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Background. Knee osteoarthritis (KOA) is a common degenerative joint disease. In this study, we aimed to identify new
biomarkers of KOA to improve the accuracy of diagnosis and treatment. Methods. GSE98918 and GSE51588 were downloaded
from the Gene Expression Omnibus database as training sets, with a total of 74 samples. Gene differences were analyzed by
Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and Disease Ontology enrichment analyses for the
differentially expressed genes (DEGs), and GSEA enrichment analysis was carried out for the training gene set. Through least
absolute shrinkage and selection operator regression analysis, the support vector machine recursive feature elimination
algorithm, and gene expression screening, the range of DEGs was further reduced. Immune infiltration analysis was carried
out, and the prediction results of the combined biomarker logistic regression model were verified with GSE55457. Results. In
total, 84 DEGs were identified through differential gene expression analysis. The five biomarkers that were screened further
showed significant differences in cartilage, subchondral bone, and synovial tissue. The diagnostic accuracy of the model
synthesized using five biomarkers through logistic regression was better than that of a single biomarker and significantly better
than that of a single clinical trait. Conclusions. CX3CR1, SLC7A5, ARL4C, TLR7, and MTHFD2 might be used as novel
biomarkers to improve the accuracy of KOA disease diagnosis, monitor disease progression, and improve the efficacy of
clinical treatment.

1. Introduction

Knee osteoarthritis (KOA) is the most common form of
arthritis, it has a significant negative effect on patient qual-
ity of life, and it is an important cause of disability in the
adult population [1, 2]. As a common degenerative joint
disease, the pathogenic factors might be metabolic abnor-
malities of chondrocytes, subchondral bone, and extracel-
lular matrix caused by the comprehensive effects of
heredity, metabolism, biochemistry, and biomechanics
[3–5]. Pathological changes are manifested as articular
cartilage degeneration and weight-bearing joint cartilage

surface disappearance [6], subchondral bone degeneration,
osteosclerosis [7], osteophyte formation at the joint edge,
and synovial aseptic inflammation [8]. The continuous
damage of chronic inflammation and progressive struc-
tural changes in the joint tissue lead to the continuous
progression of the disease, which finally results in severe
pain and loss of joint function [9]. Therefore, it is very
important to diagnose and implement intervention mea-
sures in the early stages of KOA.

At present, there are many studies reporting the
bioinformatics analysis of a single tissue with respect to oste-
oarthritis (OA). Through immune infiltration analysis of
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synovial gene data, it was found that COL3A1 and MMP9
can be used as potential biomarkers of OA, as confirmed
by qRT-PCR and western blot analysis [10]. Wang et al.
identified 12 cores of differentially expressed genes (DEGs)
through the analysis of gene expression data of the sub-
chondral bone in KOA model mice [11]. An analysis of
gene expression data of the KOA cartilage showed that
the difference in BLNK between the OA and normal carti-
lage groups was most significant, and silencing BLNK was
found to inhibit activation of the NF-κB pathway, thereby
inhibiting chondrocyte apoptosis, inflammation, and extra-
cellular matrix degradation [12].

Whereas KOA was once thought to be a disease of
articular cartilage alone, it is now widely believed that all
joint structures are affected, including cartilage, subchondral
bone, and the synovium [13–16]. With a gradual deepening
of the understanding of KOA, an increasing number of stud-
ies have included multiple tissues in the analysis data. It was
found that different periosteal and synovial bone progenitor
cells cooperate to form osteophytes in OA [17].

There are several tissues related to osteoarthritis, so the
cost of molecular biology experiments is high. In addition,
sampling subchondral bone and cartilage is an invasive
operation. Therefore, it is necessary to use an accurate pre-
diction model to narrow the range of candidate genes before
a biological experiment. This model can improve the exper-
imental efficiency and reduce the cost of trial and error [18].
Some studies have shown that for complex diseases such as
OA, multitissue analysis of multiomics methods and longi-
tudinal clinical data are needed to comprehensively under-
stand the disease process and develop effective diagnostics,
prognostics, and biotherapies [19]. The synovium and chon-
drocytes were previously jointly analyzed by single-cell RNA
sequencing to explore the pathogenesis of OA in the two
tissues [20].

With the rapid development of genome and other
sequencing projects, the academic community already has
huge public databases, such as Gene Expression Omnibus
(GEO), The Cancer Genome Atlas (TCGA), and ArrayEx-
press. The focus of bioinformatics research is gradually shift-
ing from accumulating data to how to interpret and mine
these data. Machine learning methods such as neural net-
works, decision trees, and support vector machines (SVM)
are suitable for dealing with this field with large amounts
of data, noise, and a lack of unified theory [21]. Machine
learning can obtain hidden clues from a large amount of
data. Support vector machine recursive feature elimination
(SVM-RFE) algorithm is a powerful feature selection algo-
rithm in machine learning. It was proposed by Guyon et al.
in 2002 [22], which is used to find the best variable by delet-
ing the feature vector generated by SVM. When the number
of features is large, using SVM-RFE to avoid overfitting is a
good choice. Least absolute shrinkage and selection operator
(LASSO) regression analysis can shrink the regression coeffi-
cients of some variables to zero by imposing constraints on
the model parameters, so it retains the advantages of subset
shrinkage and minimizes the prediction error [23]. It has
been successfully applied in bioinformatics analysis and
clinical research related to KOA [24, 25].

In general, machine learning can process complex
data through data dimensionality reduction and multiscale
modeling to promote further improvements in clinical diag-
nosis, precision treatment, and health monitoring [26, 27],
and this method has been applied to imaging evaluation
and gait analysis with KOA [28–30]. The application of
machine learning method to the study of chronic joint
inflammation similar to KOA has also been successful [31].
Jamshidi et al. [32] proposed the use of a machine learning
method to mine KOA data and improve clinical decision-
making and precision medicine, but there is no literature
on its practical application. This study is aimed at analyzing
and verifying the published KOAmultitissue gene expression
data using machine learning and bioinformatics methods,
looking for potential diagnostic markers and therapeutic
targets.

2. Materials and Methods

2.1. Data Sources. The series of matrix files used in this study
were all from the public data published in the Gene Expres-
sion Omnibus (GEO) database (http://www.ncbi.nlm.nih
.gov/geo/), obtained by searching for “osteoarthritis “knee
osteoarthritis” “KOA”. GSE98918 and GSE51588 were used
as training sets, and GSE55457 was used as the validation
set. Basic information of the three gene matrices is listed in
Table 1. Clinical data from the validation set were extracted
for further analysis (Supplementary Table 1).

2.2. Differential Expression Analysis. The “Sva” package in R
was used to merge the two training sets of chips, and the
merged data were normalized to eliminate the batch effect.
Using the “limma” package in R to extract the differential
genes, gene screening difference conditions were set to ∣
logFC value ∣ >1 and FDR values < 0:05 [33].

2.3. Enrichment Analysis. Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway,
and Disease Ontology (DO) enrichment analyses were per-
formed on the screened DEGs using the “clusterProfiler”
package in R. The screening threshold was set at p < 0:05
to meet the statistical significance requirement [34]. Enrich-
ment analysis of GSEA was performed using
“c2.cp.kegg.v7.4.symbols.gmt” and “c5.go.v7.4.symbols.gmt”
in the Molecular Signatures Database (MSigDB; http://www
.gsea-msigdb.org/gsea/msigdb) as the reference gene sets.

2.4. Screening Diagnostic Biomarkers. The least absolute
shrinkage and selection operator (LASSO) regression analy-
sis of DEGs was carried out with the “glmnet” package in R
to further reduce the range of candidate diagnostic genes,
and the number of folds is set to the default value of 10.
According to the support vector machine (SVM) assessment,
the variables most related to the research results were
selected, and the best candidate diagnostic gene combination
was selected by ranking the correlation strength [35]. The
intersecting genes from the two algorithms were obtained
as candidate biomarkers and finally determined through
gene expression screening.
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2.5. Validation of Diagnostic Biomarkers. Identified bio-
markers were used to generate the receiver operating char-
acteristic (ROC) curve, judge the predictive effect of
biomarkers according to the area under the ROC curve
(AUC), and use the ROC curve to judge the diagnostic
accuracy in GSE55457. At the same time, we used the
identified biomarkers to fit the diagnostic model by logistic
regression and compared the predictive effect of the diag-
nostic model with the ROC curve of clinical traits in the
validation set, to judge the diagnostic effect of identified
biomarkers.

2.6. Immune Infiltration Analysis. Immune cell infiltration
refers to the migration of immune cells from the blood to
the tissue, and the proportion of immune cells is calculated
from the gene expression in tissue samples [36]. The
effectiveness of the Cell-type Identification by Estimating
Relative Subsets of RNA Transcripts (CIBERSORT) decon-
volution algorithm has been verified by flow cytometry
[37]. The CIBERSORT deconvolution algorithm was used
to perform immune infiltration analysis on the training set
to evaluate the differences in the proportions of immune
cells between KOA and normal samples. A correlation test
was performed on identified biomarkers and immune cells,
scatter and lollipop diagrams were generated, and the
threshold was set to a correlation coefficient p value of gene
expression and immune cells < 0.05.

3. Results

3.1. Differential Expression Analysis. Box plot of merged
gene expression is shown in Figure 1(a), and normalized
gene expressions were drawn in Figure 1(b). The box plot
showed that the expression data of different organizations
had been batch normalized. In total, 84 DEGs (47 signifi-
cantly downregulated and 37 significantly upregulated) were
identified between OA and normal samples (see Supplemen-
tary Table 2). All DEGs were used to generate a heat map
(Figure 1(c)) and a volcano map (Figure 1(d)).

3.2. Enrichment Analysis of DEGs. GO functional enrich-
ment analysis (Figure 2(a)) showed that DEGs were enriched
in neutrophil degranulation, neutrophil activation involved
in immune response, collagen-containing extracellular
matrix, primary lysosome, and vesicle lumen; KEGG
pathway analysis (Figure 2(b)) showed that the DEGs were
concentrated in the HIF-1 signaling pathway, PI3K-AKT
signaling pathway, and cell cycle, whereas DO enrichment
analysis (Figure 2(c)) showed that DEGs were significantly
expressed in cardiovascular diseases, periodontal disease,
and OA.

3.3. GSEA. GSEA is aimed at analyzing the ranked list of all
available genes without a threshold and can consider the dif-
ferences between KOA and normal gene sets from a more
comprehensive perspective [38]. GSEA was carried out on
KOA sample gene sets, and the gene functions of the top five
enrichment degrees were (Figure 3(a)) as follows: detection
of chemical stimulus, detection of stimulus involved in sen-
sory perception, external encapsulating structure organiza-
tion, ossification, and pattern specification process; the first
five enriched KEGG pathways were (Figure 3(b)) as follows:
cell adhesion molecule CAMs, ECM receptor interaction,
graft-versus-host disease, olfactory transduction, and type I
diabetes mellitus.

3.4. Identification of Diagnostic Biomarkers. By LASSO
regression analysis of DEGs, 21 candidate biomarkers were
obtained (Figure 4(a)), and 28 total candidate biomarkers
were screened using the support vector machine recursive
feature elimination (SVM-RFE) algorithm (Figure 4(b)). In
total, 14 intersecting genes of the two algorithms were con-
sidered and used to generate the Venn diagram (Figure 4(c)).

The expression of 14 intersecting genes was observed in
the training dataset. The box plot (Figures 5(a)–5(e))
showed that there were significant differences in the expres-
sion of five genes (p < 0:05). The ROC curves of CX3CR1,
SLC7A5, ARL4C, TLR7, and MTHFD2 in the training set
(Figure 5(f)) showed that the AUC values were greater than
0.8, which symbolizes a good predictive effect.

3.5. Verification of Identified Biomarkers. According to the
ROC curves of the five identified biomarkers in the
GSE55457 gene set (Figure 6(a)), all AUC values were
greater than 0.8 and had good predictive ability, with an
AUC of 0.83 for ARL4C, 0.90 for CX3CR1, 0.83 for
MTHFD2, 0.80 for SLC7A5, and 0.94 for TLR7. At the same
time, we found that the diagnostic effect of the combined
model was better than that with the clinical data
(Figure 6(b)), with an AUC of 0.96 in the combined bio-
marker model, an AUC of 0.80 with the sex-based model,
and an AUC of 0.87 for the age model.

3.6. Immune Infiltration Analysis. The immune infiltra-
tion histogram (Figure 7(a)) and correlation heat map
(Figure 7(b)) of the training set showed that CD4 memory
T cell resting was positively correlated with naïve B cells, with
a correlation coefficient of 0.84, whereas monocytes were
negatively correlated with naïve CD4 T cells, with a correla-
tion coefficient of −0.63.

The violin plot (Figure 7(c)) showed differences in the
proportions of eight types of immune cells between normal
samples and KOA samples; compared with those in normal
samples, the proportions of naïve B cells, plasma cells,
monocytes, resting dendritic cells, activate mast cells, and
neutrophils in OA samples were lower, and the proportions
of naive CD4 T cells and M1 macrophages in OA samples
were higher.

3.7. Correlation between Identified Biomarkers and Immune
Cells. The lollipop diagram showed that with p values less
than 0.05 as the screening threshold, there were two types

Table 1: Knee osteoarthritis (KOA) gene expression dataset in the
Gene Expression Omnibus database.

GEO ID Platform Source Normal OA

GSE98918 GPL20844 Meniscus 12 12

GSE51588 GPL13497 Subchondral 10 40

GSE55457 GPL96 Bone Synovium 10 10
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Figure 1: Continued.

4 Computational and Mathematical Methods in Medicine



TIMP4
ANGPTL4
ARL4C
ADAMTS4
NFIL3
SLC7A5
MTHFD2
FPR1
IL1R2
ADM
PTX3
AREG
NEIL3
HIST1H2AL
CDKN3
HJURP
TYMS
RETN
CYP4F3
PADI4
PRG2
CEACAM8
AHSP
PRSS57
RGL4
NFE2
PRTN3
AZU1
MPO
ELANE
ARG1
S100P
SLC25A37
PRRT4
OLFM4
COL10A1
MATN4
PENK
FLRT3
FOXS1
OPCML
TMEM119
BGLAP
SLC8A3
SLC36A2
PRSS35
SMPD3
COL22A1
RHBDL2
ANO5
QRFPR
AMTN
KCNK2
THBS4
STMN2
MYOM3
NOX5
PLA2G2A
CSN1S1
PRG4
CX3CR1
TLR7
FCER1A
NPY1R
CCL3
IER2
EGR1
CXCL14
EMX2OS
RASSF9

Type

Type

KOA

Normal

−4

−2

0

2

4

(c)

Figure 1: Continued.

5Computational and Mathematical Methods in Medicine



of immune cells related to CX3CR1 expression (Figure 8(a)),
gamma delta T cells and M1 macrophages. There were
six types of immune cells associated with SLC7A5
(Figure 8(b)), naïve B cells, M1 macrophages, gamma
delta T cells, naive CD4 T cells, regulatory T cells (Tregs),
and monocytes. There were four types of immune cells asso-
ciated with ARL4C (Figure 8(c)), regulatory T cells (Tregs),
gamma delta T cells, naïve B cells, and CD8 T cells. There
were two types of immune cells associated with TLR7
(Figure 8(d)), naïve B cells and activated NK cells. Immune
cells associated with MTHFD2 included CD8 T cells
(Figure 8(e)). The correlation tendency between identified
biomarkers and immune cells is shown by a scatter diagram
(Supplementary Figures 1–15).

4. Discussion

Based on the gene expression data published in the GEO
database, this study involved performing machine learning

and bioinformatics analysis of the gene expression data
related to KOA from the perspective of multiple tissue com-
binations. This was performed to find the common diagnos-
tic biomarkers and therapeutic targets in multiple tissues
affected by KOA. In total, five biomarkers showing signifi-
cant differences in the cartilage and subchondral bone tissue
were obtained. These five genes were combined into a diag-
nostic gene model using logistic regression. The diagnostic
accuracy of the model was better than that of any single gene
in the validation set, and the diagnostic accuracy was signif-
icantly better than that of a single clinical trait. These results
suggest that this method can potentially be used as a new
basis for more accurate disease diagnosis, monitoring disease
progression, and reflecting clinical efficacy.

MRI can often be used to detect bone marrow lesions
and synovial hypertrophy in the early stages of KOA, both
of which can precede cartilage damage [39]. The synovium,
subchondral bone, and cartilage are hotspots in the study
of KOA diseases. Most studies on KOA have focused on
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expression between knee osteoarthritis (KOA) tissue and normal samples.
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Figure 2: Continued.
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analyzing data from a single tissue sample. As a result, there
are very few research articles that report the use of data from
across several tissues. KOA has an effect on the cartilage,
subchondral bone, synovium, and even monocytes in the
blood. Therefore, there are some limitations to DEG analysis
from a single tissue.

Neutrophil responses to immunity and vesicles, lyso-
somes, and the collagen-containing extracellular matrix were
highly enriched in the GO analysis of common DEGs
between the cartilage and subchondral bone microarrays,
and these functions are related to the destruction of the car-
tilage and subchondral bone in KOA. It was found that in
contrast to the conventional cognitive neutrophil-mediated
proinflammatory process, neutrophil-derived microbubbles
can inhibit the TNF-α-stimulated secretion of broad-
spectrum proinflammatory cytokines [40]. Several studies
[41–43] have shown that neutrophil elastase is deeply
involved in cartilage damage in OA and functions by activat-
ing MMP13 and the caspase signaling pathway. Cell experi-
ments showed that subchondral bone mesenchymal stromal
cells can produce external vesicles supporting chondrocyte
viability and chondrogenic gene expression and that they
contain microRNAs related to chondrogenesis support

[44]. By observing the extracellular vesicles released by
immune cells in the plasma and synovial fluid, it is specu-
lated that extracellular vesicles can be used as a marker to
reflect KOA joint inflammation and disease severity [45].
These studies have shown that neutrophils and outer ves-
icles play a role in intercellular communication and partic-
ipate in immunity in the microenvironment of knee joints
[46], and many functions with the highest enrichment
degree in the GO enrichment analysis in this study are
related to this [47, 48].

KEGG pathway enrichment analysis showed that
DEGs were widely involved in the HIF-1 signaling path-
way, PI3K/AKT signaling pathway, and cell cycle. HIF-1α
can damage the cartilage tissue by affecting glycolytic
metabolism in chondrocytes [49]; one experiment found
that compared with that in healthy controls, the level of
HIF-1α in the human KOA group is enhanced [50]. West-
ern blot experiments showed that activating PI3K/AKT
signaling in OA model mice can regulate cartilage degra-
dation in vivo [51]. KOA is a degenerative joint disease,
and an increasing number of studies on aging cells and
apoptosis have shown that the cell cycle is closely related
to KOA [52–54].
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Figure 2: Analysis results of differentially expressed genes (DEGs) for Gene Ontology (GO) functional enrichment (a), Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment (b), and Disease Ontology (DO) enrichment (c) in knee osteoarthritis (KOA) and
normal samples.
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Figure 3: Gene Ontology (GO) functional (a) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (b) analyses of the top five
enrichment levels in the gene set enrichment analysis (GSEA).
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The screened DEGs were significantly expressed in car-
diovascular diseases, periodontal-related inflammation, and
OA. With increasing research on the association between
diseases, the relationship between cardiovascular diseases
and KOA has been disclosed [55]. Published meta-analysis
and cross-sectional studies have shown that cardiovascular
diseases can affect the progression of OA [56, 57]. Other
studies have shown that periodontitis is associated with the
presence and severity of KOA [58]. It has been concluded
that periodontitis is at least partly involved in the pathogen-
esis of OA, especially in patients with type 2 diabetes [59].

Among the five identified biomarkers, CX3CR1 has been
confirmed to regulate the activity of the NF-κB pathway, and
it can promote the production of MMP3 in OA synovial
fibroblasts [60, 61]. CX3CR1 can induce immune cells to
penetrate blood vessels and continuously enter inflamma-
tory sites [62], and it can also be associated with the Wnt/
β-catenin signaling pathway to regulate chondrocyte prolif-
eration and apoptosis in KOA [63]. Clinical trials have

shown that CX3CR1 can reflect the severity of symptoms
in patients with KOA [64]. Case control studies have shown
that the allele frequency of TLR-7 rs179010 is significantly
different between KOA cases and healthy controls [65].
Carrion et al. [66] confirmed that TLR-7 is highly expressed
in KOA fibroblast-like synovial cells. It was found that extra-
cellular miR-21, released from synovial tissue, mediates knee
pain in surgical OA model rats through TLR7 activation,
and a TLR7 antagonist could exert lasting analgesic effects
on KOA [67]. MTHFD2 is a mitochondrial single-carbon
folate metabolic enzyme. Most of the current studies on
MTHFD2 are related to tumors and cardiovascular diseases,
and there are no reports related to KOA. However,
MTHFD2-dependent glycine is very important for angio-
genesis [68], and the hypothesis of the involvement of angio-
genesis in KOA has been confirmed by experiments [16].
We speculate that the correlation between KOA and
MTHFD2 expression might be caused by angiogenesis and
metabolic mechanisms, which needs to be further confirmed
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Figure 7: Continued.
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by subsequent experiments. SLC7A5, as an amino acid
transporter, participates in cell invasion and regulates the
protein levels of MMP3 and MMP13 through mTOR signal-
ing in rheumatoid arthritis fibroblast-like synovial cells [69].
Alles et al. [70] linked SLC7A5 expression and downstream
signaling pathways to pain. SLC7A5 mediates IL-1 produc-
tion by monocytes and macrophages, thus participating in
chronic inflammatory diseases [71]. In vitro and in vivo
experiments showed that the knockdown of ARL4C inhibits
the osteogenesis of human adipose stem cells [72]. ARL7,
together with ARL4 and ARL6, forms a small subfamily,
and they are related to each other through a common C-ter-
minus, thus inducing nuclear localization. As a direct target
of the liver X receptor, ARL7 plays a synergistic role in the
coordinated regulation of macrophage lipid metabolism
and inflammatory gene programs [73].

Immune cell infiltration has been proven to play an
important role in the study of KOA. Histological analysis
and RNAseq data indicate that M1 macrophages are the
important source of joint inflammation [74]. Faust et al.
[75] found that CD4+ T cells contribute to the expression
of IL-17 and promote joint degeneration in this way.
Whitmire et al. [76] provided direct evidence of the require-
ment of B cells for the establishment of memory CD4 T cells.

A test of peripheral blood showed that the frequency of B
cells in KOA patients is lower than that in a healthy control
group [77]. Meta-analysis showed that the level of serum
monocyte chemoattractant protein-1 in patients with OA
was significantly higher than that in the control group; how-
ever, this difference was not significant in synovial fluid and
cartilage [78]. Monocyte-derived cells were confirmed to
promote cartilage repair in OA [79]. Wang et al. [80] found
that mast cell-derived tryptase induces inflammation, chon-
drocyte apoptosis, and cartilage decomposition. Chakra-
borty et al. [81] showed that mechanical stiffness facilitates
dendritic cell proinflammatory functions. The large amount
of evidence mentioned previously verifies the accuracy of
our current research results to a certain extent. Several spe-
cific types of immune cells play a vital role in KOA, which
can be used as a direction for further research.

Both SVM-RFE and lasso regression selected in this
paper are classic supervised learning algorithms, but they
are not the only methods for screening diagnostic markers.
With the communication between the field of computational
intelligence (CI) algorithms and biomedicine, more cutting-
edge swarm intelligence (SI) optimization algorithms are
used to improve the efficiency of diagnostic models in the
medical field [82]. For example, the combination of Harris

0.0

0.1

0.2

0.3

0.4

Fr
ac

tio
n

p = 0.011

p = 0.550
p = 0.015

p = 0.607

p = 0.004

p = 0.435
p = 0.591

p = 0.060

p = 0.052
p = 0.400

p = 1.000

p = 0.846

p = 0.003

p = 0.188

p = 0.004

p = 0.319

p = 0.030

p = 0.435

p = 0.669

p = 0.035

p = 0.339

p = 0.001

Normal
KOA

B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y

Pl
as

m
a c

el
ls

T 
ce

lls
 C

D
8

T 
ce

lls
 C

D
4 

na
iv

e

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

T 
ce

lls
 fo

lli
cu

la
r h

elp
er

T 
ce

lls
 re

gu
lat

or
y 

(T
re

gs
)

T 
ce

lls
 g

am
m

a d
elt

a

N
K 

ce
lls

 re
sti

ng

N
K 

ce
lls

 ac
tiv

at
ed

M
on

oc
yt

es

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c c
el

ls 
re

sti
ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed

M
as

t c
el

ls 
re

st
in

g

M
as

t c
el

ls 
ac

tiv
at

ed

Eo
sin

op
hi

ls

N
eu

tro
ph

ils

(c)

Figure 7: The immune infiltration histogram (a), correlation heat map (b), and violin plot (c) of immune cells in the training set.
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Figure 8: Continued.
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hawks optimization (HHO), cuckoo search (CS), and SVM
method for drug design and discovery has achieved good
results [83]. One study used an SVM model optimized by
slime mould algorithm (SMA) in combination with random
forest method to identify the severity of COVID-19 patients
[84], and another study used colony predation algorithm
(CPA) in combination with kernel extreme learning
machine (KELM) to analyze the biochemical indicators
and prognosis of COVID-19 patients [85], both showing
high prediction accuracy and stability. Applying monarch
butterfly optimization (MBO) to medical image recognition
can significantly reduce mean square error (MSE), and the
efficiency is better than the existing traditional technology
[86]. Elephant herding optimization (EHO) has achieved
90.6% and 88% accuracy in MRI image discrimination and
PIMA diabetic dataset classification, respectively [87]. The
Runge-Kutta optimizer (RUN) algorithm has a faster con-
vergence speed, higher convergence accuracy, and better
optimization ability than similar SI optimization algorithms
[88]. Other SI optimization methods with potential for bio-

medical applications include earthworm optimization algo-
rithm (EWA) [89], moth search (MS) algorithm [90], and
hunter games search (HGS) [91]. Horizontal comparisons
show that there are differences in the performance of the
same SI algorithm in different disease datasets. In actual
use, appropriate SI optimization algorithms should be
selected according to the characteristics and requirements
of the datasets to be processed [92]. Considering the demand
for processing a large amount of data in the medical field,
this kind of interdisciplinary application has great potential.
At the same time, it puts forward higher requirements for
biomedical researchers and algorithm engineers, which is
worthy of further research.

The biggest challenge our team encountered in this study
is how to reduce the bias and error of machine learning algo-
rithms on gene dataset analysis. Firstly, is the bias caused by
the difference in input samples? At present, gene expression
matrices of osteoarthritis in public databases such as GEO
comes from various tissues: cartilage, subchondral bone,
and synovium, even blood monocytes. Due to the influence
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Figure 8: Lollipop diagram of immune cells and five diagnostic genes: CX3CR1 (a), SLC7A5 (b), ARL4C (c), TLR7 (d), and MTHFD2 (e).
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of inflammatory substances and immune response, there are
different degrees of gene expression between normal and
KOA samples in these tissues. Therefore, the first problem
to be solved is to choose which tissue gene dataset to analyze.
Our team spent several months trying to combine and
analyze all gene datasets from a single tissue source but
finally failed. The reason is that these public gene expression
data come from different research teams, due to different
sequencing methods and sampling methods, direct combi-
nation and comparison will produce huge errors. Second,
there are few KOA-related gene sequencing datasets
uploaded to the public database, and the low amount of data
in a single tissue dataset will also reduce the accuracy of the
analysis results.

To meet these challenges, we turned to focus on periarti-
cular tissue (the cartilage, subchondral bone, and synovium)
for combined analysis. By analyzing the differential genes of
each group’s gene dataset, respectively, and then conducting
batch normalization, we reduced the intergroup error and
increased the sample size by merging the gene dataset from
different tissues, At the same time, the accuracy of analysis
is improved through verification, so that the common diag-
nostic biomarkers existing in different periarticular tissues
can be obtained.

This study also has some limitations. Firstly, this study
obtained the common diagnostic biomarkers of multiple tis-
sues through combined analysis, which will also reduce the
possibility of obtaining tissue-specific biomarkers that only
exist in certain tissue. Secondly, because the gene datasets
come from the public database, we cannot obtain more
clinical information for in-depth correlation analysis.
Finally, due to the lack of experimental conditions, we failed
to further verify the predicted diagnostic markers at the
molecular biological level. Follow-up animal experiments
and large sample prospective studies are needed to confirm
the results of this study.

5. Conclusions

In this study, bioinformatics methods and machine learning
algorithms were used to analyze multitissue gene expression
data. CX3CR1, SLC7A5, ARL4C, TLR7, and MTHFD2 were
identified as diagnostic markers for KOA, and they have
great potential to comprise a new diagnostic and therapeutic
target. Although most of the analysis results have been con-
firmed to a certain extent by published experimental studies,
the speculation on some unknown mechanisms in this arti-
cle still needs further experiments to confirm the influence
on KOA.
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