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Individuals with mild cognitive impairment (MCI) are at high risk of developing into

dementia (e. g., Alzheimer’s disease, AD). A reliable and effective approach for early

detection of MCI has become a critical challenge. Although compared with other costly or

risky lab tests, electroencephalogram (EEG) seems to be an ideal alternative measure for

early detection of MCI, searching for valid EEG features for classification between healthy

controls (HCs) and individuals with MCI remains to be largely unexplored. Here, we

design a novel feature extraction framework and propose that the spectral-power-based

task-induced intra-subject variability extracted by this framework can be an encouraging

candidate EEG feature for the early detection of MCI. In this framework, we extracted the

task-induced intra-subject spectral power variability of resting-state EEGs (as measured

by a between-run similarity) before and after participants performing cognitively

exhausted working memory tasks as the candidate feature. The results from 74

participants (23 individuals with AD, 24 individuals with MCI, 27 HC) showed that the

between-run similarity over the frontal and central scalp regions in the HC group is higher

than that in the AD or MCI group. Furthermore, using a feature selection scheme and a

support vector machine (SVM) classifier, the between-run similarity showed encouraging

leave-one-participant-out cross-validation (LOPO-CV) classification performance for the

classification between the MCI and HC (80.39%) groups and between the AD vs. HC

groups (78%), and its classification performance is superior to other widely-used features

such as spectral powers, coherence, and the complexity estimated by Katz’s method

extracted from single-run resting-state EEGs (a common approach in previous studies).

The results based on LOPO-CV, therefore, suggest that the spectral-power-based
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task-induced intra-subject EEG variability extracted by the proposed feature extraction

framework has the potential to serve as a neurophysiological feature for the early

detection of MCI in individuals.

Keywords: intra-subject variability, electroencephalography, mild cognitive impairment, Alzheimer’s disease,

between-run similarity, brain-computer interface, machine learning

INTRODUCTION

Alzheimer’s dementia has become the most prevalent type of
neurodegenerative dementia. There are nearly 10 million new
cases of dementia every year worldwide and 60–70% of these
new cases are diagnosed with AD (World Health Organization,
2020). The prevalence of AD generally increases with age: the
prevalence is 1% for people between 60 and 64 years, but
it increases to 38% for people over 85 years (Ferrara et al.,
2008). Although mild cognitive impairment (MCI), typically as a
transitional state between normal aging and very early dementia,
does not usually impact the daily life of individuals (Petersen,
2010), it may convert to AD or other types of dementia with
a high risk. For example, a study reported that 15% of MCI in
individuals older than 65 years old may develop into dementia
(Alzheimer association, 2020), whereas another study reported
that MCI of 32% of individuals developed into AD at the 5th-
year follow-up (Chen Y. et al., 2020; Alzheimer association,
2021). Early detection and intervention for individuals with
MCI will, therefore, be an important strategy in the fight to
reduce the impact of AD on our community. However, early
detection of MCI is challenging, as older adults with MCI are
often not aware of the subtle decline in their cognitive function,
which primarily prevents them from seeking medical advice or
even interventions.

Several biomarkers have been proposed to help physicians
verify the diagnosis of dementia due to AD; In contrast, the
diagnosis of MCI heavily relies rather on neuropsychological
assessments. For the diagnosis of AD, a common method is to
detect human brain amyloid-beta (Aβ) deposition and abnormal
aggregation of tau protein. The concentration ratio of Aβ42
to Aβ40 (Aβ42/40 ratio), the concentration of Aβ42 level and
positive amyloid, and tau PET scan are considered as important
biomarkers to detect AD (Hansson et al., 2019). However, these
biomarkers are not ideal solutions for the community health care
system, because they are expansive, time-consuming, invasive,
and radiational in nature. In addition, although recently, there
have been attempts to establish a biomarker-based guideline
for the diagnosis of MCI (Ritchie et al., 2014; Martinez et al.,
2017; Ross et al., 2021), there is still room for improvement in
terms of accessibility, reliability, and validity of these biomarkers.
Electroencephalography (EEG), on the other hand, is a promising
alternative due to its non-invasive nature and relatively much
lower costs. EEGs may, therefore, have great potential for
assisting the clinical characterization of MCI and AD (Poza et al.,
2014).

Resting-state EEGs, typically recorded while participants are
not doing anything purposefully, has become a popular approach
in clinical research with the patient population who has short

attention span or difficulties performing a goal-directed task.
Previously, a large body of literature based on single-session
resting-state EEG has found differences in EEG features between
AD andHC, such as spectral powers of different frequency bands,
complexity, and connectivity. For example, compared with the
HC group, individuals with AD showed lower signal complexity
(Abasolo et al., 2005, 2006, 2008; Liu et al., 2015), a higher
power of slow oscillations (delta, theta) and lower power of
fast oscillation (alpha, beta, gamma) over the temporal, parietal,
and occipital scalp regions (Huang et al., 2000; Rossini et al.,
2007; Roh et al., 2011; Ishii et al., 2017), and lower electrode-to-
electrode connectivity (Wang et al., 2014; Engels et al., 2015; Hata
et al., 2016) in resting-state EEGs. Furthermore, the entropy-
based complexity of EEG signals seems to gradually decrease with
disease development (Sun et al., 2020). However, differences in
resting-state EEGs between the MCI group and the HC group
are relatively less studied. Few studies reported a non-significant
trend for loss of complexity in individuals with MCI compared
with HC (Park et al., 2007; Dauwels et al., 2011; Labate et al.,
2013; Xu and Tao, 2013; Seker et al., 2021). Searching for a more
distinguishing EEG signature based on resting-state recordings
for the classification between MCI and HC appears to be a
critical challenge.

In addition to altered resting-states, memory dysfunction can
be another key clinical trait for inducing relevant EEG patterns to
discriminate between AD/MCI and HC. Memory dysfunction is
one of the critical diagnosis criteria for AD (American Psychiatric
Association, 2013), and among all types of memory dysfunction,
working memory impairment is often observed in both MCI
and AD. Working memory refers to the ability to access and
manipulate information that is stored in a short period of time
(Baddeley et al., 2015). Most complex cognitive abilities, such
as spatial orientation, problem solving, and reading, require
working memory functions (Kirova et al., 2015). Specifically,
individuals with MCI typically show performance declination
in verbal/visual working memory (Saunders and Summers,
2010), sentence span, operation span (Gagnon and Belleville,
2011), digit span, letter-number sequencing, and arithmetic
operation (Kessels et al., 2011). Since impaired working memory
is commonly observed in individuals withMCI, workingmemory
tasks can be a good candidate to induce task-relevant differences
in resting-state EEGs between the MCI group and the HC group.

This study, therefore, aimed to capitalize on the spectral-
power-based task-induced intra-subject variability of EEGs
recorded in two separate runs of resting-states, before and after
a challenging working memory task. Since working memory
tasks are presumably more cognitively exhausted for the MCI
or AD group than the HC group, we hypothesize that the
difference in the neurophysiological patterns of the before-task
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and after-task “resting-state” in the brain will be larger for the
MCI group than the HC group, and such difference carries more
discriminative information for classification in comparison with
the approach using single-run resting-state EEGs that has been
adopted in previous studies related to the MCI-HC classification.
To achieve this goal, we designed a novel feature extraction
framework in which we introduced the delayed matching-to-
sample (DSTM) task as a cognitively challenging behavior test,
applied a similarity-based approach (Chen G. et al., 2020) to
quantitatively evaluate the task-induced intra-subject variation
of resting-state EEG powers, and used it as a neural marker to
classify between the MCI and HC groups. To the best knowledge
of the authors, this is the first study that focuses on the analysis
of task-induced intra-subject variability between two separate
runs of resting-state EEGs for the detection of MCI. First, we
investigated the group difference in between-run similarity of
resting-state EEGs across different frequency bands and scalp
regions between the AD, MCI, and HC groups. Second, we used
machine-learning based feature selection methods to determine
the best combination of intra-subject variability features forMCI-
HC classification. The results showed that the proposed novel
intra-subject variability feature can be a promising one to further
develop an EEG-based computer-aided diagnosis method for the
early detection of MCI.

METHOD

Participants
This study included 23 individuals with Alzheimer’s disease (AD)
(nine females, mean age of 71.65 ± 5.36 y/o), 24 individuals
with mild cognitive impairment (MCI) (14 females, mean age
of 70.96 ± 8.2 y/o) in the patient group and 27 participants in
the healthy control (HC) group (17 females, mean age of 69.93
± 4.98 y/o). Data collection was conducted from July 2017 to
July 2020 at an outpatient memory clinic of a tertiary 2,700-
bed referral center (Table 1). The diagnosis of participants from
the patient group was based on the results of clinical interviews,
neuropsychological examinations, laboratory findings, and image
investigations (CT and/or MRI) and was confirmed at clinical
consensus meetings by board-certified psychiatrists. The core
clinical criteria recommended by National Institute on Aging
and the Alzheimer’s Association (NIA-AA) (Albert et al., 2011;
McKhann et al., 2011) were used for the diagnosis of AD and
MCI. Participants from the control group were enrolled via
advertisement and confirmed as not having any condition for
all-cause dementia listed in the NIA-AA criteria. Furthermore,
the participants from the control group were all tested with
neuropsychological battery, which resulted in the normal range
on standardized neuropsychological batteries after adjustment
for education (Tsai et al., 2012).

The exclusion criteria for all three groups were: (1) recent
major psychiatric comorbidity (clinically diagnosed in the 6
months prior to the current neuropsychological evaluation),
(2) motor and/or sensory deficits that constituted confounding
variables in the assessment of cognitive functions, and (3)
neurological illness or condition that may affect cognition.

The study protocol was reviewed and approved by the
institutional review board of Taipei Veterans General Hospital
(IRB No: 2017-06-009A). Before the experiment, written
informed consents were obtained from all the participants
or their legally authorized representatives according to the
Declaration of Helsinki.

Experimental Procedure
In this experiment, all the participants underwent two sessions
of resting-state condition (named resting run 1 and resting run
2) along with a working memory condition between two resting-
state conditions (Figure 1). During each resting-state condition
(90 s), the participants were instructed to gently keep their
eyes fixated on a central fixation cross without doing/thinking
anything purposefully. During the memory condition, the
participants performed three types of delayed DMTS tasks
(Sahakian et al., 1988; Fowler et al., 1995), with 10 trials for
each type.

A DMTS trial included three phases. In the encoding phase
(2 s), a set of sample stimuli was presented on the screen for the
participants to remember. In the maintenance phase (3 s), the
corresponding visual display was removed from the screen, and
the participants were required to keep the information in their
working memory. In the retrieval phase (3 s), a question display
was presented on the screen, and the participants were required
to judge if the contents of the question display match (both in
terms of shape and position) those in the sample display. The
participants were instructed to answer the question with a button
press after the retrieval phase without a time limit. The three types
of DMTS tasks varied in terms of contents to be remembered: 1.
Type 1: the participants were required to remember the locations
of three circles randomly placed on the screen, 2. Type 2: the
participants were required to remember the locations of seven
circles randomly placed on the screen. 3. Type 3: the participants
were required to remember the locations of three different shapes
(a circle, a square, and a star) randomly placed on the screen.

EEG Acquisition and Preprocessing
EEG signals were recorded with a 33-channel Quick-Cap
connected to a 40-channel NuAmps (NeuroScan Amplifier,
Compumedics Inc., Charlotte, NC, USA). The layout of the
electrodes followed the International 10–20 system (Figure 2),
where A1 and A2 were reference electrodes, the ground channel
was at the forehead, and the remaining 30 electrodes were used
for recording EEGs. Impedance was kept below 10 kOhm by
applying Electro-Gel (Compumedics Inc., Charlotte, NC, USA)
to the electrodes. Ocular activity (i.e., electrooculography, EOG)
was monitored with two electrodes placed above the left eye
and the right side of the right eye, respectively. The recorded
EEG and EOG signals were amplified and filtered (0.5–100Hz),
and then digitized with a sampling rate of 500Hz using the
NuAmp amplifier from NeuroScan Inc. Ocular artifacts coming
from blinking or eye movements were removed from the EEG
signals using the artifact removal software from NeuroScan
(Scan4.5). Afterward, the EEG signals were further filtered using
a Finite Impulse Response (FIR) filter (0.5–50Hz). Finally,
other possible artifacts caused from generic discontinuities
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TABLE 1 | Demographics and questionnaire data [Mean (SD)].

Variable HC MCI AD p Effect size

n = 27 n = 24 n = 23

Gender 17 F, 10M 14F, 10M 9F, 14M 0.212 0.145

Age 69.93 (4.98) 70.96 (8.20) 71.65 (5.36) 0.621 0.013

Education (years) 13.44 (3.18) 12.13 (3.76) 11.43 (4.35) 0.132 0.050

MMSE 28.26 (1.79) 26.58 (1.89) 21.35 (5.77) <0.001 0.412

MoCA 25.89 (3.29) 23.08 (4.11) 15.96 (6.43) <0.001 0.447

F, female; M, male; HC, healthy controls; MCI, mild cognitive impairment; AD, Alzheimer’s disease; MMSE, mini-mental state examination; MoCA, montreal cognitive assessment.

Gender: chi-square test of independence.

Age/Education year/MMSE/MoCA: one-way ANOVA.

FIGURE 1 | Temporal sequence of the experimental procedures. Each

participant would undergo two resting-state conditions and three delayed

matching-to-sample (DMTS) tasks. Type 1 and Type 2 tasks requires the

participants to remember the locations of stimuli, and Type 3 task requires the

participants to remember both the contents and locations of stimuli.

and electromyography were removed using the independent
component analysis (ICA) and ADJUST algorithm (Mognon
et al., 2011) provided in the EEGLAB (Infomax ICA).

Feature Extraction: Between-Run Similarity
Based on Spectral Powers
The purpose here was to quantify the intra-subject variability
of the EEG signals between the two resting runs using a

between-run similarity (BRS) of spectral powers. The calculation
of the BRS consists of five steps.

Step 1: segmentation of the resting-state EEG signal
into epochs

For each participant and for each run of resting state, the 90-s
EEG signal was segmented into 36 epochs of 6-second length, and
there is overlap of 60% between two consecutive epochs. Then,
we visually inspected all the segmented EEG epochs to make sure
that the data used for later analysis were noise- and artifact-free.
Among the 74 participants, nine (three with AD, four with MCI,
two HCs) had only 35 clean epochs for analyses in both runs or
in one of the two runs. The rejected epochs had large-amplitude
peaks in voltage, which could be due to some technical issue
during recordings. Data of the remaining 65 participants were all
clean (i.e., all 36 epochs per run were used for later analyses).

Step 2: calculation of band power for each epoch
For each participant, spectral band powers of delta (1–4Hz),

theta (4–8Hz), low alpha (8–10Hz), high alpha (10–13Hz), low
beta (13–20Hz), high beta (20–30Hz), and gamma (30–45Hz)
were extracted from each epoch using fast Fourier Transform
(FFT). Considering a specific band, let BPrij be the band power

of the ith epoch recorded from the jth electrode of a specific scalp
region, where r ∈ {1, 2} denotes the rth run of the resting state,
and, for example, j = 1, 2, . . . , 7 for the frontal region. Note that
n = 35 for some of the 74 participants (the nine aforementioned),
and n = 36 for the remaining 65 participants.

Step 3: computation of the average power vector for each
scalp region

Then, for each band and for each run, we extracted the
averaged powers of each 6-s epoch across the electrodes in a given
scalp region,

BPri =
1

ne

ne
∑

j=1

BPrij (1)

where ne is the number of electrodes in the scalp region of
interest, and i denotes the ith epoch. Thus, for a given scalp
region, the average scalp powers of the seven different bands
corresponding to the ith epoch were then concatenated to form a
power vector pri of dimension 7, where r denotes the run number
of resting-state EEG recordings (1 or 2 in this case).
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FIGURE 2 | Layout of the 30 recording electrodes. The positions of the electrodes follow the International 10-20 system. References were at A1 and A2 positions,

and the ground electrode was at the forehead (GND). The entire scalp region was divided into six different regions for analysis, namely, frontal (FP1, FP2, F3, F4, F7,

F8, Fz), central (FC3, FC4, FCz, C3, C4, Cz), parietal (CP3, CP4, CPz, P3, P4, Pz), occipital (O1, O2, Cz), left temporal (FT7, T3, TP7, T5), and right temporal (FT8, T4,

TP8, T6) regions.

Step 4: calculation of between-run similarity for each
participant and each scalp region

The aim here is to calculate the similarity between the EEG
power vectors of the two runs for each scalp region and for each
participant. Supposing that sij denotes the similarity between the
average scalp powers of the ith (i = 1, . . . , n) and jth (i =

1, . . . , m) epochs in the 1st and the 2nd run of the resting-state
EEGs, the similarity can bemeasured by the Euclidean distance as

sij =
1

∥

∥

∥
p2j − p1i

∥

∥

∥

(2)

A higher value of sij corresponds to a higher between-run
similarity between the vectors p1i and p2j . Then, calculating the

similarities between all possible pairs of p1i and p2j and then

averaging all the similarities will yield the averaged between-run
similarity for a specific scalp region,

S =
1

n×m

n
∑

i=1

m
∑

j=1

sij (3)

Step 5: standardization
The value of sij could be very small, because the distance

between vectors (
∥

∥

∥
p2j − p1i

∥

∥

∥
) is considerably large in most cases.

As a result, the value of the between-run similarity could
approach to zero. Therefore, for the ith participant (i =

1, 2, . . . , 74), we further standardize his/her BRS S (i) using the
HC group as the benchmark,

S (i) =
S (i) −mean (HC)

std (HC)
(4)

wheremean (HC) and std (HC)stand for the mean and standard
deviation of the between-run similarity values calculated from
the HCs, respectively. There are two primary reasons behind
performing standardization in this study. First, since the raw BRS
values are generally small, standardization will help zoom in on
the potential differences, if any, between groups. Second, in the
field of clinical science, a common approach to quantitatively
evaluate the level of dysfunction or impairments of individuals
with clinical diagnosis is to perform standardization based
on data from the healthy population (e.g., IQ, depression
levels, cognitive declination, etc.). Accordingly, we apply the
same concept to perform the study-driven standardization of
the task-induced BRS based on data from HCs in the same
study. In other words, data from healthy controls is treated
as a distribution reference for estimating how far the task-
induced BRS of individuals with MCI or AD deviates from the
healthy population.
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After performing the above five steps, six BRS values (i.e.,
six scalp regions) for each of the 74 participants were obtained.
Each BRS represents the task-induced intra-subject variation
of resting-state EEG power in a specific scalp region. A
high between-run similarity corresponds to a low intra-subject
variation between the two separate runs of resting states.

Classification
Two commonly used classifiers were adopted for classification, a
linear discriminant analysis (LDA) and a support vector machine
(SVM) classifier. LDA finds a linear decision boundary in the
original space of patterns to separate classes. Its decision function
is given by

DLDA (x) = (µP − µN)t 6−1x−

1

2
(µP − µN)t 6−1 (µP + µN) − ln

(

CPπN

CNπP

)

, (5)

where x ∈Rdis test data, t denotes the transpose of a matrix,
µP, and µN are is the mean vectors of the training data of the
positive and negative classes, respectively, 6 is the covariance
matrix of the training data, CP and CN are the penalty weight
for the positive and negative classes, respectively, and πP and
πN are the a priori probabilities of the positive and negative
classes, respectively. Here, the penalty weights for both classes
were set the same, i.e., CP = CN . Note that the feature dimension
of the data d (d ∈ [1, 6]) represents how many between-run
similarity features are used. For example, d = 6 if the between-
run similarities of all the six scalp regions are used as the features,
and d = 1 if only a between-run similarity of the scalp regions is
adopted as the feature for classification.

SVM maps the training data
{

(xi, yi)
}L

i=1
, yi ∈ {−1,+1}are

is class labels, into a higher-dimensional feature space from the
original space Rd via a non-linear mapping ϕ, and then finds
a hyperplane wtϕ(x) + b = 0,which maximizes the margin of
separation and minimizes the training errors, formulated as

Minimize
1

2
‖w‖2 + C

N
∑

i=1

ξi

subject to yi
(

wtϕ (xi) + b
)

− 1+ ξi ≥ 0 ∀i

ξ i ≥ 0 ∀i (6)

where w and b are the weight vector and the bias of the
SVM hyperplane, respectively, ξi is slack variables representing
the error measures of training data points, and Cis a penalty
weight. For an unseen data x, its class label is predicted by the
decision function

DSVM (x) =
∑

xi∈SV

αiyiK (xi,x) + b, (7)

where αi are is Lagrange multipliers [obtained by solving the
dual problem of (6)], SV denotes the set of support vectors (the
training data points whose Lagrange multipliers satisfying 0 <

αi ≤ C), and K is the kernel function. In this study, the radial
basis function (RBF) function K (xi,x) = exp(−γ ‖xi − x‖2)

was chosen as the kernel, where γ is the kernel parameter. The
optimal value of the bias b can be determined by the Kuhn–
Tucker condition. The test data x is classified as positive if
DSVM (x) > 0; negative otherwise.

Performance Evaluation and Parameter
Optimization
After performing feature extraction, we obtained 74 data (74
vectors) from the 74 participants, and each data consists
of d between-run similarity values from d different scalp
regions. Although the main goal of this study was to examine
the feasibility of using between-run similarity features to
achieve promising MCI-HC classification performance, we still
performed three different binary classification tasks (AD vs.
MCI, MCI vs. HC, and AD vs. HC) to see if such intra-subject
variability could contribute to the classification between AD and
MCI or between AD and HC.

Similar to previous EEG studies, the number of available
EEG data in this study is limited, mainly because the time for
recruiting participants was rather long. Performing the usual 10-
or 5-fold cross validation is not appropriate, because the number
of test data used for testing in each fold is considerably small: one
misclassified set of data will result in a large error rate in each
fold. Therefore, following the previous studies (Liao et al., 2017;
Wu et al., 2018), LOPO-CV was adopted as the performance
evaluation method to test the participant-independent accuracy,
which predicts how well the results of the proposed method will
generalize to unseen data. Take the classification of MCI (24
participants) vs. HC (27 participants) as an example. In each fold
of LOPO-CV, data (d-dimensional vectors) from 50 participants
were used to train the classifier, and then the d-dimensional data
from the remaining participant served as the test data. This step
was repeated until the data of every participant had been used
as test data once. We then recorded the classification accuracy,
computed as the number of correctly classified participants
divided by the total number of participants from two groups.
Hereafter, the classification accuracy or accuracy would be used
to refer to those obtained by the LOPO-CV procedure.

Both the proposed between-run similarity feature and the
LDA classifier involve no free parameter. SVM involves two
parameters (C and γ ). We optimized the parameters of SVM
using the LOPO-CV and grid search methods. The values of C
and γ were searched in the same set {2−29, 2−27, . . . , 227, 229},
leading to 961 parameter grids. The best parameter grid results
in the highest classification accuracy.

Feature Selection
The question now is how to determine the best feature subset to
gain the highest classification accuracy. In other words, the goal is
to determine the optimal value of the feature dimension d: which
combination of the between-run similarities of the scalp regions
is the best for classification. To this end, we adopted a commonly
used wrapper-based feature selection method—the sequential
forward selection (SFS) algorithm (Guyon and Elisseeff, 2003).

Let Ns be the number of scalp regions (Ns = 6). The optimal
feature selection procedure based on the SFS algorithm initially
finds the best single between-run similarity feature of a scalp
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region, which gives the highest LOPO-CV classification accuracy.
It is noted that here the LOPO-CV was performed on the data
of the participants from two groups, as mentioned in section
Performance Evaluation and Parameter Optimization (e.g., 51
data in MCI vs. HC). Subsequently, Ns − 1 pairs of features of
the scalp regions are formed by combining each of the remaining
features of the scalp regions with the best single feature, and
the best pair (i.e., the pair that gives the highest LOPO-CV
classification accuracy) is selected. Following the same logic,
Ns − 2 triples of features are formed using each of the remaining
features of the scalp regions and the best feature pair, and the
best triple is selected (i.e., the triple that gives the highest LOPO-
CV classification accuracy). This procedure is repeated until all
the Ns features are tested. Finally, the best feature set is the
one resulting in the highest LOPO-CV classification accuracy. In
other words, we can rank these six features from the best to the
worst after this SFS-based procedure. The top-n-ranked features
giving the highest LOPO-CV classification accuracy form the
optimal feature subset, where 1 ≤ n ≤ Ns.

SFS is a wrapper-based greedy approach for feature selection,
which has the advantage of achieving better accuracy than filter-
based feature selection approach, but with the disadvantage
of being more time-consuming (Guyon and Elisseeff, 2003).
Fortunately, the number of the BRS feature candidates is
only six, and thus the SFS algorithm used in this study is
not computationally expensive. Wrapper approaches include
the interaction between feature subset and classification model
(Saeys et al., 2007). In other words, wrapper-based methods
are classifier-specific in which the methods search for the best
subset of features that optimizes the generalization classification
accuracy of a chosen classifier (Kudo and Sklansky, 2000), and
the generalization performance used for evaluating the features
is often estimated by k-fold cross validation or LOPO-CV (Wu
et al., 2018). Therefore, for the classifiers LDA and SVM, the
optimal BRS feature subset selected by the SFS method could
be different, as presented in the results (Figure 6). Even using
the same SVM classifier, the optimal feature subset selected
by the SFS algorithm could also be different for different
SVM parameters (different values of C and γ ), because the
generalization performance of SVM varies with the parameter
grid (C, γ ). In summary, for the SVM classifier, the SFS-
based feature selection and the grid-search-based parameter
determination must be carried out together. The combination
of the optimal BRS feature subset and the SVM classifier
with the optimal hyperparameter gives the highest LOPO-CV
classification accuracy. The SFS-based feature selection and
the grid-search-based parameter determination procedure are
summarized in Figure 3.

As illustrated in this figure, LOPO-CV is performed to
estimate the generalization performance under the condition
that a parameter grid and a feature subset have been given in
advance. The calculated classification accuracy based on LOPO-
CV is subsequently used for evaluating the chosen parameter
grid and the feature subset. In other words, in each fold of the
LOPO-CV process in this study, the test data (a BRS feature
vector) from one participant is involved in the feature selection
and the parameter optimization procedure. Accordingly, the test

data in this LOPO-CV process are, in fact, validation data, not
independent test data.

Statistical Analysis
Since the data of between-run similarities did not pass the
Kolmogorov–Smirnov test, we performed the Wilcoxon rank
sum test to statistically test three pre-planned between-group
comparisons: AD vs. HC, MCI vs. HC, and AD vs. MCI. Since
each between-group comparison included six tests (data of 6
scalp regions), we used a Bonferroni corrected α level of 0.0083
(0.05/6) to correct for multiple comparison.

RESULTS

Behavior Performance Among Groups in
Different DMTS Tasks
Figure 4 reveals that the mean accuracy of DTMS tasks gradually
increases from AD, MCI, to HC, except in Type 2 of the DMTS
task where the MCI group showed higher mean accuracy than
the HC group. All the three groups showed worst performance
in Type 2 working memory task, as compared with the other two
types. The between-group comparison in each type of working
memory tasks revealed a significant difference in accuracy
between the AD vs. HC group in Type 1 (p = 0.003) and Type
3 (p= 0.012), and AD vs. MCI group in Type 2 (p= 0.038).

Comparing the Between-Run Similarities
Among the HC, MCI, and AD Groups
Figure 5A shows the EEG scalp topography of between-run
similarities (non-standardized) of resting-state EEGs in each
group. The HC group showed the highest between-run similarity
over all the scalp regions. To further compare the group
difference in between-run similarities, we perform statistical tests
on the standardized between-run similarity (see Method for
detailed calculation) on each scalp region across all groups. As
shown in Figure 5B, the HC group shows the highest median
values of between-run similarities (standardized) among the
three groups at all the scalp regions (Figure 5B). However, there
was significant group difference in the between-run similarity
only in the frontal (p = 0.006, Bonferroni corrected alpha =

0.0083) and central (p = 0.004, Bonferroni corrected alpha =

0.0083) scalp regions in the MCI vs. HC comparison.
Figure 6 further illustrates the significant group difference in

spectral power based BRS within each individual band (delta,
theta, low alpha, high alpha, low beta, high beta, gamma) across
the whole scalp region for the comparison of AD vs. HC, MCI
vs. HC, and AD vs. MCI. The results show that the task-induced
intra-subject variability of resting-state EEG is larger (lower BRS
values) in the MCI group than the HC group over the frontal,
central, and parietal scalp regions in low-beta, high-beta, and
gamma bands; larger in the AD group than theHC group over the
frontal, parietal, and occipital scalp regions in the delta and theta
bands. Furthermore, in line with the results shown in Figure 5A,
almost no statistically significant difference is found between the
AD and MCI groups. These findings indicated that both low
and high frequencies contribute to spectral power-based BRS
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FIGURE 3 | SFS-based between-run similarity (BRS) feature selection and the grid-search-based parameter determination procedure based on the use of an SVM

classifier.

FIGURE 4 | Performance comparison among groups in each type of working memory tasks. Note: error bars indicate standard errors of the means of the correct

response rate and * refers to p < 0.05.

difference between AD vs. HC or between MCI vs. HC but with
different topographic distributions.

Comparing the Classification Accuracies
Between the Three Binary Classifications
Classification results of the three binary classification tasks are
shown in Figure 6, where for each classification task the SFS

method was used to determine the best between-run similarity
feature subset. The highest classification accuracy for the three
classifications of AD vs. HC, MCI vs. HC, and AD vs. MCI,
was 74.47, 80.39, and 78%, respectively, and these results were
all achieved by SVM. The results indicate that the between-run
similarity can be a good candidate to classify between different
groups, especially between MCI vs. HC. Moreover, when the
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FIGURE 5 | Comparisons of between-run similarities across the AD, MCI, and HC groups. (A) The topographic distribution of the non-standardized between-run

similarities of resting-state EEGs for each group. (B) Boxplots of the standardized between-run similarities for each group in different scalp regions. *p < 0.05; **p <

0.05/6.

SVM classifier was used, the highest accuracy 80.39% of the
MCI-HC classification was achieved by only one feature (the
between-run similarity of the parietal scalp region that includes
six electrodes). Similarly, the highest accuracy of 74.47% of the
AD-MCI classification was achieved when only one between-
run similarity feature extracted from the four electrodes of the
left temporal region was used. Considering the feasibility in the
context of community healthcare, both classification accuracy
and usability are critical. A small number of electrodes can largely
shorten the time needed for preparation. Therefore, the results
demonstrate the high usability of the proposed between-run
similarity feature in both MCI-HC and AD-MCI classifications.

Comparing Classification Performances
Between Other Features Extracted From
Single-Run Resting-State EEGs and
Between-Run Similarity Features
We further compared the classification performance of the
proposed between-run similarity feature with other widely used

features extracted from single-run (1st run) resting-state EEGs in
different scalp regions in the three binary classification problems,
namely, spectral power (SP), complexity, and connectivity
features. Here, a simple LDA classifier was employed.

Fractal dimension (FD) has been widely used for measuring
the complexity of an EEG signal. The FD of a signal can be
estimated by different methods, such as those of Katz’s and
Higuchi’s methods and the correlation dimension. Katz’s FD
(KFD) (Katz, 1988) has been a widely accepted approach, because
it involves no free parameter and is, therefore, computationally
cheap. Also, it is less sensitive to noise in comparison with the
Higuchi’s FD (Esteller et al., 2001), and has recently shown its
high sensitivity to the change of in a mental state in various
BCI applications, for example, the EEG-based detection of
concentration level (Yeh et al., 2018). Coherence, a measure
for the synchrony between two electrodes’ EEG signals of two
electrodes at a specific frequency band or point, is frequently-
applied as an EEG connectivity feature (Liao et al., 2017). The
feature extraction procedures for the three types of features to be
compared are as follows.

Frontiers in Computational Neuroscience | www.frontiersin.org 9 August 2021 | Volume 15 | Article 700467

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Trinh et al. Identifying MCI With EEG

FIGURE 6 | Significant group difference in spectral power-based BRS values within individual bands (delta, theta, low alpha, high alpha, low beta, high beta, gamma)

for the comparison of [AD minus HC], [MCI minus HC] and [AD minus MCI]. Here we showed the topography of p-values; red indicates a negative difference, and blue

indicates a positive difference.

• Spectral power (SP). Take theta SP of the frontal region as an
example. For each electrode, we first calculated the theta band
power values from the n EEG epochs of the 1st run resting-state
EEGs separately, and then averaged the n values. The seven
average theta power features from the seven frontal electrodes
were sent to the classifier for classification (i.e., d = 7).

• Katz’s FD (KFD). As an example, the frontal-region KFD was
calculated with the following steps: 1) for each electrode, we
calculated the KFD values from the n EEG epochs of the 1st

run resting-state EEGs separately; 2) then we averaged the
nKFD values across epochs; 3) finally the seven averaged KFD
features from the seven frontal electrodes were sent to the
LDA classifier.

• Coherence (Coh). Take delta-band coherence in the frontal
region as an example. For each pair of electrodes, we calculated
the delta-band coherence values from the n EEG epochs of the
1st run resting-state EEGs separately, and then averaged the
n values to obtain an average coherence feature. Since there
were seven electrodes in the frontal region, we obtained totally
7×(7−1)

2 = 21 coherence features of delta band, which form a
21-dimensional feature vector fed into the LDA classifier.

The results based on spectral power, KFD, and coherence features
are listed in Table 2.

The spectral powers did not show satisfactory performance for
any of the three classification problems. The highest accuracies
for the AD-HC, MCI-HC, and AD-MCI classifications were
64, 64.71, and 61.7%, respectively, which were all slightly
higher than the chance level (50%). Similar accuracies
were also found for coherence. The best accuracies for the
three binary classifications (AD-HC, MCI-HC, and AD-
MCI), for example, were 64 (central), 64.71 (left temporal),
and 62.34% (frontal). Compared with spectral power and
coherence features, KFD performs relatively worse. All

the accuracies from KFD were close to the chance level
(< 60%).

By further comparing the LDA-based results of the between-
run similarity features shown in Figure 7, where the best
accuracies are 68 (AD vs. HC: two features), 72.55 (MCI vs. HC:
two features), and 51.06% (AD vs. MCI), we can see that the
between-run similarity feature outperforms the three types of
widely used features extracted from single-run resting-state EEGs
in both the AD-HC and MCI-HC classifications.

DISCUSSION

In the brain-computer interface (BCI) community, intra-subject
variability has been a challenge to be overcome. However,
in this study, we have shown that in terms of classifying
between individuals with MCI and healthy one, the intra-subject
variability could be an advantage instead. We therefore proposed
the between-run similarity feature to represent the task-induced
intra-subject variability of the EEGs recorded in two separate
runs of resting-states, before and after a challenging working
memory task (i.e., the DMTS). The primary goal of this study
was not to propose a novel EEG feature that can perform
better than any other existing features but to propose a novel
feature extraction framework by which the extracted feature
(i.e., the tasked-induced intra-subject variability) can provide
more discriminative information for identifying individuals
with MCI, and perform better than the usual architecture of
feature extraction from single-run resting-state EEGs. The results
have demonstrated that the between-run similarity feature is
indeed able to achieve high classification performance, especially
in the MCI vs. HC classification (80.39%). It is believed
that the accuracy can be further improved by combing the
proposed between-run similarity feature and other features

Frontiers in Computational Neuroscience | www.frontiersin.org 10 August 2021 | Volume 15 | Article 700467

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Trinh et al. Identifying MCI With EEG

TABLE 2 | Comparison of classification accuracies between different features and scalp regions using LDA classifier (in %).

Features Frontal Central Parietal Occipital Left temporal Right temporal

AD vs. HC δ (SP/Coh) 58/58 52/64 46/54 38/36 60/60 44/58

θ (SP/Coh) 64/62 56/54 56/38 60/62 54/62 50/62

Lα(SP/Coh) 54/54 56/64 52/62 54/50 60/64 48/46

Hα(SP/Coh) 58/60 54/60 54/54 48/48 58/58 50/64

Lβ(SP/Coh) 58/60 54/52 44/52 54/40 58/48 50/48

Hβ(SP/Coh) 62/58 60/52 50/52 48/42 60/52 44/56

γ (SP/Coh) 64/52 44/34 42/42 42/42 62/38 46/54

KFD 56 46 50 44 56 54

MCI vs. HC δ (SP/Coh) 50.98/43.14 54.90/52.94 54.90/45.10 35.29/35.29 45.10/45.10 47.06/58.82

θ (SP/Coh) 49.02/58.82 45.10/52.94 62.75/56.86 37.25/31.37 54.90/60.78 47.06/29.41

Lα(SP/Coh) 47.06/41.18 43.14/45.10 54.90/43.14 45.10/43.14 52.94/50.98 54.90/37.25

Hα(SP/Coh) 56.86/47.06 50.98/43.14 47.06/56.86 39.22/49.02 43.14/50.98 50.98/47.06

Lβ(SP/Coh) 56.86/49.02 58.82/60.78 47.06/62.75 47.06/62.75 58.82/43.14 43.14/54.90

Hβ(SP/Coh) 64.71/47.06 60.78/54.90 52.94/50.98 39.22/39.22 52.94/64.71 49.02/39.22

γ (SP/Coh) 64.71/49.02 52.94/31.37 47.06/45.10 45.10/52.94 62.75/52.94 52.94/50.98

KFD 58.82 56.86 54.90 50.98 56.86 43.14

AD vs. MCI δ (SP/Coh) 36.17/46.81 44.68/55.32 40.43/46.81 36.17/31.91 40.43/57.45 57.45/36.17

θ (SP/Coh) 55.32/46.81 59.57/59.57 61.70/53.19 44.68/51.06 57.45/53.19 42.55/53.19

Lα(SP/Coh) 61.70/62.34 53.19/44.68 48.94/44.68 36.17/62.34 34.04/61.70 29.79/46.81

Hα(SP/Coh) 61.70/46.81 61.70/34.04 53.19/31.91 31.91/61.70 38.30/42.55 34.04/59.57

Lβ(SP/Coh) 46.81/51.06 57.45/42.55 48.94/38.30 38.30/62.34 34.04/48.94 29.79/59.57

Hβ(SP/Coh) 40.43/55.32 55.32/48.94 48.94/38.30 40.43/51.06 31.91/59.57 36.17/61.70

γ (SP/Coh) 38.30/40.43 40.43/31.91 44.68/34.04 42.55/59.57 42.55/48.94 44.68/62.34

KFD 44.68 46.81 57.45 44.68 48.94 40.43

Spectral power and coherence features are based on different frequency bands, namely, delta (δ), theta (θ ), low alpha (Lα), high alpha (Hα), low beta (Lβ), high beta (Hβ), and gamma.

LOPO-CV classification accuracies higher than or equal to 60% were in boldface.

FIGURE 7 | Comparison of accuracies among three binary classifications. For each classification, the sequential forward selection (SFS) algorithm was used the find

the optimal feature subset. Take AD-HC classification as an example. The best feature subset contains four features (the between-run similarities of right temporal,

frontal, parietal, and central scalp regions) when a support vector machine (SVM) was used as the classifier. Accuracy decreases to 42% if all the six between-run

similarity features were used, i.e., without feature selection.

that showed encouraging performance [e.g., multiscale entropy
(MSE) Maturana-Candelas et al., 2019; Sun et al., 2020].

Previously, variants of the DMTS tasks have been tested in
few recent EEG-based MCI studies. These few studies focused
statistical analysis on the task-related EEG (EEGs recorded
during performing the task) event-related potentials (e.g., Li
et al., 2017). Task-related EEGs may contain discriminative

information for classification. However, task-related EEGs
sometimes suffer from signal contamination issue from great
EOG/EMG artifacts because of excessive eye and body (especially
the neck and facial actions) movements, which are not easy
to remove completely. In contrast, resting-state EEGs are less
likely to be contaminated by artifacts, and thus relatively
easy to implement in clinical practice. The proposed feature
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extraction framework records resting-state EEGs before and
after the DMTS-based working memory task and extract task-
induced intra-subject variability features. This “hybrid” approach
is unique, because it not only preserves the advantage of the
resting-state EEGs (i.e., cleaner signals), it also capitalizes on the
clinical traits of working memory dysfunction of the MCI group,
which is presumably more informative.

Few recent studies have also used spectral features to
characterizeMCI, such as band power (absolute power) (Rabbani
et al., 2016; Ruiz-Gómez et al., 2018a; Kashefpoor et al., 2019)
and relative power (Musaeus et al., 2018; Farina et al., 2020).
The reported accuracies in these studies ranged between 60
and 80%. It is a bit unfair to compare the accuracy of the
between-run similarity feature with the accuracies reported in
those bodies of literature, because there were differences in
terms of experimental settings as well as the inclusion and
exclusion criteria of participants. Nevertheless, based on the same
participants and settings, the results have indicated that, for both
the MCI-HC and AD-HC classifications, the spectral power-
based between-run similarity is superior to the spectral power
feature extracted from a single run resting-state EEGs.

Working memory performance is an important indicator for
evaluating memory ability. DMTS task has been largely used to
evaluate working memory ability in animals, such as pigeons
(Case et al., 2015; Zentall and Smith, 2016), monkey (Pontecorvo
and Evans, 1985), and hens (Foster et al., 1995). In human
participants, DMTS was also used to study working memory
performance in alcohol-dependent (Bowden et al., 1992) and
nicotine-dependent individuals (Janes et al., 2013). In addition,
the voltage peak-based qEEG ratio of posterior parietal to the
dorsolateral prefrontal cortex (DLPFC) extracted from task-
induced EEG signals based on DMTS showed high performance
for classification between normal aging individuals and patients
with mild AD (94% specificity and 88% sensitivity) (Sneddon
et al., 2005). As expected, this study demonstrated that working
memory performance gradually decreases from the HC to MCI
to AD group, except in the Type 2 task. All the three groups
performed poorly in the Type 2 task, likely because of the larger
memory loads of the Type 2 task (participants need to remember
the locations of seven circles). A DMTS task with heavy memory
loads can lead to decreases in accuracy (Adamson et al., 2000).

As Figure 5 reveals, the lower between-run similarities in the
AD andMCI groups than the HC group at the frontal and central
scalp regions suggest a more noticeable difference between
resting-state EEGs recorded before and after a challenging
working memory task in the AD and MCI groups. The higher
task-induced intra-subject variability suggests that performing
cognitively exhausting working memory tasks causes greater
disturbance to the degenerated brains in individuals with MCI or
AD (Kirova et al., 2015), which then leads to greater difficulties to
restore the same resting state as measured before performing the
task. A useful analogy is comparing the difference of heart rate
variability (HRV) or rhythm of breath during resting state before
and after a 5K jogging between individuals with cardiovascular
dysfunction and normal people. Although the spatial resolution
of EEG makes it difficult to measure the exact signal source,
the current frontally oriented results may very likely reflect the

common findings on the critical role of prefrontal cortices in
working memory and executive function (Guntekin et al., 2008;
Papadaniil et al., 2016; Jiang et al., 2021).

The general patterns of lower between-run similarities in the
AD andMCI groups than the HC group (Figures 5A, 6) seems to
also echo the observation of lower connectivity across electrodes
in the AD and MCI groups than the HC group based on single-
run resting-state EEGs (Michels et al., 2017; Ruiz-Gómez et al.,
2018a,b). For example, results from cross-sample entropy-based
connectivity (Ruiz-Gómez et al., 2018b) revealed that both the
AD and MCI groups showed an overall lower electrode-to-
electrode connectivity than the HC group in the frequency band
of 14–19Hz, which is very close to the low beta band in this study.
Both the loss of electrode-to-electrode connectivity in previous
studies and the decrease in task-induced intra-subject variation
(i.e., a decreased capability to maintain stable resting-state EEG
patterns after cognitively exhausting tasks) in this study could
be associated with the reduction in cortical-cortical connections
or gray matters observed in the brains of individuals with AD
or MCI (Jeong, 2004; Maestu et al., 2021) compared to the
HC group. Future studies combining structural and functional
brain scans (e.g., voxel-based morphometry, white matter fiber
tracking, or functional connectivity) and EEG recordings will be
required to verify this link.

Somewhat counter-intuitively, the binary classification
accuracy is higher for the MCI vs. HC classification than for
the AD vs. HC classification. This result actually echoes the
statistical results showing that the between-run similarity values
over the frontal and central scalp regions were significant
between MCI and HC but not between AD vs. HC. A possible
explanation may attribute to the observation that some patients
with AD were not able to keep up with the DMTS tasks
because of high difficulties. Thus, the after-task resting EEGs
could be quite similar to the before-task resting EEGs in
these patients with AD, because they simply did not spend
too much effort on the tasks, as compared with the MCI and
HC group. This speculation could be partially supported by
the significantly lower DMTS performance for the AD group
as compares with the HC (Types 1 and 3) and MCI (Type
2) groups.

If we assumed that MCI was simply a mild AD, then the
difference between them could follow a somewhat linear gradient
from mild to moderate to severe in terms of the severity degrees
of dementia. If this was true, it would be reasonable to predict
that the classification problem of AD vs. MCI vs. HC may
be more easily solved: there could exist a single EEG feature
that covaries with severity degree, which can then be used for
assessing cognitive dysfunction degree, with a higher degree
corresponding to a higher probability/risk to be AD. Another
possibility would be that there exists a feature set such that in
the feature space, the class separability between AD and HC will
be larger than that between MCI and HC. However, the results
from previous studies were controversial and do not support the
assumption above. Although some previous results have shown
that AD-MCI classification accuracy is higher than the MCI-HC
classification accuracy (Ieracitano et al., 2019; Meghdadi et al.,
2021), some other studies have reported the opposite (Sharma
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et al., 2019) or similar (Fiscon et al., 2018; Ieracitano et al.,
2020) result patterns. The reported result in this study shows
that MCI-HC (80.39%) is slightly higher than AD-HC (78%) in
classification. However, such an accuracy drop of 2.3% reflects
only onemoremisclassified participant in the LOPO-CV process,
because in the AD-HC classification, misclassified data in a
testing fold of the LOPO-CV resulted in an increase in error
rate (1/50 = 2%). Accordingly, in this study, the classification
results on AD vs. HC and MCI vs. HC may be also viewed
as similar.

From the view of psychopathology, there is no clear evidence
either to assume that MCI and AD can be viewed as a
gradient change or severity along the same clinical trait.
First, according to the diagnostic criteria based on NINCDS-
ADRDA and DSM-5, MCI is defined as a distinct syndrome
of abnormal cognitive change deviating from the normal
aging process, but is not grounded to dementia. In other
words, MCI is not considered as early dementia (Bruscoli
and Lovestone, 2004). Second, MCI in 32% of individuals
developed into AD at the 5th-year follow-up, as aforementioned.
In other words, MCI in about 70% of individuals would
not process to become AD in 5 years. In contrast, many
healthy elderly people develop AD directly without going
through the MCI stage in clinical practice, meaning that
the MCI stage is not necessarily the only transient state
between healthy conditions and AD. Although MCI has a
relative high risk of developing into AD, it is not the only
risk factor. Other risk factors for AD include hypertension,
type 2 diabetes mellitus, dyslipidemia, cardiovascular defects,
and alteration of the apolipoprotein E4 (Livingston et al.,
2020). All this evidence may help explain why AD-HC
classification accuracy is not necessarily higher than the MCI-
HC classification.

Being the first one to apply intra-subject variability in EEGs
as features for the classification between AD/MCI vs, HC, this
study suffers several limitations that can be further addressed
in the near future. First, there are many different similarity-
based measures. Although the Euclidean distance is a straight
forward approach for measuring signal similarity, its application
in high-dimensional data is more limited (Grootendorst, 2021).
It may be possible to improve classification performance further
using other types of similarity measures. For example, in a
recent study, Hellinger distance and Bhattacharyya distance
showed their effectiveness with highly noisy EEG signals (Chen
G. et al., 2020). Although comparisons between different
approaches of similarity measures are beyond the scope of
this study, they certainly merit attention in evaluating the
effectiveness of using different between-run similarity measures
as neurophysiological features for classifying neurodegenerative
diseases. Second, to be able to build a reliable classification
model, we would certainly need a much larger sample size,
especially in the context of clinical practices. Therefore, future
studies with a much larger sample size would be necessary to
further test the validity and reliability of task-induced intra-
subject variability for the classification between AD, MCI, and
HC groups.

Last but not least, the core concept behind this novel feature
extraction framework is highly flexible to be integrated with
other types of EEG features, complexity feature for example.
In this study, since we hoped to focus the investigation on
whether the new framework may lead to an improvement in
the MCI-HC classification, we, therefore, decided to implement
it with the more typical spectral power features and test the
effectiveness of the spectral power-based BRS. On another note,
other types of EEG feature can also be applied to quantify
the signal similarity between the two separate runs of resting-
state EEGs, as long as we replace the spectral powers with
other EEG features in steps 2–4 in the calculation of the
BRS. However, such a comparison is beyond the scope of
this study. Nevertheless, based on the results of this study,
it is expected that the task-induced intra-subject variability
based on other types of features could also perform better
than single-run resting-state EEGs and achieve even higher
classification performance. In the future, further investigation
on intra-subject variability based on other features may provide
additional insights into how the EEG dynamics of individuals
with MCI would change before and after performing working
memory tasks (e.g., loss of complexity or irregularity in EEGs).

CONCLUSION

This study investigated the value of using intra-subject
EEG variability between two separate runs of resting states,
before and after a sequence of challenging working memory
tasks, as a feature for the classification between individuals
with MCI vs. healthy controls. We derived a between-run
EEG power similarity as a measure of the intra-subject
variability, and applied the machine learning methods (SFS-
based feature selection and SVM classification) to determine
the most sensitive scalp regions for classification. The main
findings are 2-fold. First, the between-run similarity provided
encouragingly high LOPO-CV classification accuracy (∼80%) for
the MCI-HC and AD-HC classifications, and such performance
was superior to the spectral power features extracted from
single-run resting-state EEGs. Second, the feature selection
results suggested that the 80% MCI-HC classification accuracy
could be achieved using an SVM classifier and the six
electrodes over the parietal scalp region. Moreover, the
results were obtained by LOPO-CV. Because of the small
EEG dataset, the LOPO-CV process was performed together
with the feature selection and the parameter determination
procedure. Follow-up studies will be needed to test the
proposed methods on an independent dataset to further
examine its generalization performance. Indeed, the intra-
subject variability has been a challenging issue in terms
of stability of BCI application. In contrast and counter-
intuitively, the results reveal that the intra-subject variability
between two resting-state EEG data collected before and
after a challenging memory task can actually be a promising
approach for MCI-HC classification. This study, therefore,
shed new light on how we may transform the disadvantage

Frontiers in Computational Neuroscience | www.frontiersin.org 13 August 2021 | Volume 15 | Article 700467

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Trinh et al. Identifying MCI With EEG

of intra-subject variability into an advantage in the field of
BCI application.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because the current patient dataset cannot be shared in any form
due to regulation of IRB and Personal Information protection
Act. Requests to access the datasets should be directed to Yi-Hung
Liu, lyh@mail.ntust.edu.tw.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Institutional review board of Taipei
Veterans General Hospital (IRB No: 2017-06-009A). The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

T-TT participated in the algorithm design, EEG data recording,
analysis, and drafting. C-FT participated in the study conception,
participant recruitment, EEG data collection, and discussion.
Y-TH helped process the EEG data and participated in the result
analysis. C-YL participated in the analysis and discussion in
critical points. C-TW conceptualized the study design, designed
the memory task experiment, coordinated data collection,
involved in data analyses, and participated in manuscript writing
and revision. Y-HL was responsible for project coordination,
conceptualized the study design, secured the researching funding,
designed analyses protocols, and participated in paper writing
and revision. All authors contributed to the article and approved
the submitted version.

FUNDING

This work was supported by grant from Taipei Veterans General
Hospital (V110C-199).

REFERENCES

Abasolo, D., Escudero, J., Hornero, R., Gomez, C., and Espino, P. (2008).

Approximate entropy and auto mutual information analysis of the

electroencephalogram in Alzheimer’s disease patients. Med. Biol. Eng.

Comput. 46, 1019–1028. doi: 10.1007/s11517-008-0392-1

Abasolo, D., Hornero, R., Espino, P., Alvarez, D., and Poza, J. (2006). Entropy

analysis of the EEG background activity in Alzheimer’s disease patients. Physiol.

Meas. 27, 241–253. doi: 10.1088/0967-3334/27/3/003

Abasolo, D., Hornero, R., Espino, P., Poza, J., Sanchez, C. I., and de la Rosa, R.

(2005). Analysis of regularity in the EEG background activity of Alzheimer’s

disease patients with approximate entropy. Clin. Neurophysiol. 116, 1826–1834.

doi: 10.1016/j.clinph.2005.04.001

Adamson, C., Foster, T. M., and McEwan, J. S. A. (2000). Delayed matching to

sample: the effects of sample-set size on human performance. Behav. Processes

49, 149–161. doi: 10.1016/s0376-6357(00)00087-5

Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox,

N. C., et al. (2011). The diagnosis of mild cognitive impairment due to

Alzheimer’s disease: recommendations from the National Institute on Aging-

Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s

disease. Alzheimers Dement. 7, 270–279. doi: 10.1016/j.jalz.2011.03.008

Alzheimer association (2020). 2020 Alzheimer’s disease facts and figures.

Alzheimer’s Dementia 16:3. doi: 10.1002/alz.12068

Alzheimer association (2021). 2021 Alzheimer’s disease facts and figures.

Alzheimer’s Dementia 17:3. doi: 10.1002/alz.12328

American Psychiatric Association (2013). Diagnostic and Statistical mAnual of

Mental Disorders (5th ed.). Arlington, VA: American Psychiatric Association

Baddeley, A., Eysenck, M., and Anderson, M. C. (2015). Memory. New York, NY:

Psychology Press.

Bowden, S. C., Benedikt, R., and Ritter, A. J. (1992). Delayed matching to sample

and concurrent learning in nonamnesic humans with alcohol dependence.

Neuropsychologia 30, 427–435. doi: 10.1016/0028-3932(92)90090-9

Bruscoli, M., and Lovestone, S. (2004). Is MCI really just early dementia?

A systematic review of conversion studies. Int. Psychogeriatr. 16, 129–140.

doi: 10.1017/s1041610204000092

Case, J. P., Laude, J. R., and Zentall, T. R. (2015). Delayed matching

to sample in pigeons: effects of delay of reinforcement and

illuminated delays. Learn. Motiv. 49, 51–59. doi: 10.1016/j.lmot.2015.0

1.001

Chen, G., Lu, G., Xie, Z., and Shang, W. (2020). Anomaly Detection in EEG

Signals: A case study on Similarity. Comput. Intell. Neurosci. 2020:6925107.

doi: 10.1155/2020/6925107

Chen, Y., Zhang, J. Y., Zhang, T. N., Cao, L., You, Y. Y., Zhang, C. J., et al. (2020).

Meditation treatment of Alzheimer disease and mild cognitive impairment.

Medicine (Baltimore) 99:10. doi: 10.1097/MD.0000000000019313

Dauwels, J., Srinivasan, K., Reddy, M. R., Musha, T., Vialatte, F. B., Latchoumane,

et al. (2011). Slowing and loss of complexity in Alzheimer’s EEG: Two sides of

the same coin? Int. J. Alzheimer’s Dis. 2011:539621. doi: 10.4061/2011/539621

Engels, M. M. A., Stam, C. J., van der Flier, W. M., Scheltens, P., de Waal, H., and

van Straaten, E. C. W. (2015). Declining functional connectivity and changing

hub locations in Alzheimer’s disease: an EEG study. BMC Neurol. 15, 1–8.

doi: 10.1186/s12883-015-0400

Esteller, R., Vachtsevanos, G., Echauz, J., and Litt, B. (2001). A comparison

of waveform fractal dimension algorithms. IEEE Transact. Circuits Syst. I:

Fundamental Theory Appl. 48, 177–183. doi: 10.1109/81.904882
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