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 EdItOr’s cAOrnEr EdItOr’s cOrnEr

The holy grail of anticancer therapy is 
to selectively eradicate malignant cells 
while sparing their normal counterparts. 
Tremendous progresses have been made in 
this sense during the past decade, as dem-
onstrated by the development and subse-
quent integration into the clinical routine 
of ever more effective and safe therapeutic 
agents.1 Among these, chemical inhibi-
tors of oncogenic drivers such as vemu-
rafenib (an inhibitor of mutated BRAF 
currently employed for the treatment of 
melanoma),2,3 and highly specific mono-
clonal antibodies such as trastuzumab (an 
ERBB2-targeting antibody nowadays used 
for the treatment of several ERBB2+ solid 
tumors including breast carcinoma)4-6 
have contributed to significantly decrease 
the side effects associated with antineo-
plastic regimens and, simultaneously, to 
increase their therapeutic potential.1

Thus, the introduction of targeted anti-
cancer agents has considerably improved 
the life expectancy of (at least some sub-
sets of) cancer patients. In most cases, 
however, the therapeutic benefits of this 
approach are paradoxically limited by its 
own specificity. Indeed, only a few tumor 
types, when not a single one, can be suc-
cessfully treated with a highly specific 
chemo- or immunotherapy, owing to the 
restricted expression pattern of the drug 
target.7,8 Moreover, cancer cells can adapt 
quite rapidly to a very specific selective 
pressure, such as that posed by targeted 
anticancer agents, by downregulating one 
(or a few) protein(s), a mechanism that 
also intervenes in the escape of tumor cells 
from immunosurveillance.9 Conversely, 
traditional chemotherapeutics—which are 
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generally employed as a first-line treatment 
against a variety of tumors—exert anti-
neoplastic effects by targeting functions 
that are preferentially, but not exclusively, 
present in tumor cells. As a consequence, 
these cytotoxic chemicals are frequently 
associated with mild to moderate adverse 
reactions in a consistent proportion of 
patients. The identification of agents that 
preferentially kill cancer cells remains 
therefore subject of intense investigation.

The notion that viruses may constitute 
specific antineoplastic agents is not par-
ticularly novel, but oncolytic virotherapy 
has emerged only recently as an actual 
therapeutic alternative.10 A large panel of 
viruses has been tested and genetically 
engineered in this sense, including (but 
not limited to) the herpes simplex virus 
(HSV), the Newcastle disease virus and 
several distinct adenoviruses.11 Oncolytic 
viruses mediate antineoplastic effects by 
preferentially infecting and killing can-
cer cells while simultaneously activating a 
tumor-specific immune response.10,11 Early 
attempts to exploit viruses as antineoplas-
tic agents were not especially promising, 
as naturally occurring viral strains exhibit 
a limited selectivity for malignant cells 
and often result in disseminated infections 
as they spread to neighbor, non-malignant 
tissues. The advent of recombinant DNA 
technology allowed for the genetic engi-
neering of viral strains with improved 
specificity and immunostimulatory poten-
tial.12 HSV was among the first viruses to 
be characterized and developed for onco-
lytic virotherapy, owing to the facts that 
was genetically well characterized, exhibits 
an elevated lytic potential and is relatively 

safe for use in humans. More than ten 
years ago, Kucharczuk et al. developed a 
genetically engineered variant of HSV-1, 
HSV-1716, which is unable to replicate 
in normal post-mitotic cells owing to the 
deletion of RL1 (coding for the neuro-
virulence factor ICP34.5).13 A few years 
later, BioVex Limited, now part of Amgen, 
developed a second-generation HSV-1 
variant that lacks not only RL1 but also 
the gene coding for ICP47, another neu-
rovirulence factor that primarily functions 
to inhibit antigen presentation by infected 
cells.14 The virus was also engineered to 
drive the secretion of the immunostimu-
latory cytokine granulocyte-macrophage 
colony-stimulating factor (GM-CSF),14 
mainly intended at recruiting immune 
cells at the site of infection.15

On March 19th, 2013, Amgen 
announced encouraging results of a Phase 
III clinical trial testing the antineoplastic 
activity of this recombinant virus, talimo-
gene laherparepvec, in melanoma patients. 
In previous Phase I and II clinical trials, the 
biweekly intratumoral administration of 
talimogene laherparepvec (formerly known 
as OncoVEXGM-CSF) to patients with vari-
ous solid tumors, including unresectable 
melanoma, was well tolerated.16,17 At the 
injection site, tumor cell necrosis coupled to 
a local inflammatory reaction involving the 
expression of GM-CSF and the recruitment 
of various immune cells was documented.16 
In addition, the administration of talimo-
gene laherparepvec to melanoma patients 
was associated with an overall response 
rate, according to the Response Evaluation 
Criteria In Solid Tumors (RECIST), 
of 26%,17 prompting the initiation of 
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several Phase III clinical studies, includ-
ing OPTiM (OncoVEXGM-CSF Pivotal 
Trial in Melanoma, www.clinicaltrial.gov 
NCT00769704).18

This global, randomized, open-
label Phase III trial enrolled more 
than 400 patients bearing unresectable 
Stage IIIB, IIIC or IV melanoma to evalu-
ate the safety and therapeutic profile of 
intratumoral talimogene laherparepvec, as 
compared with subcutaneous GM-CSF. 
In a recent press release, Amgen’s inves-
tigators reported a significant difference 
in the durable response rate, defined as 
the rate of complete or partial response 

lasting continuously for at least six months, 
between the talimogene laherparepvec and 
the control arm (16% vs. 2%). Fatigue, 
chills and fever were the most prominent 
adverse events. Of note, overall survival 
data are not yet available, but are expected 
for the end of 2013.

These results suggest that oncolytic 
virotherapy may soon become an actual 
therapeutic option for the clinical man-
agement of melanoma. This said, there 
are several aspects that remain to be clari-
fied for understanding whether oncolytic 
viruses may also be employed one day to 
treat other, less immunosensitive tumors. 

Several studies indicate indeed that the 
therapeutic effects of oncolytic viruses 
depend, at least in part, from the elicita-
tion of tumor-specific immune responses.12 
In this sense, melanoma (together with 
renal cell carcinoma) surely constitutes a 
relatively privileged setting. Further stud-
ies will have therefore to elucidate whether 
oncolytic virotherapy is sufficient to trig-
ger a therapeutic immune response against 
all types of solid tumors or whether—most 
likely—combinatorial regimens involving 
one or several immunostimulatory agents 
will be required to fully exploit the anti-
neoplastic potential of oncolytic viruses.
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