the total degree we sum this for 
all vertices. Because an edge always connects two vertices, 
total degree is twice the number of edges. Finally, the local 
clustering index will be defined in the next section. Ber-
tamini et al. (2016) generated datasets for a limited range 
of connectivity distances d (approximately between d = R/8 
and d = 3R/4, in steps of R/16), and then used correlational 
analysis to compare indices. However, the values of d did 
not cover the full range of possibilities (as shown in Fig. 3, 
d can take on any positive value up to 2R).

In this paper, we consider ten graph indices along with 
the occupancy model and study their correlations for ran-
domly generated vertex configurations. This list is not 
exhaustive, but it includes well-known indices developed to 
capture "clustering". As argued in the Introduction, there is 
evidence pointing to the importance of grouping and cluster-
ing (e.g., the Solitaire illusion). Moreover, for comparison 
we included the occupancy model.

We first investigate correlations between the indices 
for fixed values of the connectivity distance, across its full 
range. Certain correlations will depend on the connectivity 
distance, and in addition, some of the indices will only be 
valid for a limited range of d. We then describe a strategy 
that captures the key properties of the correlations between 
indices. We selected a specific connectivity distance for 
each index and then correlated the index values obtained 
at this distance. The correlation results obtained in this way 
capture the main correlations observed at fixed connectiv-
ity distances. Finally, a principal component analysis was 
performed in an attempt to isolate meaningful clusters of 
similar indices.

Correlation studies on graph indices have been attempted 
before on a smaller scale. For instance, Guzman et al. (2014) 
looked at different types of centrality and clustering meas-
ures, for a collection of 320 different graphs (or networks as 
these were called). In another study, Meghanathan (2016) 
concentrated on centrality measures and their correlation 
with maximal clique, with the aim of using correlational 
analysis to find computationally “light weight” alternatives 
to maximal clique. We will discuss the definition of clique 
in the next section.

A correlational analysis enables us to study certain (dif-
ficult) graph indices by working with related (simpler) ones. 
This has been done before, analytically, in several studies 
of random graph properties. The degree of the vertices in 
a graph G is related to its chromatic number, the minimum 
positive integer k such that the vertices of G can be col-
oured with k colors and no pair of vertices connected by an 
edge receives the same color (Shi & Wormald, 2007). The 
number of edges affects the presence of global structures, 
for instance a Hamiltonian cycle, which is a long cycle that 
visits every vertex of G exactly once (Korshunov, 1976). 
However, this is difficult for the general case. Apart from 
results in a few classical models of random graphs, only 
empirical analyses exist on more realistic distributions (Guz-
man et al., 2014; Meghanathan, 2016).

The remainder of the paper is organized as follows. In 
the next section, the selected indices are described. We then 
provide all the details of our tests. The last part of the paper 
is devoted to an analysis of the results.

Description of the indices

Hundreds of different graph indices exist. In choosing the list 
of indices, we picked measures that are sensitive to connec-
tivity distance, and indices that have been studied in other 
disciplines. We wanted to take advantage of the range of fea-
tures that different graph indices can compute. For instance, 
the information spread on graphs can be affected by only a 
small number of vertices (Karunakaran et al., 2017), and 
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there are many centrality measures that are known to extract 
information about such vertices. We will work with Eigen-
vector Centrality as an example of such centrality measures. 
Eigenvector Centrality is used in social network analysis, as 
well as clique finding and clustering (Wasserman & Faust, 
1994). Both independent and dominating sets have been 
used in wireless sensor networks (Basagni, 2001; Fu et al., 
2015). Lastly, we included connected components and total 
degree as these are particularly sensitive to groupings and 
density, which are known to be of importance in studying 
numerosity (Anobile et al., 2015; Frith & Frith, 1972).

Definitions in each case (except for occupancy) are given 
in Table 1. The reader is referred to standard textbooks like 
Harary (1969) for basic graph theoretic definitions. To avoid 
dealing with range heterogeneity, all indices were normal-
ized by the maximum value for a given fixed number of 
vertices n. However occasionally the normalization factor 
depends on d.

Methods

In this paper, we study configurations of elements with four 
different numerosities {22, 28, 34, 40}, confined to a circular 
area of radius R. These numerosities are above the subitizing 
range, and unlikely to form a texture. To estimate the density 
for an observer, we must assume a viewing distance. On a 
typical computer display at 57 cm, R equals 160 pixels if we 
assume there are 32 pixel/cm. Therefore, densities would be: 
0.28, 0.36, 0.43, 0.51 elements/deg2, respectively.

One thousand random patterns in the 2D plane were 
produced for each value of n. There are excellent tools for 
generating patterns (De Marco & Cutini, 2020; Gebuis & 
Reynvoet, 2011). We opted for a simple rejection sampling 
technique: select a random location in a rectangle and keep it 
if it is inside the circle CR and no other element is within dis-
tance δ from it. The first constraint limits the vertex spread 
to a finite circular region. This is useful because in the con-
text of human vision a circular region has a specific level of 
eccentricity, i.e., distance from fixation. With respect to the 
second constraint, the parameter δ avoids overlap. We used 
δ = R/16. Under these conditions the event that two vertices 
are within a distance of δ has a probability of approximately 
0.0038. Hence, depending on n, few overlaps occur, which 
in turn motivates the adopted rejection sampling strategy.

Implementation

An interesting feature of the indices considered in this study 
is their computational complexity. Some of them (e.g., local 
or global clustering, connected components, total degrees 
and total edge length) can be computed in a time that is 

proportional to the size of the input graph. However, some 
pose computational problems (eigenvalue centrality and 
occupancy), and others are slow to compute (clique, and 
dominating sets). We used Python 3.6 combined with librar-
ies Networkx v2.5 (Hagberg et al., 2008) and an extension 
to Networkx; GrinPy v19.5a0 Amos, Davila, 2019) for most 
of the computations (including max cliques, dominating and 
independent sets). However, we resorted to a more ad hoc 
method in the case of occupancy, which will be explained 
next.

To compute occupancy, one needs to find (the propor-
tion of) the total area of interest that falls within at least one 
of the influence areas. This is an interesting computational 
problem which has been studied in the past (Edelsbrunner, 
1993). Methods exist that compute the occupancy of a set 
of circles in a time proportional to the number of circles 
(Aurenhammer, 1988). Such methods are not always useful 
in practice. Bertamini et al. (2016) used an exhaustive pro-
cess that calculated the occupancy by computing all possible 
circle intersections. The properties of those configurations 
meant that the process could be completed in a reasonable 
amount of time. In the current study, we compute occupancy 
values for larger influence radii. When the influence radius 
becomes large most circles intersect, and the exhaustive pro-
cess becomes slow. We therefore resorted to an alternative 
approach. To calculate occupancy, the Python library Psy-
choPy (Peirce, 2009), was used.

For each point, a black circle of radius r was drawn on a 
white background, see Fig. 4 for example of a configuration 
for n = 22, for various occupancy radii. The PsychoPy func-
tion getMovieFrame() then captured the image of the screen, 
after which the number of black pixels counted. Hence the 
algorithm returns the total number of black pixels, normal-
ized to the maximum possible value that the occupancy can 
take, which is nπ(d/2)2, the area of n disjoint circles of radius 
d/2. The method was tested against the exact algorithm used 
by (Bertamini et al., 2016) and found to have correlations 
larger than 0.998 across d = δ to 12δ pixels, in steps of δ. 
Hence, although this algorithm is an approximation, it still 
produces a valid measure of occupancy. We used the library 
Networkx for finding the average eigenvector centrality (cf. 
Guzman et al., 2014). To ensure convergence, we used 1000 
iterations for each Gd.

Values for all indices are made available on Open Science 
Framework: https://​osf.​io/​yxdvm/. In addition, we made 
available a full set of Python functions that can analyze any 
set of coordinates; these functions are provided with docu-
mentation and examples.

Researchers can specify which index to compute and 
over what connectivity distance range. See the Python script 
“run_me.py”, on how to input any number of dot patterns, 
and subsequently compute either occupancy values, or one 
of the graph indices described in this work. When executed, 
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Table 1   List of indices, including their acronyms, any normalization requirements and descriptions

Index Description

Total Degree (TD) The Total Degree in a graph is the sum of the degrees of its vertices. Each edge is adjacent to two vertices, and the sum of 
the degree is therefore also twice the number of edges.

∑

v∈V

deg v = 2 ∣ E ∣  

We normalize this value by dividing it by the maximum number of edges possible, n(n − 1)/2, where n denotes numerosity
Total Edge Length (TL) The Total Edge Length (TL) of a graph is the sum of the Euclidean distance between all pairs of vertices at a distance of 

at most d.

TL =
∑

{u,v}∈E(G)

dist(u, v),
  

The quantity is normalized by dividing it by 2d ∣ E(G)∣
Random Walk Cover Time (RW) A random walk on a graph G is a process that, starting at an arbitrary vertex, hops around in discrete times steps following 

random edges. We are interested in the time needed for the walk to visit (at least once) all vertices of G. We only con-
sider random walks for graphs that are connected. For each Gd we did 1000 random walks and computed the mean of 
the number of steps taken. The measure RW is then obtained as the inverse of this number multiplied by its theoretical 
minimum, which is slightly less than n log n, where n is the numbers of vertices, as proved by Kahn et al. (1989)

Eigenvector Centrality (EG) Eigenvector centrality gives a value to each vertex, proportional to the sum of the values of its neighbors (Bonacich, 
1987). Formally such vector can be obtained as solution of the equation

Ax = λx

where A is the adjacency matrix of the given graph, and λ its eigenvalue. The vector x can be computed iteratively, starting 
by setting x to be the degree sequence of the given graph. The multiplication Ax generates a new vector. Matrix A can be 
multiplied by such vector and the whole process repeated until the product Ax stabilizes to satisfy the equation above.

If a convergence is achieved after n iterations, then real value λ is an eigenvalue of A, and the average value of the compo-
nents of the resulting x defines the eigenvector centrality of the given graph. If there is no convergence, then its value is 
zero.

This value is normalized by using the square root of the sum of each eigenvalue, on each iteration
Connected Components (CC) At low connectivity distance, graphs are typically not connected. They can be described as formed by a number of con-

nected components, each containing at least one vertex. Single vertices are treated as one component, the maximum 
number of components that a graph can have is the cardinality of the set V. As the connectivity distance grows the 
number of components reduces and eventually d is so large that the graph becomes connected. CC is the number of con-
nected components, divided by the number of vertices

Clique Number (CL) A clique, in a graph G, is a subgraph that is itself a complete graph. The size of the largest clique in a graph G is called the 
clique number of G. For normalization we divide this index by the number of vertices  
n =  ∣ V∣

Domination Number (DN) In a graph G, a dominating set D is a subset of the vertex set V(G), such that every vertex in V(G) is either a member of D, 
or is adjacent to a vertex in D. The set V(G) is trivially a dominating set. The cardinality of the smallest dominating set 
for G, is called the domination number (DN) of graph G. The domination number of G is then divided by the number of 
vertices n =  ∣ V∣

Independence Number (IN) Two vertices in a graph are pairwise independent if they are not connected by an edge. This concept of pairwise inde-
pendence enables us to study non-trivial, large dominating sets. An independent set in a graph G is a set of pairwise 
independent vertices. Trivially, a set with one vertex is an independent set, and, in general, maximal independent sets 
are also dominating sets. A maximum independent set (IN) in G, is an independent set in G of largest cardinality, and its 
cardinality is the independence number of G. The independence number of G is then divided by the number of vertices 
n =  ∣ V∣

Local Clustering Coefficient (LC) The local clustering coefficient lcv of a vertex in a graph G, calculates how close its neighbours are to form a complete 
graph (Watts & Strogatz, 1998). If we let number of edges induced by connectivity distance d, be e(V) and the set of 
vertices connected to a v be N(v), then the local clustering coefficient lcv can be defined as:

lcv =
2e(N(v))

deg v(deg v−1)

The average value is found by summing the coefficient of each vertex, then dividing by n =  ∣ V∣
Global Clustering Coefficient (GC) The global clustering coefficient (GC) differs from the local version above, in that it attempts to capture the clustering in 

a graph as a whole, not just a local\neighborhood level. The first attempt to formalize such notion dates back to Luce 
& Perry (1949). The concept has had a revival of interest at the turn of the century (Wasserman & Faust, 1994) in the 
context of social network analysis. Its computation involves finding the ratio of closed triplets (3 vertices forming a 
triangle) and open triplets (two out of three vertices are connected) in G.

gc =
3×Number of triangles

Number of connected triplets
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the script returns an excel dataset consisting of the chosen 
index, computed over each value of d and for each dot pat-
tern. This script also prints out the value of d that gives the 
maximum standard deviation.

It is possible to input just one pattern and use that to com-
pute different indices over different values of d. See the script 
“run_me_toy_example.py”, for ways to draw graphs, and 
visualize indices such as independence number, and local 
clustering coefficient, using the drawing package provided 
by the library Networkx. Using these scripts, researchers can 
input one dot pattern at a time and “play” with a graph index 
over any chosen range of d. There is an accompanying docu-
ment, called “InstructionManual.pdf” that describes each of 
the steps taken in “run_me.py”, and “run_me_toy_example.
py”. The document also demonstrates how to create visual 
illustrations and heatmaps similar to those used in this paper.

Correlational analysis results

We computed the correlation matrices between indices 
at each d ∈ {δ, δ + 5, δ + 10, δ + 15, …, 2R}. This in turn 
was repeated for each value of n. The resulting correla-
tional matrices revealed the presence of transient correla-
tions (i.e., correlations between pairs of indices that only 
existed at a particular connectivity distance, see Fig. 5) 
and also pathological distributional patterns in the underly-
ing data.

The top and bottom left panels of Fig. 5 show how, over 
a small range of d, indices can be correlated, for instance 
CC and RW are strongly negatively correlated only in a 
range around d = R/2. In the bottom right panel, CL and 
GC formed strongly positive correlations across most of the 
range of d. It is also clear from the top right and bottom 
left panels of Fig. 5, that indices may reach their respective 
limiting values at different d. As an example, the threshold 
values for CC (bottom left panel of Fig. 5) are 22: 0.75R, 
28: 0.625R, 34: 0.625R and 40: 0.56R. Values greater than 
this for d will guarantee all graphs are connected, and hence 
the variance in CC will be zero. Likewise, DN reached its 
threshold value for all n by d = 3R/2.

Indices approaching threshold values raise problems with 
computing correlations. For instance, when we investigated 
the maximum correlation for RW and CC, Fig. 5 bottom left 
panel, the correlation between CC and the RW at n = 40 and 
d = R/2 was r(998) =  − 0.816, p = 0.000. Figure 6 shows a 
scatter plot of RW and CC at n = 40, and d = R/2. It is clear 
that the relationship between CC & RW is not linear.

The root of the problem is that CC is getting close to its 
threshold value as most graphs start to connect, while RW is 
only just becoming a computable index for the same reason. 
When plotted, CC is oscillating between to two values, and 
RW has values that are zero and thus acting as outliers. Each 
correlation matrix we wish to compute requires 45 separate 
correlation computations, at each data point in d. Hence 
inspecting each correlation visually would not be feasible. 

Fig. 4   How occupancy value (OC) changes with an increase in the center-to-center distance d. Top left d = R/16, top right d = R/3, bottom left 
d = R/2 and bottom right d = R. For all patterns numerosity is 22

2388 Behavior Research Methods (2022) 54:2381–2397



1 3

The problem is compounded by a sample size of N = 1000. 
Tests for normality, for instance Kolmogorov–Smirnov and 
Shapiro–Wilk, are known not to be accurate for N > 300 (see 
Field, 2009, for discussion). Nevertheless, Fig. 6 does sug-
gest that these cases do not contain enough variability at a 
specific value of d. The ability to filter out unreliable cor-
relations will be the topic of the next section.

When we iterated through d we found two groups of 
strongly correlated indices forming across all n. From now 
on we refer to indices OC, DN, IN, and CC as belonging 
to the clustering group, and CL, TD, and TL as belonging 
to the spread group. We found other correlations, however 
these were either expected, such LC and GC, or artificial 
correlations due to indices converging on the same threshold 
value when the graphs started to become dense.

Heat maps for connectivity distance d = R/8 are shown in 
Fig. 7, for each n. It is clear the clustering group is present, 
colored blue, top left. We would expect both DN and IN 
to correlate strongly with each other as both search for a 
dominating set, in the case of DN it searches for one with 
a minimum cardinality, whereas IN searches for one with 
a maximum cardinality. Of more interest is that they also 
cluster with CC and OC. In addition, TD and TL formed a 
strong negative correlation with the clustering group. This 

group does not persist across a wide range of d, as CC no 
longer varies after graphs become connected.

Figure 8 shows the heat maps at d = R for all n. As this is 
the radius of the enclosing circle R, all graphs will be con-
nected with a high probability, consequently the index CC 
will have reached its threshold value, and its variance will 
be zero. Therefore, the clustering group has disappeared, but 
the spread group has formed for all n. Also, LC and GC have 
now strong correlations with the spread group.

Comparisons based on maximum standard 
deviation

The analyses presented for each n, enable us to obtain cor-
relation matrices at each d ∈ {δ, δ + 5, δ + 10, δ + 15, …, 2R}. 
We reasoned that it would be useful to find where indices are 
most informative, select only one value of d per index, and 
then show how indices relate to each other when computed 
on graphs obtained by using those particular values of d.

In an attempt to capture the most significant correlations, 
we computed, for each index m, the value dm(n) of the con-
nectivity distance that maximizes the standard deviation 
σm(n, d), and then studied the correlations between the values 

Fig. 5   All correlations computed using the Pearson coefficient, any 
with p > 0.05  were ignored. Top and bottom left show examples of 
transient correlations. Top left EG and OC are strongly correlated 
r(998) >  ∣ 0.6∣, at 3R/2, but much lower for other d values. Also, CC 
and RW are strongly negatively correlated for d = R/2, but the corre-

lation decreases rapidly elsewhere. Bottom right shows both CL and 
GC are strongly positively correlated, throughout the full range of d. 
Top right shows how some indices will have a threshold value, DN 
hits it minimum value across all n when d = 3R/2
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Fig. 6   Scatter plot of connected components against random walk at connectivity distance R/2. This has a correlation of r(998) =  − 0.849, 
p = 0.000. The strength of the correlation is due to CC approaching its threshold value, and random walk becoming a computable index

Fig. 7   Heat maps for d = R/8 we see clear patterns emerging that are independent of n, for instance the positively correlated cluster of OC, DN, 
IN & CC
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of the 11 indices computed in the graphs Gdm(n)
 . We call 

these the maximum standard deviation correlations. Table 2 
shows the values of dm(n) for all indices.

This analysis for the maximum standard deviations was 
repeated for each index and the heat maps are shown in Fig. 9. 
Notice that the two most interesting components seen in the 
correlational analysis between measures at fixed values of d 
are still present. We see a strong negative correlation between 
LC and occupancy. Also, EG is strongly correlated with the 
spread group, even though the computed value of dEG(n) is 
closer to the average value of d for the clustering group.

It might be argued that correlating the 11 indices using 
the values obtained in Gdm(n)

 in each case is artificial, as 
we are comparing measures obtained from different 
graphs, due to the different connectivity distances. How-
ever, the graphs we use are not totally unrelated. As we 
pointed out in the Introduction, the geometric graphs we 
are working with are such that if d1 ≤ d2 then Gd1

 is a sub-
graph of Gd2

 . If dm1
(n) < dm2

(n) . comparing m1 in Gdm1
(n) 

with index m2 in (the denser) Gdm2
(n) may ignore irrelevant 

information about Gdm2
(n) when dealing with m1. The goal 

Fig. 8   Heat maps for d = R. Again, clear patterns emerge that are independent of n, notably a cluster of highly positive correlations between TL, 
TD, and CL

Table 2   Each cell displays the numerical value computed for the 
maximum standard deviation for each index, and the same value in 
terms of R, column N is numerosity. The value of 160 for R was cho-

sen because this would correspond to 5°of visual angle on a screen at 
distance 57 cm (assuming 32 pixels/degree)

N OC DN IN CC LC GC RW EG CL TD TL

22 60
0.38R

30
0.19R

35
0.22R

35
0.22R

55
0.34R

55
0.34R

125
0.78R

70
0.43R

220
1.38R

180
1.13R

155
0.97R

28 55
0.34R

30
0.19R

30
0.19R

35
0.22R

50
0.31R

45
0.28R

115
0.72R

65
0.41R

230
1.44R

170
1.06R

155
0.97R

34 50
0.31R

30
0.19R

25
0.16R

30
0.19R

45
0.28R

40
0.25R

105
0.66R

65
0.41R

235
1.47R

170
1.06R

160
R

40 45
0.28R

25
0.12R

25
0.16R

25
0.16R

40
0.25R

35
0.22R

95
0.59R

60
0.38R

240
1.5R

175
1.09R

160
R
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is to find graph-theoretic indices that predict human 
numerosity judgements. These indices depend on the set 
of vertices but also on the value of d. Therefore, compar-
ing indices using the same value of d might not be ideal.

Principal component analysis

We investigated the maximum standard deviation correla-
tion matrices further, by performing a principal component 
analysis (PCA), with the purpose of extracting any uncor-
related\orthogonal features that are present in the data. We 
omitted the index RW as it is clear from the previous section 
that it did not correlate with any other index. Please note that 
the term “component” as used in PCA is not the same as a 

“component” in graph theory. SPSS confirmed two strong 
eigenvalues, and a third just below 1, from the covariance 
matrix of σm(n, d). We summarize the results in Table 3.

The varimax matrix extracted two components, with the 
following members: component 1: OC, DN, IN, CC, LC, 
and GC, and component 2 containing EG, CL, TD, and 
TL. Largely confirming the two groups (clustering, spread) 
seen in the informal correlational analysis in the previous 
section. Also, the PCA placed LC inside PCA component 
1 with a load factor ranging between – 0.76 and – 0.70 
dependent on n. This was reflected in the correlational 
analysis at fixed distances, since it found negative correla-
tion values < − 0.3 between LC and OC until LC started 
reaching its threshold value as the graphs became dense. 
Using the same argument, GC was consistently moderately 

Fig. 9   Heat maps with correlations between indices selected based on standard deviations. We see that the use of SD Max has captured the clus-
tering and spread groups

Table 3   Summary of the first two eigenvalues found from the PCA analysis and cumulative variance explained from their components for each 
n. We see most of the variance is explained by these first two components

n = 22 n = 28 n = 34 n = 40

Eigenvalue Cumulative 
variance (%)

Eigenvalue Cumulative 
variance (%)

Eigenvalue Cumulative 
variance (%)

Eigenvalue Cumulative 
variance (%)

Component 1 4.58 45.75 4.01 40.54 4.22 42.18 4.26 42.60
Component 2 2.8 73.44 2.9 69.53 2.72 69.34 2.90 71.56
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negatively correlated > − 0.6 and < − 0.2 with OC, which 
is reflected in its load factor between – 0.68 and – 0.48 
(see Table 4).

For completeness, it should be noted that there are other 
pairwise features between indices that are not present in 
either correlational or principal component analysis. For 
instance, GC and CL were strongly correlated through a 
wide range of values for d, as were OC and TD. This is not 
seen in either the correlational analysis or PCA of the maxi-
mum standard deviations (this could be due to their respec-
tive σmax being far apart in terms of d, as seen in Table 2). 
In Fig. 7, we also notice a strong correlation between the 
spread group and indices LC and GC. This also has not been 
extracted. However, correlations between the spread group 
and indices {LC, GC} were more transient and relied more 
heavily on connectivity distance d.

Discussion

This study had three goals. The first was finding useful graph 
indices for the study of numerosity. We wanted to expand 
on the approach taken by some researchers in the numeros-
ity literature who used graph indices to predict human and 

animal numerosity perception (Bertamini et al., 2016; Im 
et al., 2016). For this reason, we selected a list of graph 
theoretic indices that might be useful in the study of numer-
osity estimation. Since many numerosity studies involve 
the use of random configurations of elements as stimuli, we 
focused on random geometric graphs for our analysis, as 
they are determined by the geometric distribution of a con-
figuration, combined with a connectivity distance parameter. 
This approach enabled the more formal study of the combi-
natorial/geometric properties of this type of stimuli. It was 
important, in choosing indices, that the graph properties they 
measured were wide-ranging, in the sense that we would 
have indices sensitive to groupings/clustering, density, and 
other graph properties such as centrality and the cardinality 
of the independent/dominating set.

We analyzed ten indices: number of connected compo-
nents CC, domination number DN, independence number 
IN, average local clustering coefficient LC, global clustering 
coefficient GC, average eigenvector centrality EG, random 
walk RW, maximum clique size CL total edge length TL and 
total degree TD. Together these indices represent a broad 
range of properties found on graphs. The correlational analy-
sis also enabled us to study certain (computationally intrac-
table) graph indices by working with related (simpler) ones.

The second aim followed directly from the first one. We 
wanted to compare the graph theoretic approach with the 
occupancy model (Allïk & Tuulmets, 1991). We therefore 
added this measure (denoted by the abbreviation OC) to the 
ten mentioned above, thus providing a total of eleven indi-
ces. Although there is a relationship between connectivity 
distance of random graphs and the occupancy radius, OC 
represents a fundamentally different way to capture cluster-
ing and grouping properties. Edges on graphs represent rela-
tionships between elements (an all-or-none relationship), 
whereas occupancy is based on the idea that each element 
has a region of influence, estimated by a circular area. The 
total area of influence is then taken as the predictor of the 
overall perceived numerosity. There is a parallel between 
the connectivity distance used to construct a graph, and the 
size of the region of influence, and therefore we manipu-
lated this factor in a similar way for all measures (that is, 
distance affects both edge creation between two vertices on 
a graph, and the overlap of each elements region of influ-
ence). The results indicate a strong correlation between 
occupancy and some other measures, highlighting a couple 
of important geometric features that affect the perception 
of numerosity.

Our third aim was to study the correlations between indi-
ces, and across a range of connectivity distances. In previous 
studies, only a subset of values was used (Bertamini et al., 
2016). We wanted to see which indices grouped together, 
and whether these groups would persist across connectivity 
distances. Finally, we aimed to summarize these results, and 

Table 4   Rotated matrices produced by a PCA. Two components are 
clearly seen across all densities. Note that loadings below, values of 
.3 or less have been suppressed

n = 22 Component n = 28 Component
1 2 1 2

OC 0.90 OC 0.92
DN 0.85 DN 0.90
IN 0.83 IN 0.83
CC 0.90 CC 0.83
LC – 0.76 LC – 0.72
GC – 0.68 GC – 0.53
EG 0.75 EG 0.63
CL 0.86 CL 0.88
TD 0.94 TD 0.96
TL 0.91 TL 0.92
n = 34 Component n = 40 Component

1 2 1 2
OC 0.90 OC 0.90
DN 0.90 DN 0.93
IN 0.75 IN 0.86
CC 0.90 CC 0.95
LC – 0.73 LC – 0.70
GC – 0.48 GC – 0.51
EG 0.67 EG 0.67
CL 0.86 CL 0.87
TD 0.96 TD 0.96
TL 0.93 TL 0.94
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draw conclusions about their implications for research in 
numerosity perception.

The correlational analysis identified many pairwise rela-
tionships between individual indices that were transient in 
nature. Nonetheless, some structures of the pairwise cor-
relational patterns persisted across numerosity, and hence 
our attention turned towards the formation of persistent 
groups of indices (three or more highly correlated indices) 
over specific ranges of the connectivity parameter d. We 
identified two such groups. The first of these (referred to as 
the clustering group) included OC; IN; DN; and CC. This 
group had connectivity values around d = R/8 for all n, as 
shown in Fig. 7. As its connectivity distance was small, it 
is sensitive to how groups of elements cluster together. The 
second group (referred to as the spread group) included CL, 
TL, and TD. This group formed at a larger connectivity dis-
tance d ≥ R, again this was independent of n. We felt that at 
larger connectivity distances this group was picking up on 
the more global properties of the patterns, like areas of high-
est density. Of the two groups, the spread group persisted 
over a larger range of values of d. This was because the clus-
tering group contained both CC and DN, two indices whose 
extreme values are reached well before the other indices.

In an attempt to filter out pathological and transient cor-
relations, and summarize the main results found in the cor-
relational data, four additional datasets were created, one for 
each value n. Each dataset consisted of the value of d that 
generated the maximum standard deviation for each index1. 
When the correlational analysis was repeated on the result-
ing four datasets, it had the advantage of ignoring trivial and 
transient correlations. Importantly, it found both groups of 
indices described in the previous paragraph (Fig. 9).

The maximum standard deviation datasets were inves-
tigated further with a principal component analysis, which 
confirmed that the two groups were orthogonal. Within the 
first PCA component indices LC and GC joined the group 
with members OC, DN, IN, and CC. This confirmed our 
hypothesis that this group of indices is more sensitive to 
how groups of elements cluster together. The second PCA 
component included CL, TD, TL, and added EG. Again, 
the addition of EG makes sense as this index extracts the 
most influential vertices in graphs. RW was not a member 
of either components, which reflects the fact that it rarely 
formed any significant pairwise correlation with another 
index, other than EG and CL, across any value of d or n.

The connectivity distance for the clustering group had an 
average value of d ≈ R/4, and we know from the correlational 

analysis that this is below the threshold value for CC. There-
fore, the input graphs to the clustering group will be discon-
nected into discrete units. OC was also a member of this 
group, and this is consistent with finding that the region 
of influence operates over a small distance (Allïk & Tuul-
mets, 1991; Bertamini et al., 2016). Also, Allik and Tuulmet 
suggested that the optimum value for the occupancy radius 
may be a property of the type of stimulus. The value that 
gives the maximum variance could be that property. As an 
index OC is sensitive to patterns that manipulate the spacing 
between elements. However, when used on purely random 
patterns, with no manipulation on spacing, it is also sensitive 
to groupings. This is confirmed by its strong correlation with 
CC, something that also became apparent from the PCA. 
Hence, we suggest that CC could be a computationally effi-
cient alternative to OC for researchers in numerosity.

The spread group had a much larger connectivity distance 
that was above the threshold value for CC, thus ensuring that 
the input graphs are connected into one graph component, 
and hence this group is more sensitive to global structures 
such as areas of dense clustering (TD, CL), and influen-
tial vertices that are central to information spread - EG. It 
is known that, in enumeration studies, element saliency is 
important in predicting initial eye fixations and scanning 
strategies (Paul et al., 2017). Furthermore, in a recent study 
it was found that centroid measures were most useful in 
predicting the position of the first eye fixation (Paul et al., 
2020). However, such centroid measures use center of mass 
calculations that will not necessarily return the coordinates 
of an element. Centrality measures from graph theory, such 
as EG, can extract features in patterns such as the most 
influential or salient elements, and thus may provide a more 
precise method in predicting initial eye fixations. This has 
been done before: in eye-tracking studies centrality has been 
shown to provide an effective method of distinguishing facial 
scan patterns between autistic and non-autistic children 
(Guillon et al., 2015; Sadria et al., 2019).

Our findings of two components (clustering, spread), is 
also related to work by Salti et al. (2017). They describe 
the existence of two categories of continuous magnitudes 
(intrinsic and extrinsic). Intrinsic relates to magnitudes that 
can be computed on individual dots, such as total circum-
ference, total area, and average diameter. Extrinsic magni-
tudes are concerned with indices that are computed on the 
array, such as convex hull and density. In our work density 
sensitive indices such as total degree and maximum clique 
are members of the spread group, and the occupancy model 
(related to area of influence) is a member of the clustering 
group. However, for Salti et al. (2017) the location of the 
elements is only needed for the convex hull. All other indices 
strongly correlate with numerosity. Recently, De Marco and 
Cutini (2020) described a novel way of computing density: 
the length of the shortest path connecting all elements n, 

1  For two of the indices (RW and EG) the value of d that gave the 
maximum standard deviation was pathological, with most of the 
values in the data zero, and the remaining values close or equal to 
1. Instead, that value of d was used that gave the maximum standard 
deviation, provided more than 99% of the data was non-zero.

2394 Behavior Research Methods (2022) 54:2381–2397



1 3

divided by n-1. They note that this measure is negatively 
correlated with numerosity.

In contrast to these continuous measures, all indices in 
our approach operate on a discrete structure and are sensitive 
to the spatial relationships of the elements. A graph G has a 
finite number of vertices V and edges E, and this approach 
may have an advantage when representing the configuration 
of discrete elements, such as an array of dots. For instance, 
we used total degree TD as a measure of density, which is 
computationally efficient because it needs only the count of 
the edges present in a graph, see Table 1. Unlike average 
distance between elements, TD is positively correlated with 
numerosity.

Conclusion

In this paper we describe random 2D configurations with 
indices based on graph theory, and compare them with the 
occupancy model. We found that the indices have different 
properties and are sensitive to different aspects of clustering. 
Some may be interchangeable because they are highly cor-
related, potentially providing efficient alternatives to more 
computationally intensive methods such as the Occupancy 
index. The analysis of the pattern of correlations suggests 
two main groups of measures. The first is sensitive to pres-
ence of local clustering of elements, the second seems more 
sensitive to density and how information spreads in graphs. 
Empirical work on perception of numerosity may benefit 
from comparing, or controlling for, these properties.

Appendix

Glossary  Approximate number system (ANS): Humans 
and other animals can estimate the size of a set of elements 
without relying on counting, language or symbols. The sys-
tem that supports this estimation process has been called the 
approximate number system (ANS), and sensitivity to dif-
ferences in numerosity follows Weber's law. It has also been 
found that ANS performance correlates with mathematics 
skill.

Clique: A (loop-less, simple) graph G is a clique (or a 
complete graph) if every pair of vertices in G forms an edge.

Convex hull: In the case of geometric elements in the 
2D Euclidean plane, the boundary of the convex hull is the 
simple closed curve with minimum perimeter containing 
all elements. Visually, one may imagine stretching a rubber 
band so that it surrounds all the elements. Often what is 
computed is the total area of the convex hull.

Degree: (of a node v in a graph) is the number of edges 
containing v. This is usually denoted as degGv or simply 

degv when the graph is clear from the context. The sum of 
all values of Degree is called Total Degree.

Edge: see Graph
Eigenvector: In linear algebra, an eigenvector x of a lin-

ear transformation A is a non-zero vector (a finite sequence 
of numbers) that changes at most by a scalar factor λ when 
the given linear transformation is applied to it. In symbols 
A ∙ x = λ ∙ x.

Global clustering coefficient: the global clustering coef-
ficient in G is the ratio

where a triangle is a collection of three edges of the form: 
(u, v), (v, w), (u, w), and a connected triple is a triplet of ver-
tices u, v, w for which there exist two edges of the form 
(u, v), (v, w).

Graph: In the context of graph theory, a graph is a formal 
structure defined by a set of points (or nodes, vertices) and 
a collection of unordered pairs of points called edges (or 
lines, links). The graph is loop-less if it contains no edge of 
the form (v, v). The graph is simple if it contains no repeated 
edge.

Graph theory: the study of graphs, which are mathemati-
cal structures used to model pairwise relations between ele-
ments. Graph theory is part of discrete mathematics.

Königsberg bridges problem: Königsberg (now Kalin-
ingrad, Russia) is set on the Pregel River, and has two large 
island and seven bridges. The problem is to devise a walk 
that would cross all seven bridges once and only once. This 
problem has a place in the history of mathematics. In 1736 
Leonhard Euler provided a solution (showing that it is not 
possible) that laid the foundations of graph theory.

Local clustering coefficient: The local clustering coef-
ficient lcv of a vertex v in a loopless, simple graph G is the 
ratio

where N(V) and the set of vertices connected to a v 
through an edge, and e(X) is the number of edges connect-
ing two elements of the vertex set X. The average value of 
lcv defines the local clustering coefficient of G.

Loop: In graph theory, a loop is an edge that connects a 
vertex to itself, (v, v).

Node: see Graph
Numerosity: although in English this noun can also mean 

the state of being numerous, i.e., numerousness, in the sci-
entific study of numerosity it is used to refer to the quantity 
itself. Therefore, in this sense it is synonymous with what 
in mathematics is called the Cardinality of a set: a measure 
of the number of elements of the set.

3 × Number of triangles

Number of connected triplets

lcv =
2e(N(v))

deg v(deg v − 1)
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Principal Component Analysis (PCA): a multivariate 
data analysis technique that allows to summarize information 
by means of a small set of summary indices. Statistically, PCA 
finds hyper-planes in the n-dimensional space that approximate 
the data as well as possible in the least squares sense.

Random Geometric Graph: a particular type of graph. 
It is an undirected graph constructed by randomly placing 
vertices in a metric space, i.e., 2D space. The placement is 
typically random, but the probability distribution can vary. 
Vertices are connected by an edge if and only if their Euclid-
ian distance is less than a threshold, i.e., a radius r.

Random walk: in the mathematical sense, a random walk is 
a random process that generates a path between elements or loca-
tions in some mathematical space. The random walk is a sequence 
of random steps. We are interested in random walks within graphs.

Subgraph: (of a graph G) is a graph having all its vertices 
and edges in G.

Subitization: a rapid and accurate judgment of numer-
osity performed for small numbers. The term was coined 
by Kaufman et al. (1949) from the Latin adjective subitus 
(meaning "sudden"). The term captures a sense of imme-
diately knowing how many items are present in the visual 
scene. The subtilization range does not exceed 4 or 5 items.

Open practices statement  Data sets, coding and examples are available 
on OSF (https://​osf.​io/​yxdvm/).

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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