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Abstract: While several studies investigated the effects of mechanical or electrical stimulation on
osseointegration and bone fracture healing, little is known about the molecular and cellular impact
of combined biophysical stimulation on peri-implant osseointegration. Therefore, we established
an in vitro system, capable of applying shear stress and electric fields simultaneously. Capacitively
coupled electric fields were used for electrical stimulation, while roughened Ti6Al4V bodies conducted
harmonically oscillating micromotions on collagen scaffolds seeded with human osteoblasts. Different
variations of single and combined stimulation were applied for three days, while samples loaded
with Ti6Al4V bodies and untreated samples served as control. Metabolic activity, expression of
osteogenic markers and bone remodeling markers were investigated. While combined stimulation
showed no substantial benefit compared to sole mechanical stimulation, we observed that 25 µm
micromotions applied by roughened Ti6Al4V bodies led to a significant increase in gene expression of
osteocalcin and tissue inhibitor of metalloprotease 1. Additionally, we found an increase in metabolic
activity and expression of bone remodeling markers with reduced procollagen type 1 synthesis after
100 mVRMS electrical stimulation. We were able to trigger specific cellular behaviors using different
biophysical stimuli. In future studies, different variations of electrical stimulation will be combined
with interfacial micromotions.

Keywords: osseointegration; implants; micromotions; electrical stimulation; capacitively coupled
electric field; biophysical stimulation; osteoblasts

1. Introduction

Between 2019 and 2050, the number of persons aged 65 or over globally is projected to more than
double, indicating that by 2050 one in every four persons in Europe and Northern America could be
aged 65 years or over [1]. Following the higher numbers of elderly people, the demand for regenerative
medicine is also increasing. This applies especially to medical implants, which can be required for
various therapeutic indications such as knee and hip replacement and dentures. Pilz et al. estimated
the number of primary hip replacements performed in Germany in 2040 to grow by 27% from 2010,
while projection counts were highest for patients aged 60–70 years [2]. Meanwhile the prevalence of
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dental implants in the United States has increased from 0.7% in 1999–2000 to 5.7% in 2015–2016 and is
expected to jump to 17% in 2026 if the trend continues [3]. Crucial for fast functionality, long-term
stability, and the survival result of the implants is a process called osseointegration.

Essentially, osseointegration describes the development of a direct structural and functional
connection between ordered, living bone and the surface of a load-carrying implant without any
apparent soft-tissue intervention between normal bone and the surface of the implant [4,5]. Briefly,
blood cells including red cells, platelets, and inflammatory cells migrate into the tissue surrounding
the implant and form a fibrin matrix. This matrix acts as a scaffold for the migration of osteogenic
cells, which develop into osteoblasts and form osteoid tissue and new woven bone that eventually
remodels into lamellar bone [4,6]. Major factors responsible for the failure of peri-implant osteogenesis
include a decreased number and/or activity of osteoblasts, increased osteoclastic activity, an abnormal
response to systemic and local stimuli, and mechanical stress, and an impaired vascularization of
the peri-implant tissue [7]. Since aging impairs angiogenesis [8] and increases the prevalence of
osteoporosis [9], osseointegration is reduced in the elderly, resulting in a higher implant failure risk [7].
While factors such as the implant design, the status of the host bone bed and its intrinsic healing
potential, as well as biophysical stimulation enhance osseointegration, implant mobility, and excessive
micromotion inhibit the recovery process [5,10–15]. Hence, optimal implant design and the addition of
biophysical stimulation could help to promote bone healing and reduce the risk of implant failure,
leading to fewer revision surgeries and higher satisfaction rates among patients [10]. The influence
of implant surface and material on the cellular activity of human osteoblasts has been analyzed in
previous studies of our working group [16–19].

Therefore, this study aimed to establish and evaluate an in vitro system for biophysical stimulations
on human osteoblasts. While different variations of biophysical stimulation have been investigated,
including interface micromotions [20–22] and electrical stimulation via direct current [23,24], inductive
coupling [25–27], and capacitive coupling [25,28–32], the exact molecular and cellular mechanisms by
which osseointegration is influenced remain unclear. With a better understanding of these stimulations
at a cellular level, the effectiveness of the enhancement of bone regeneration in the clinical setting
can be improved. Therefore, we created a system that allowed us to apply capacitively coupled
alternating electric fields and harmonically oscillating micromotions on collagen scaffolds seeded with
human osteoblasts. The ability to apply mechanical stress via micromotions and electrical stimulation
individually and in combination allowed the investigation of each treatment separately as well as
their interaction.

2. Materials and Methods

2.1. Stimulation System for Applying Capacitively Coupled Electrical Fields and Micromotions

To apply capacitively coupled electric fields and micromotions individually or in combination to
human osteoblasts, an appropriate stimulation system has been established (Figure 1A). To supply
osteoblasts with capacitively coupled alternating electrical fields, two electrodes were incorporated
into a commercially available six-well cell culture plate made of polystyrene [33]. The material of the
electrodes consisted of a titanium–aluminum–vanadium alloy (Ti6Al4V), which is generally known
for its excellent corrosion resistance, passivation capacity, and biocompatibility [34]. A 0.5 mm thick,
flat Ti6AI4V plate was cut by laser cutting and then anodized using the DOTIZE® process from DOT
GmbH, Rostock. The 27 mm wide and 15 mm high electrodes were adapted to the shape of the wells
and fitted as tightly as possible to the wall of the well. Three of the electrodes were connected to an
electrode strip by a small bridge. To position the collagen scaffolds midway between the electrodes
and to enable an optimal sterile work, a sterile petri dish loaded with two cell-seeded scaffolds was
inserted into the wells (Figure 1B).
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Figure 1. Overview of the components of the stimulation device. (A) System for the simultaneous 
application of capacitively coupled alternating electric fields and harmonically oscillating 
micromotions on cell-seeded scaffolds. The electrical stimulation system was fixated on top of a linear 
piezo positioning system using a special rack. The lid of the system holds titanium–aluminum–
vanadium alloy (Ti6Al4V) bodies resting on plain plastic bearings on metal pins. (B) 3D 
representation of the individual components of the electrical stimulation system. (C) Systematic 
drawing of two scaffolds with osteoblasts in a petri dish filled with medium. The dish is incorporated 
into the electrical stimulation system (two Ti6Al4V electrodes), which is moved by the linear 
positioning system relative to a static Ti6Al4V cylinder. 

A GX 310 function generator (Metrix, Annecy-le-Vieux, France) was connected to the electrodes 
to apply a sine wave alternating current with a frequency of 60 kHz, and voltages of either 100 mVRMS 
or 1 VRMS. Frequency and voltage were measured directly on the electrodes using a voltage measuring 
device (Digital Multimeter VC-960, Voltcraft, Wollerau, Switzerland). Both were varied on the 
generator until the desired frequency and voltage was displayed. The system ensured that three wells 
were supplied with the same parameters at the same time. Besides, the setup enabled coupling with 
the micromotion system, while preventing the possible problems with bio-compatibility of the 
electrodes and undesired electrochemical processes as well that typically occur with non-capacitive 
electrical stimulation. 

To estimate the effective electric field strength in a single well, a 3D model was generated in 
COMSOL Multiphysics®, v5.3a (COMSOL AB, Stockholm, Sweden). It comprises two electrodes, the 
culture plate, the petri dish, the cell culture medium (conductivity at 37 °C: 1.6 S/m), and—if 
applicable—the Ti6Al4V bodies of the micromotion system. The scaffolds were assumed to have the 
same dielectric properties as the cell culture medium and were thus not explicitly modeled. The electric 
field was computed using the “electric currents” interface, i.e., in the quasi-static approximation of 
Maxwell’s equations, at a fixed frequency of 60 kHz. The electric potential at one electrode was set to 
0 V while the potential at the other electrode was set to 1.41 V. This corresponded to an applied voltage 
of 1 VRMS. For an applied voltage of 100 mVRMS, all values must just be divided by 10. The resulting 
electric field was evaluated at 1 mm height above the bottom of the dish. This matched to the location 
of the cells that were to be stimulated. 

A two-component chamber system consisting of a base plate and a lid was used to implement 
micromotions according to Ziebart et al. [20]. A linear piezo positioning system (Physik Instrumente 
(PI) GmbH & Co. KG, Karlsruhe, Germany) with a rack was attached to the base plate. Three set 

Figure 1. Overview of the components of the stimulation device. (A) System for the simultaneous
application of capacitively coupled alternating electric fields and harmonically oscillating micromotions
on cell-seeded scaffolds. The electrical stimulation system was fixated on top of a linear piezo
positioning system using a special rack. The lid of the system holds titanium–aluminum–vanadium
alloy (Ti6Al4V) bodies resting on plain plastic bearings on metal pins. (B) 3D representation of the
individual components of the electrical stimulation system. (C) Systematic drawing of two scaffolds
with osteoblasts in a petri dish filled with medium. The dish is incorporated into the electrical
stimulation system (two Ti6Al4V electrodes), which is moved by the linear positioning system relative
to a static Ti6Al4V cylinder.

A GX 310 function generator (Metrix, Annecy-le-Vieux, France) was connected to the electrodes to
apply a sine wave alternating current with a frequency of 60 kHz, and voltages of either 100 mVRMS or
1 VRMS. Frequency and voltage were measured directly on the electrodes using a voltage measuring
device (Digital Multimeter VC-960, Voltcraft, Wollerau, Switzerland). Both were varied on the
generator until the desired frequency and voltage was displayed. The system ensured that three
wells were supplied with the same parameters at the same time. Besides, the setup enabled coupling
with the micromotion system, while preventing the possible problems with bio-compatibility of the
electrodes and undesired electrochemical processes as well that typically occur with non-capacitive
electrical stimulation.

To estimate the effective electric field strength in a single well, a 3D model was generated in
COMSOL Multiphysics®, v5.3a (COMSOL AB, Stockholm, Sweden). It comprises two electrodes,
the culture plate, the petri dish, the cell culture medium (conductivity at 37 ◦C: 1.6 S/m), and—if
applicable—the Ti6Al4V bodies of the micromotion system. The scaffolds were assumed to have the
same dielectric properties as the cell culture medium and were thus not explicitly modeled. The electric
field was computed using the “electric currents” interface, i.e., in the quasi-static approximation of
Maxwell’s equations, at a fixed frequency of 60 kHz. The electric potential at one electrode was set to
0 V while the potential at the other electrode was set to 1.41 V. This corresponded to an applied voltage
of 1 VRMS. For an applied voltage of 100 mVRMS, all values must just be divided by 10. The resulting
electric field was evaluated at 1 mm height above the bottom of the dish. This matched to the location
of the cells that were to be stimulated.
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A two-component chamber system consisting of a base plate and a lid was used to implement
micromotions according to Ziebart et al. [20]. A linear piezo positioning system (Physik Instrumente
(PI) GmbH & Co. KG, Karlsruhe, Germany) with a rack was attached to the base plate. Three set screws
allowed fixating the electrical stimulation system into the rack aligning the system at the exact center of
the base plate. The lid consisted of a metal plate as a roof and transparent outer walls. Six holes were
drilled into the roof, through which metal pins protruded into the interior of the chamber via plain
plastic bearings. Bodies measuring 30 mm in diameter and 8 mm in height were screwed at the end of
each pin. The same as the electrodes, the bodies were made of a Ti6Al4V alloy, which is used extensively
in dental and orthopedic reconstructive surgery [34]. The undersurface of each cylinder was roughened
by DOT GmbH, Rostock, to an average roughness of 20.93 µm (sd 1.98 µm) using corundum beams.
Roughness measurements were carried out using a 3D digital laser-scanning microscope (KEYENCE
Deutschland GmbH, Neu-Isenburg, Germany). Placing the lid onto the base plate of the chamber
enabled the roughened surface of the Ti6Al4V bodies to rest on the collagen scaffolds of the electrical
stimulation system, exerting a static pressure load of 527 Pascal (Pa) [20]. Guide rods on the base
plate ensured a central positioning of each cylinder into the petri dish. Polystyrene spacers prevented
contact between the electrodes of the electrical stimulation system and the lid. Powered, the piezo
positioning system moved the scaffolds containing the human osteoblasts horizontally against the
roughened surface of the Ti6Al4V-bodies (Figure 1B,C).

By incorporating the electrical stimulation system into the micromotion system, simultaneous
stimulation of capacitively coupled alternating electric fields and harmonically oscillating micromotions
were implemented in three of the six wells, also allowing a sole stimulation with harmonically
oscillating micromotions in the rest. The piezo positioning system was validated using linear variable
differential transformers (LVDT, Solartron Metrology, Meerbusch, Germany) clamped into the base
plate. Validation was carried out applying peak-to-peak amplitudes of 25 and 100 µm with a frequency
of 1 Hz. To determine the deviations of the system, two unsettled scaffolds and 1.7 mL DMEM medium
were used as samples. The absolute and percentage deviations, as well as the maximum velocity and
acceleration of the micromotion system, are illustrated in Table 1.

Table 1. Deviation, maximum velocity, and acceleration in a micromotion system with two scaffolds
and 1.7 mL DMEM medium.

Peak-to-Peak Amplitudes
25 µm 100 µm

Absolute Percentage Absolute Percentage

Deviation 1.5 µm 6.0% 3.25 µm 3.25%
Maximum velocity 73.8 µm/s 303.9 µm/s

Maximum acceleration 463.9 µm/s2 1909.8 µm/s2

2.2. Cell Culture and Stimulation

Human osteoblast-like cells were isolated from cancellous bone of the femoral head, donated
by patients undergoing primary hip replacement at the Department of Orthopedics of the Rostock
University Medical Center. Isolation and cultivation were only implemented if the patient gave their
informed consent and were approved by the Local Ethics Committee of the University of Rostock
(registration number: A2010-10). Osteoblasts from seven male (mean age 59.4 ± 14.9 years) and eight
female (mean age 72.7 ± 10.9 years) donors were used. Donors were chosen randomly. All work was
performed under strictly sterile conditions within the Herasafe™ KS biological safety cabinet (Thermo
Fisher Scientific, Waltham, MA, USA). Incubation and cultivation of the cell cultures were carried out
in an incubator (Binder GmbH, Tuttlingen, Deutschland) at 37 ◦C and an atmosphere of 5% CO2 and
95% air.

To isolate osteoblasts, the protocol of Lochner et al. was used [35]. Osteoblasts were
cultivated in a special formulation of Dulbecco’s modified eagle medium (DMEM, w/o calcium)
with 10% fetal calf serum (FCS, both: Pan Biotech, Aidenbach, Germany), 1% penicillin/streptomycin
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(Thermo Scientific, Waltham, MA, USA), 1% amphotericin B (Biochrom GmbH, Berlin, Germany),
and 1% N-2-Hydroxyethylpiperazin-N-2-ethane sulfonic acid buffer (HEPES, Gibco®, Thermo Fisher
Scientific Inc., Waltham, MA, USA). The medium was supplemented with 50 µg/mL L-ascorbic acid
(Sigma-Aldrich, Merck, Darmstadt, Germany), 10 mM β-glycerophosphate (Sigma-Aldrich, Merck,
Darmstadt, Germany), and 100 nM dexamethasone (Sigma-Aldrich, Merck, Darmstadt, Germany)
to support proliferation and maintaining the osteogenic phenotype. To avoid cell contact inhibition,
cells were transferred from 80% confluence in a ratio of 1:6 into 75 cm2 cell culture flasks.

For scaffold production, a biomatrix from MatriDerm® (MedSkin Solutions Dr. Suwelack AG,
Billerbeck, Germany) was used. This open-pore collagen-elastin matrix is primarily used as an acellular
dermis replacement and consists of natural bovine collagen types I, II, and V as a fiber template,
coated with α-elastin hydrolysate. Collagen-elastin scaffolds allow cell attachment, differentiation,
and subsequent mineralization, and thus serves as a suitable framework for the cultivation of
osteoblasts [36]. Two MatriDerm® scaffolds measuring 16 mm in diameter and 1 mm in height were
fixated side by side to the bottom of a 35 mm Ø petri dish (Thermo Fisher Scientific, Waltham, MA,
USA) using biocompatible silicone paste (Korasilon; Kurt Obermeier GmbH & Co. KG, Bad Berleburg,
Germany).

The third passage of osteoblasts was cultivated up to 90% confluency and then seeded on the
prepared collagen scaffolds. To this end, 200 µL medium containing approximately 100,000 osteoblasts
was dropped onto each scaffold. Cell numbers were determined manually using a Thoma
hemacytometer. Cells were allowed to adhere for 30 min at room temperature. Afterward, 3 mL of the
above-mentioned DMEM, supplemented with 50 µg/mL L-ascorbic acid, 10 mM β-glycerophosphate,
and 100 nM dexamethasone, was added. After 24 h of cultivation, 1.3 mL of the cell culture medium
was removed, preventing overflow caused by the volume of the Ti6Al4V-bodies. The petri dishes
containing two cell-seeded scaffolds were placed into each stimulation system. The systems then were
transferred to the incubator. The piezo positioning system was controlled using PIMicroMove (Physik
Instrumente (PI) GmbH & Co. KG, Karlsruhe, Germany).

Five different treatment groups were investigated:

1. Culture in the electrical stimulation system (sole stimulation with capacitively coupled alternating
electric fields (ES)) with 60 kHz and either 100 mVRMS or 1 VRMS.

2. Culture in a conventional six-well plate with Ti6Al4V bodies (stimulation with static pressure
load (Load)).

3. Culture in the micromotion system (sole stimulation with harmonically oscillating micromotions
(MM)) applying peak-to-peak amplitudes of 25 and 100 µm with a frequency of 1 Hz.

4. Culture in the micromotion system with additional electrical stimulation with 60 kHz and 1 VRMS

(simultaneous stimulation with harmonically oscillating micromotions and capacitively coupled
alternating electric fields (MM + ES)).

5. Culture in the electrical stimulation system with Ti6Al4V bodies (stimulation with capacitively
coupled alternating electric fields and static pressure load (Load + ES)).

In addition to the above-mentioned investigated parameters, tests were initially carried out with
the mentioned micromotion amplitudes (25 µm, 100 µm, and also 50 µm) combined with 100 mVRMS

electrical stimulation. However, since no significant differences in metabolic activity and gene
expression rates were found between these combined tests and samples treated with micromotions
alone, these parameter combinations were not pursued further. Untreated samples (untreated control
in treatment groups 1 and 2) and samples treated solely with Ti6Al4V-bodies (loaded control in
treatment groups 3 to 5) served as control. Stimulations were performed on three consecutive days
with a stimulation time of 6 h a day.
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2.3. Cell Biological and Molecular Methods

2.3.1. Metabolic Activity

The metabolic activity was determined 24 h after the last stimulation interval using the
water-soluble tetrazolium salt (WST-1) assay (Roche GmbH, Grenzach-Wyhlen, Germany). Each scaffold
was carefully transferred into a 12-well plate and overlaid with a reagent of WST-1 and DMEM in
a ratio of 1:10. After an incubation period of 1 h at 37 ◦C and 5% CO2, 100 µL of the color-changed
solution was transferred as triplicates into a 96-well plate. The formazan dye formed was quantified
using the multimode plate reader Infinite 200 pro (Tecan Group Ltd., Maennedorf, Switzerland) at a
wavelength of 450 nm and a reference filter of 630 nm. A blank value was carried along with each
series of tests and subtracted from the measured values.

2.3.2. Gene Expression Analysis

The scaffolds used for the WST-1 assay were washed with PBS and digested with 500 µL
Collagenase A (Roche, Penzberg, Germany; dissolved in Hanks’ Balanced Salt Solution [Sigma-Aldrich,
Merck, Darmstadt, Germany]; pH of 7) for 45 min at 37 ◦C in an incubation shaker. The isolated
osteoblasts were centrifuged for 8 min at 120× g. Afterwards, the cell sediment was utilized for
RNA isolation using the peqGOLD Total RNA Kit (VWR International GmbH, Darmstadt, Germany)
following the manufacturer’s instructions. The purified RNA was eluted in 30 µL sterile RNase-free
water (Carl Roth GmbH & Co. KG, Karlsruhe, Germany). RNA concentration was then determined
using the plate reader Infinite 200 pro. RNase-free water served as blank.

RT-PCR was used for transcription of messenger RNA (mRNA) into complementary DNA (cDNA)
and carried out using the High Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific,
Waltham, MA, USA). RNA of each sample was dissolved in water treated with diethyl dicarbonate
(DEPC) and combined with a mix of dNTPs, random primers, and reverse transcriptase in a ratio of 1:1.
RT-PCR then took place in a Thermocycler (Biometra GmbH, Goettingen, Germany). Afterward, the
transcribed cDNA was diluted with 20 µL DEPC treated water. To quantify amplified genes, qRT-PCR
was carried out in duplicates using the innuMIX qPCR MasterMix SyGreen Kit (Analytik Jena, Jena,
Germany). Genes listed in Table 2 were analyzed.

Table 2. Genes and primer sequences (purchased from Sigma-Aldrich (Merck), Darmstadt, Germany)
analyzed using quantitative Real-Time Polymerase Chain Reaction.

Gene Sequence

Alkaline phosphatase (ALP) For: 5′-CATTGTGACCACCACGAGAG-3′

Rev: 5′-CCATGATCACGTCAATGTCC-3′

Collagen type I alpha 1 chain (COL1A1) For: 5′-ACGAAGACATCCCACCAATC-3′

Rev: 5′-AGATCACGTCATCGCACAAC-3′

Hypoxanthine-guanine phosphoribosyl transferase (HPRT) For: 5′-CCCTGGCGTCGTGATTAGTG-3′

Rev: 5′-TCGAGCAAGACGTTCAGTCC-3′

Matrix metalloproteinase 1 (MMP1) For: 5′-AGAGCAGATGTGGACCATGC-3′

Rev: 5′-TCCCGATGATCTCCCCTGAC-3′

Osteocalcin (OC) For: 5′-TCAGCCAACTCGTCACAGTC-3′

Rev: 5′-GGTGCAGCCTTTGTGTCC-3′

Osteoprotegerin (OPG) For: 5′-AGGCGATACTTCCTGTTGCC-3′

Rev: 5′-GATGTCCAGAAACACGAGCG-3′

Receptor activator of nuclear factor-kappa-B ligand (RANKL) For: 5′-TCTTCTATTTCAGAGCGCAGATGG-3′

Rev: 5′-CTGATGTGCTGTGATCCAACG-3′

Tissue inhibitor of metalloproteinase 1 (TIMP1) For: 5′-ATTGCTGGAAAACTGCAGGATG-3′

Rev: 5′-GTCCACAAGCAATGAGTGCC-3′

According to instructions, 1 µL of amplificated cDNA was mixed with 9 µL of a master mix
containing DEPC-water, forward and reverse primers, and the innuMix MasterMix using a mixing ratio
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of 6:1:1:10. A total of 1 µL RNase-free water served as a negative control. PCR was performed following
the manufacturer’s instructions. The evaluation was conducted using the delta-delta Ct (∆∆Ct) method.
Therefore, the relative expression of each target mRNA was normalized to a housekeeping gene
according to the equation: ∆Ct = Ct target gene − Ct housekeeper gene.

Hypoxanthine guanine phosphoribosyltransferase (HPRT) was used as housekeeping gene. Then,
∆∆Ct was determined by comparing the relative amount of target mRNA of the stimulated sample to
the respective control using the equation: ∆∆Ct = ∆Ct stimulated − ∆Ct control.

2.3.3. Quantification of Procollagen Type I Synthesis

Type I C-terminal collagen propeptide (CICP) can be useful as a biochemical indicator of collagen
production [37]. Therefore, CICP was quantified from the sample’s supernatant using the MicroVue
CICP ELISA (Quidel, San Diego, CA, USA). The ELISA was performed according to the manufacturer’s
instructions. A standard curve was carried along to determine peptide concentrations within samples.
The CICP concentration was quantified using the Tecan reader Infinite pro at a wavelength of
405 nm. Afterwards, the measured concentration was normalized to total protein content. Total
protein determination was performed using the Invitrogen Qubit Protein Assay Kit (Thermo Fisher
Scientific, Waltham, MA, USA). The assay was carried out according to the manufacturer’s instructions.
Provided standards were utilized to create a standard curve, which was then used to quantify the total
protein content.

2.3.4. Quantification of ALP Synthesis

Alkaline phosphatase (ALP) is a key marker enzyme for osteoblast activity [38], which is primarily
synthesized in the liver and bones of mammals [39]. For ALP quantification, p-nitrophenyl phosphate
(pNpp) was used, which is hydrolyzed by ALP. The product can be quantified and used as an
indirect measure of the ALP activity of the respective test sample. Therefore, the second scaffold was
transferred into a 12-well plate and washed twice using TRIS buffer (50 mM, pH = 8.0). The osteoblasts
then were lysed for 10 min at room temperature in distilled water containing 1% Triton X and 1%
phenylmethylsulfonyl fluoride (PMSF). Afterwards, lysates were incubated with 1 mM pNpp, 100 mM
2-amino-2-methyl-1,3-propanediol, and 5 mM magnesium chloride in distilled water at a pH of 10.
After incubating for 1 h at 37 ◦C and 5% CO2, the reaction was stopped by adding a 2 M sodium
hydroxide solution. Subsequently, 100 µL (sixfold determination) of the solution was quantified using
the plate reader Infinite Pro at a wavelength of 405 nm. A blank value was carried along with each
series of tests and subtracted from the measured values.

2.4. Statistical and Graphical Evaluation

The statistical and graphical evaluation was implemented using GraphPad Prism 8 (GraphPad
Software Inc., San Diego, CA, USA). Results are presented as box plots showing the median, the 25%-
and 75%-quartile, and whiskers for minimum and maximum. All data are shown as percentage change
compared to the respective control. Different treatment groups were separated using dashed lines. For
better visualization, gene expression was graphically represented as percentage of 2−∆∆Ct. Statistical
evaluation was performed using the ∆∆Ct values. At least five independent donors were used for
each experiment. Depending on the material available, one to five technical replicas were performed.
For statistical evaluation, raw data were used for all tests. Statistical significance to the respective
control was determined using the Wilcoxon signed-rank test. To compare different treatment groups,
the Mann–Whitney U test was performed. The level of significance was set to p < 0.05.
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3. Results

3.1. Numerical Simulation of the Electrical Fields

The numerical simulation of the electrical field strength revealed both voltage-dependent
differences as well as differences with or without the use of TiAl6V4 bodies of the micromotion
system (Figure 2). At an input voltage of 1 VRMS the electric field strength is between 2.5 and 3.5 mV/m.
Note that this field is significantly influenced by the Ti6Al4V body. In fact, field strengths of 1–3.5 mV/m
are only achieved at those edges of the Ti6Al4V body that are directly opposite to the electrodes.
Below the Ti6Al4V body, no significant electric field can be observed. In the case of an input voltage
of 100 mVRMS, the electric field strength is only one tenth compared to that one at 1 VRMS. Thus,
the electric field reaches a maximum of 0.35 mV/m without Ti6Al4V body. If the cylinder is present,
this maximum value can again only be reached at its edges near the electrodes. As a consequence of
the obtained simulation results, an input voltage of 1 VRMS was chosen for the combined stimulation
(MM + ES) to reach significant field strengths.Cells 2020, 9, x FOR PEER REVIEW 8 of 19 
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Figure 2. Electric field distribution ((A,B): input voltage: 1 VRMS; (C,D): input voltage: 100 mVRMS) at
1 mm height above the bottom of the chamber (i.e., at cell location) without the Ti6Al4V body (A,C)
and with Ti6Al4V body (B,D).

3.2. Influence of Electrical Stimulation and Micromotions on the Metabolic Activity of Human Osteoblasts

The metabolic activity of human osteoblasts was determined colorimetrically by WST-1 conversion.
Figure 3A shows the results after three days of electrical stimulation with 60 kHz and either 100 mVRMS

or 1 VRMS. Cellular activity was significantly higher in samples treated with 100 mVRMS (Median:
125.5%, p = 0.002) compared to the untreated controls while the metabolic activity of cells exposed
to 1 VRMS was unaffected. Further, the comparison of both voltages showed a significant difference
between the stimulation of 100 mVRMS and 1 VRMS (p = 0.017). Load samples showed no significant
influence on cell activity levels compared to the untreated control (p = 0.964) (Figure S1A).
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Figure 3. Metabolic activity of human osteoblasts after biophysical stimulation. (A) Results of electrical
stimulation (ES) with 60 kHz and either 100 mVRMS or 1 VRMS. (B) Results of micromotions and
electrical stimulation with 60 kHz and 1 VRMS (MM + ES) compared to osteoblasts treated solely with
micromotions (MM) and osteoblasts treated with titanium bodies and electrical stimulation (Load +

ES). Untreated cells with or without titanium bodies served as controls. The metabolic activity was
determined colorimetrically by the conversion of tetrazolium salt to formazan. Results are presented
as box plots related to the untreated controls (n ≥ 6). ** p < 0.01 compared to the untreated controls
(Wilcoxon’s signed-rank test); # p < 0.05 comparison between different voltages (Mann–Whitney U test).

In Figure 3B the metabolic activity of different treatment groups (micromotions: (MM);
micromotions + electrical stimulation: (MM + ES); electrical stimulation plus static pressure load: (Load
+ ES)) is depicted in comparison to the loaded controls (Load), showing only a slight increase after
stimulation with 100 µm micromotions (114.9%) and the combined stimulation of 100 µm micromotions
and 1 VRMS electrical stimulation (122.9%) without statistical significance. No further statistically
significant difference between the different treatment groups was found.

3.3. Influence of Electrical Stimulation and Micromotions on the Expression and Synthesis of Osteogenic
Markers in Human Osteoblasts

Gene expression rates of collagen type 1 alpha 1 chain (COL1A1), alkaline phosphatase (ALP), and
osteocalcin (OC) were determined to analyze the effects of electrical stimulation and micromotions on
mRNA transcription of osteogenic markers (Figure 4A–C). Consecutively, the amount of procollagen
type 1 synthesis rate and the ALP activity were evaluated. Concerning gene expression rates,
no significant differences neither between the electrically stimulated cells and the untreated control
nor in between the different voltages were detected (Figure 4A–C). Treatment with Ti6Al4V bodies in
the loaded control nevertheless resulted in significantly lower COL1A1 (62.2%, p < 0.001) and ALP
(74.0%, p = 0.003) mRNA transcripts, while also showing decreased OC gene expression rates (80.1%,
p = 0.315) without statistical significance compared to the untreated control (Figure S1B).

With regard to protein levels, a reduced procollagen type 1 propeptide content was found in the
cell culture supernatants after treatment with 100 mVRMS (93.9%, p = 0.048 compared to untreated
controls; Figure 4D). Stimulation with 1 VRMS led to an unchanged protein release. In contrast, ALP
activity was increased after electrical stimulation, reaching significance following treatment with 1
VRMS (p = 0.036) (Figure 4D). In accordance with gene expression rates, procollagen type 1 synthesis
rate (81.2%, p < 0.001) and ALP activity (70.1%, p < 0.001) were significantly decreased after treatment
with titanium bodies compared to the untreated control (Figure S1C).

In Figure 5A–C gene expression analysis following electrical stimulation and micromotions is
shown in comparison to the loaded control. Although transcription of COL1A1 and ALP was not
significantly affected in all stimulation groups, a tendency of increased gene expression rates was found
after treatment with 25 µm micromotions. However, compared to the loaded controls, expression of
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OC mRNA was more than tripled (322.9%, p = 0.0156) after stimulation with 25 µm micromotions,
while almost doubled after the combined stimulation with 25 µm micromotions and 1 VRMS electrical
stimulation (171.5%, p = 0.008). Further, the comparison within each treatment group showed favorable
results in both single (p = 0.02) and combined (p = 0.008) 25 µm micromotion stimulation compared to
treatment with 100 µm micromotions. Comparing the different treatment groups, a higher OC gene
expression was found after treatment with 25 µm micromotions compared to the combined stimulation
of 25 µm micromotions and 1 VRMS electrical stimulation (p = 0.027), however, the combined treatment
still showed significantly higher gene expression OC than electrical stimulation alone (p = 0.039;
Figure 5C).Cells 2020, 9, x FOR PEER REVIEW 10 of 19 

 

 
Figure 4. Evaluation of osteogenic differentiation of human osteoblasts following electrical 
stimulation [ES] with 60 kHz and either 100 mVRMS or 1 VRMS. Relative gene expression of osteogenic 
markers for bone formation: (A) collagen type I alpha 1 chain (COL1A1), (B) alkaline phosphatase 
(ALP) and (C) osteocalcin (OC). Gene expression levels of osteogenic marker were determined via 
semi-quantitative polymerase chain reaction (qPCR). Results are presented as boxplots of the 
percentage of 2(−ΔΔCt) related to untreated controls (n ≥ 24). (D) Synthesis rates of osteogenic markers 
procollagen type 1 and alkaline phosphatase (ALP). The release of type I C-terminal collagen 
propeptide in the cell culture supernatant was determined using ELISA and related to the total 
protein concentration. The ALP activity was determined colorimetrically by the hydrolysis of p-
nitrophenyl phosphate. Results are presented as box plots related to untreated controls (n ≥ 15). * p < 
0.05 compared to the untreated controls (Wilcoxon’s signed-rank test). 

In Figure 5A–C gene expression analysis following electrical stimulation and micromotions is 
shown in comparison to the loaded control. Although transcription of COL1A1 and ALP was not 
significantly affected in all stimulation groups, a tendency of increased gene expression rates was 
found after treatment with 25 µm micromotions. However, compared to the loaded controls, 
expression of OC mRNA was more than tripled (322.9%, p = 0.0156) after stimulation with 25 µm 
micromotions, while almost doubled after the combined stimulation with 25 µm micromotions and 
1 VRMS electrical stimulation (171.5%, p = 0.008). Further, the comparison within each treatment group 
showed favorable results in both single (p = 0.02) and combined (p = 0.008) 25 µm micromotion 
stimulation compared to treatment with 100 µm micromotions. Comparing the different treatment 
groups, a higher OC gene expression was found after treatment with 25 µm micromotions compared 
to the combined stimulation of 25 µm micromotions and 1 VRMS electrical stimulation (p = 0.027), 
however, the combined treatment still showed significantly higher gene expression OC than electrical 
stimulation alone (p = 0.039; Figure 5C).   

Figure 4. Evaluation of osteogenic differentiation of human osteoblasts following electrical stimulation
[ES] with 60 kHz and either 100 mVRMS or 1 VRMS. Relative gene expression of osteogenic markers for
bone formation: (A) collagen type I alpha 1 chain (COL1A1), (B) alkaline phosphatase (ALP) and (C)
osteocalcin (OC). Gene expression levels of osteogenic marker were determined via semi-quantitative
polymerase chain reaction (qPCR). Results are presented as boxplots of the percentage of 2(−∆∆Ct)

related to untreated controls (n ≥ 24). (D) Synthesis rates of osteogenic markers procollagen type 1 and
alkaline phosphatase (ALP). The release of type I C-terminal collagen propeptide in the cell culture
supernatant was determined using ELISA and related to the total protein concentration. The ALP
activity was determined colorimetrically by the hydrolysis of p-nitrophenyl phosphate. Results are
presented as box plots related to untreated controls (n ≥ 15). * p < 0.05 compared to the untreated
controls (Wilcoxon’s signed-rank test).

Following gene expression rates, a slight, but not significant upregulated protein release of
procollagen type 1 (110%, p = 0.078) and ALP activity (114.4%, p = 0,148) were observed after treatment
with 25 µm micromotions (Figure 5D) compared to the loaded controls. While procollagen type 1
synthesis significantly decreased after treatment with 1 VRMS electrical stimulation in loaded samples
(84.2%, p = 0.02), ALP activity was significantly increased (110.0%, p = 0.025) compared to the loaded
control. After treatment with 25 µm micromotions, protein and activity levels were significantly
enhanced compared to 100 µm micromotions (p = 0.02 for both markers). Evaluating the different
treatment groups, procollagen type 1 synthesis was significantly higher following combined stimulation
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with 25 µm micromotions and 1 VRMS electrical stimulation in comparison to treatment with titanium
bodies and electrical stimulation (p = 0.021). ALP activity significantly decreased after the combined
stimulation with 100 µm micromotions and 1 VRMS electrical stimulation compared to loaded samples
treated solely with electrical stimulation (p = 0.014).Cells 2020, 9, x FOR PEER REVIEW 11 of 19 
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Figure 5. Evaluation of osteogenic differentiation of human osteoblasts following biophysical
stimulation. Relative gene expression of osteogenic markers for bone formation: (A) collagen
type I alpha 1 chain (COL1A1), (B) alkaline phosphatase (ALP), and (C) osteocalcin (OC) in human
osteoblasts after treatment with micromotions and electrical stimulation (MM + ES) compared to
osteoblasts treated solely with micromotions (MM) and osteoblasts treated with titanium bodies and
electrical stimulation (Load + ES). Gene expression levels of COL1A1, ALP, and OC were determined via
semi-quantitative polymerase chain reaction (qPCR). Results are presented as boxplots of the percentage
of 2(−∆∆Ct) related to loaded controls (n ≥ 6). (D) Synthesis rates of osteogenic markers procollagen
type 1 and alkaline phosphatase (ALP) in human osteoblasts. The release of type I C-terminal collagen
propeptide in the cell culture supernatant was determined using ELISA and related to the total protein
concentration. The ALP activity was determined colorimetrically by the hydrolysis of p-nitrophenyl
phosphate. Results are presented as box plots related to the loaded controls (n ≥ 6). * p < 0.05, ** p < 0.01
compared to the loaded controls (Wilcoxon’s signed-rank test); # p < 0.05, ## p < 0.01 comparison
between different parameters (Mann–Whitney U test); § p < 0.05, §§ p < 0.01 comparison between
different treatment groups (Mann–Whitney U test).
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3.4. Influence of Electrical Stimulation and Micromotions on Bone Remodeling

Transcripts of matrix metalloproteinase-1 (MMP1), osteoprotegerin (OPG), receptor activator of
nuclear factor kappa-B ligand (RANKL), and tissue inhibitor of metalloproteinase 1 (TIMP1) were
determined to evaluate the influence of electrical stimulation and micromotions on bone remodeling.
However, RANKL and MMP1 mRNA were undetectable in treated and untreated samples since Ct
values were higher than the threshold of 30 cycles. Therefore, both markers were excluded from
this study. Results after electrical stimulation are visualized in Figure 6A. TIMP1 (125.1%, p = 0.017)
and OPG (130.8%, p = 0.005) mRNA were significantly upregulated after treatment with 100 mVRMS

compared to the untreated control. However, both bone remodeling markers were not significantly
affected following treatment with 1 VRMS. Electrical stimulation with 100 mVRMS also enhanced OPG
transcripts compared to 1 VRMS (p = 0.043). The application of a static pressure load via Ti6Al4V bodies
led to a significant upregulation in TIMP1 gene expression rates (187.3%, p < 0.001) compared to the
untreated control, while the transcription of OPG mRNA was not significantly affected (p = 0.235) by
the loading (Figure S1D).
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Figure 6. Relative gene expression of genes responsible for bone remodeling: tissue inhibitor of
metalloproteinase 1 (TIMP1) and osteoprotegerin (OPG) in human osteoblasts after biophysical
stimulation. (A) Results of electrical stimulation (ES) with 60 kHz and either 100 mVRMS or 1 VRMS.
(B) Results of micromotions and electrical stimulation (MM + ES) compared to osteoblasts treated solely
with micromotions (MM) and osteoblasts treated with titanium bodies and electrical stimulation (Load
+ ES). Gene expression levels of TIMP1 and OPG were determined via semi-quantitative polymerase
chain reaction (qPCR). Results are presented as boxplots of the percentage of 2(−∆∆Ct) related to the
untreated controls (n ≥ 6). * p < 0.05; ** p < 0.01 compared to the untreated controls (Wilcoxon’s
signed-rank test); # p < 0.05 comparison between different voltages (Mann–Whitney U test); § p < 0.05
comparison between different treatment groups (Mann–Whitney U test).

Evaluating the expression of both bone remodeling markers following micromotions and electrical
stimulation (Figure 6B), TIMP1 mRNA was upregulated in all stimulation groups, reaching significance
when treated with 25 µm micromotions (p = 0.008) and 1 VRMS electrical stimulation in loaded samples
(p = 0.045) compared to the loaded controls. Additionally, enhanced OPG transcripts were detectable
after treatment with 25 and 100 µm in both single and combined stimulation, without reaching statistical
significance. Analyzing the different treatment groups, OPG expression was significantly higher after
combined stimulation with 100 µm micromotions and 1 VRMS electrical stimulation in comparison to
treatment with titanium bodies and electrical stimulation (p = 0.042).

4. Discussion

While both mechanical and electrical stimulation have been applied widely in bone fracture
treatment or bone tissue construction, the effect of combined mechanical and electrical stimulation on
osteoblasts or bone tissue has not been deeply studied, although providing a more actual simulation
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of the in vivo environment [40]. Therefore, the aim of this study was to establish an in vitro system,
capable of applying both mechanical stress via micromotions and electrical stimulation on scaffolds
seeded with human osteoblasts. Doing so, we were able to further investigate the molecular and
cellular impact of biophysical stimulation on peri-implant osseointegration.

The used stimulation parameters for electrical stimulation (voltages) [33] and interface
micromotions (peak-to-peak amplitudes, frequency, waveform, and stimulation time) [20] have
been selected based on former investigations in our working group. Krueger et al. [33] showed
increased synthesis rates of collagen II and glycosaminoglycans in human chondrocytes following
electrical stimulation with 100 mVRMS at a utility frequency of 1 kHz using the described electrical
stimulation system. To adapt parameters of electrical stimulation to osteoblasts, a study conducted
by Brighton et al. [30] was consulted. They found a significant increase in proliferation after the
application of sine wave 60 kHz capacitively coupled electrical fields on newborn rat calvarial bone
cells when the signal was applied continuously for 6 h. Since Brighton and his team implemented the
utility frequency of 60 kHz for capacitively coupled electrical stimulation, this frequency has been
used in several other studies [41,42]. The micromotion system was first described by Ziebart et al. [20],
who found an increase in metabolic activity and osteocalcin expression level of human osteoblasts
after treatment with 25 µm micromotions via plain Ti6Al4V bodies. For better representation of the
clinical setting at the bone–implant interface, rough surfaces were used in this present study, imitating
the surface of cementless implants after initial implant fixation. While previous in vitro studies have
broadly investigated either osteoblastic cell lines like MG-63 or primary cells from different species,
we used isolated human osteoblasts for the experiments. The main advantage of primary human cells
is their clinical applicability since cell-line osteoblasts and other animal cell sources do not fully reflect
the behavior of primary cells. Nonetheless, human isolated osteoblasts represent a heterogeneous cell
population, therefore cell response might differ with donor age, location of harvesting, and harvesting
method [26,43]. Additionally, 3D collagen scaffolds were used for cell cultivation rather than cell
monolayer cultures. Their biomimetic nature has been shown to improve cell adhesion and osteogenic
differentiation while accomplishing a more accurate imitation of the natural cell environment [44].

In 1990 Brighton et al. evaluated the efficacy of different electrical field strengths ranging from 0.01
to 20 mV/cm for different patterns of a 60 kHz sine wave. Based on their results and upon comparison to
stimulation with 0.0001 mV/cm and 10 Hz, Brighton et al. concluded that proper field strengths ranged
from 0.1 to 20 mV/cm [30]. However, in our study the metabolic activity, which was also interpreted as
a proliferation marker, was significantly higher after the electrical stimulation with 100 mVRMS, leading
to an electrical field strength of approximately 0.003 mV/cm in the numerical simulation. The cellular
activity was increased, not only compared to the untreated control, but also to samples treated with a
10 times higher voltage of 1 VRMS, implying that the lower electrical field strength of 0.003 mV/cm is
more effective in stimulating cell proliferation than the higher electrical field strength of 0.03 mV/cm.
In another study, Fitzsimmons et al. subjected chick calvarial bone cells to an even lower capacitively
coupled 10 Hz sinusoidal electrical field of 0.0001 mV/cm and found an increase in [3H]-thymidine
incorporation, indicating higher proliferation [30,45]. In their study, Brighton et al. also found that
ALP activity was significantly increased after stimulation with 0.1 mV/cm at 60 kHz and heightened
after stimulation with 0.01 mV/cm [30]. This was reflected by our observation since ALP activity was
significantly enhanced after electrical stimulation with 0.03 mV/cm compared to the untreated control.
However, direct comparison is challenging due to differing proliferation and differentiation measuring
tools, stimulation setups, application times, and cell lines. While COL1A1, ALP, and OC transcription
were not affected by the electrical stimulation, TIMP1 and OPG gene expression were significantly
increased after treatment with 100 mVRMS. These findings indicate a voltage-dependent alteration
of bone remodeling, a hypothesis, which is also supported by a study conducted by Rubin et al. [46].
They found that bone resorption can be prevented by the exogenous application of electric fields
below 0.01 mV/cm, when induced at frequencies between 50 and 150 Hz for 1 h/day using an in vivo
model of osteopenia. Further investigations will clarify how the use of different field strengths and
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frequencies can be utilized to promote bone remodeling and prevent excessive bone resorption. As in
most compared studies, calculation was used to constitute the electrical field strength, representing
only a rough estimate of the actual field strength.

Analyzing the impact of pressure and micromotions on human osteoblasts, both metabolic activity
and OC gene expression were not significantly affected by treatment with a static pressure load of 527
Pa conducted by the Ti6Al4V cylinders, although OC expression rates were slightly downregulated.
Col1A1 and ALP transcripts, as well as protein and activity levels, however, were significantly reduced
in loaded samples. Similar findings have been described by Pioletti et al. [21] after the application of a
comparable pressure load of 500 Pa to MG-63 osteoblast-like cells. They found that cell viability was
not affected by loading, while load alone was more potent to downregulate the tested genes (COL1A1,
COL1A2, OC, and Osteonectin) than load with micromotion. Nevertheless, in our study, TIMP1 mRNA
transcripts were significantly higher in loaded samples compared to the untreated control and MMP1
gene expression was undetectable, indicating that bone matrix degradation could be inhibited [47]. In a
previous study, with the same design as in the current study, Ziebart et al. [20] described an increase
in metabolic activity after stimulation with 25 µm sine micromotions, while Col 1 protein synthesis
and gene expression were decreased and ALP activity was not significantly affected. However, our
results showed a different response to stimulation. While the metabolic activity was not significantly
affected by micromotions in the present study, procollagen type 1 protein synthesis rate and ALP
activity were significantly higher after stimulation with 25 µm peak-to-peak amplitudes compared to
100 µm. Additionally, COL1A1 and ALP gene expression rates were also increased. This might indicate
that cell proliferation and differentiation can be influenced by the surface applying the micromotions,
resulting in different amounts of shear stress and cell adherence [5,48]. Although it must be noted
that Ziebart et al. [20] did not normalize procollagen type 1 concentrations to total protein content.
Therefore, results might differ. Future experiments will establish whether different surface designs are
able to trigger specific cellular behavior. Concurrent with previous findings of our working group
OC gene expression was significantly increased after treatment with 25 µm micromotions compared
to the loaded control [20]. Furthermore, OC mRNA transcripts were significantly upregulated in
comparison to stimulation with 100 µm micromotions in both single and combined stimulation,
indicating more advanced osteogenic differentiation. However, since we have so far only performed a
three-day stimulation, we have focused on the osteoblastic calcification capacity only by analyzing
the induction of osteocalcin on the mRNA level. As this osteogenic marker was significantly induced
by micromotions, we will investigate the protein production of this biomarker in the cell culture
supernatant in further studies with longer stimulation periods.

In line with our observations, a consensus in the literature revealed sufficient osseointegration in
the presence of interface micromotions of up to 30 µm, while displacements larger than 40 µm seemed to
compromise or inhibit the incorporation of non-vital components into living bone [5,12–15,20]. Further,
Nishioka et al. found an increase in ALP, collagenous protein synthesis, and DNA synthesis after the
application of mechanical stress to osteoblast-like cells [49]. Interestingly, not only bone formation but
also bone resorption seemed to be affected by the application of mechanical stress implemented by
micromotions in our study as TIMP1 mRNA was significantly upregulated after treatment with 25 µm
micromotions compared to the loaded control indicating an influence of mechanical stress on bone
remodeling processes.

We initially assumed that the combination of different biophysical stimuli could further enhance
osteogenic proliferation and differentiation as shown in other studies [40,50]. However, our results
indicate that a combination of micromotions and electrical stimulation using capacitively coupled
alternating electric fields is not superior to sole stimulation performed by micromotion and can even
lead to significantly lower osteocalcin expressions. This might be due to major reasons: first, the electric
field is diminished almost to 0 mV/m by the Ti6Al4V bodies, as seen in the numerical simulation.
Solely at the edges of the bodies do field enhancements lead to approximately the same field strengths
as without a titanium body. Therefore, it can be assumed that only a limited number of osteoblasts
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are supplied with substantial field strength. The experimental setup revealed that the capacitively
coupled electrical fields were predominantly shielded by the conductive surface of the Ti6Al4V bodies.
An increase in the input voltages would therefore not be beneficial for the cells located directly below
the titanium body. We are aware that this fact is a clear limitation, but we can deduct from this finding
that the capacitive coupling of an electric field in combination with a conductive metallic implant
might not increase osseointegration in the clinical setting as the implant surface would shield the
electrical fields for the cells at the implant periphery. For this purpose, a different arrangement will
have to be realized, e.g., the implant itself represents the electrostimulative unit. Such an experimental
arrangement would also be conceivable as an experimental setup in future investigations.

Nevertheless, our present data show that the electrical stimulation of loaded samples with 1 VRMS

led to significantly higher ALP activity and reduced procollagen type 1 protein levels compared
to the loaded control, similar to our findings following the electrical stimulation with 100 mVRMS.
Additionally, TIMP1 gene expression was increased after the treatment with Ti6Al4V bodies and
1 VRMS electrical stimulation compared to the loaded control.

A second reason could be attributed to the piezo effect. When stimulating with micromotions, a
voltage is generated due to the piezoelectric effect of the scaffolds’ collagen matrix [51]. The origin of
this effect, which was first described for collagen by Fukada et al. in 1967, is supposed to be due to the
polarization or displacement of hydrogen bonds being formed in the polypeptide chains of collagen
crystals and appears when shearing force is applied to the collagen fibers [52,53]. The extent to which
these voltages interact with the field of electrical stimulation must be validated in further experiments.
Another explanation might be due to overstimulation of the osteoblasts. However, an overstimulation
through the different electrical fields is rather unlikely considering the low electric field strengths
compared to other working groups, using inductive [26,41] or capacitive coupling [28–32], and the
overall reduction of the electrical field by the Ti6Al4V bodies.

In our study, we were not able to detect MMP1 and RANKL transcripts in amounts high enough for
analysis. This must be considered, when interpreting the bone remodeling markers TIMP1 and OPG,
whereas bone formation and resorption is supposedly regulated by a balance between active TIMPs and
MMPs [47] as well as OPG and RANKL [54]. Moreover, different cell types are involved in this process
limiting the outcome of this study. Therefore, the influence of biophysical stimulation on osteoclastic
cells as well as co-cultures with osteoblasts and osteoclasts are subjects of future studies. This work
aimed to analyze the impact and possible interactions between the application of mechanical stress and
electric fields. Therefore, only two different parameters were selected for each biophysical stimulus,
putting the emphasis on the mode of stimulation. However, due to the substantial reduction of the
electric field caused by the Ti6Al4V bodies only the application of 1 VRMS was analyzed for combined
stimulation and electrical stimulation in loaded samples. In future experiments, further parameter
configuration can be investigated. Nevertheless, considering the necessity of remarkably high energy
input to form electric fields comparable to direct stimulation, we recommend the establishment of
different variations of electrical stimulation for future investigations, such as semi capacitive and
inductive stimulation.

5. Conclusions

Our results show that metabolic activity, protein synthesis, and gene expression can be significantly
influenced by the application of low capacitively coupled electric fields. We also found that mechanical
stress of 25 µm micromotions conducted by the roughened surface of the Ti6Al4V bodies led to
significantly higher amounts of OC and TIMP1 gene expression, while procollagen type 1 synthesis rate
and ALP activity were also significantly increased compared to 100 µm micromotions. Furthermore,
we were able to implement a system that enables the investigation of human osteoblasts after the
combined biophysical stimulation of capacitively coupled alternating electric fields and harmonically
oscillating micromotions. In future studies, different variations of electrical stimulation such as semi
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capacitive and inductive stimulation will be validated in combination with interfacial micromotion.
Investigations on capacitive coupling without the interference of titanium bodies should also be realized.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/9/1995/s1,
Figure S1: Influence of a static pressure load of 527 Pa conducted by titanium bodies (load) on osteoblastic
viability (A) and expression of osteogenic markers (B–D). Human osteoblasts were seeded on collagen scaffolds
and loaded with Ti6Al4V bodies for three days. Untreated cells served as control. (A) The metabolic activity was
determined colorimetrically by the conversion of tetrazolium salt to formazan (WST-1, n = 23). (B) Synthesis
rates of procollagen type 1 and alkaline phosphatase (ALP) (untreated cells served as control). The release of
procollagen type 1 propeptide in the cell culture supernatant was determined using ELISA and related to the
total protein concentration. The ALP activity was determined colorimetrically by the hydrolysis of p-nitrophenyl
phosphate (both: n ≥ 21). (C,D) Relative gene expression of osteogenic markers for bone formation: collagen
type I alpha 1 chain (COL1A1), alkaline phosphatase (ALP) and osteocalcin (OC) and bone remodeling: tissue
inhibitor of metalloproteinase 1 (TIMP1) and osteoprotegerin (OPG). Gene expression of COL1A1, ALP, OC (all in
Figure B), TIMP1, and OPG (both in Figure C) was determined via semi-quantitative polymerase chain reaction
(qPCR). Results are presented as the percentage of 2(−∆∆Ct) related to the untreated controls (n = 23). All data
are presented as box plots related to the untreated controls. ** p < 0.01; *** p < 0.001 compared to the untreated
controls (Wilcoxon’s signed-rank test).
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