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Abstract: Agarose photothermal microfabrication technology is one of the micropatterning tech-
niques that has the advantage of simple and flexible real-time fabrication even during the cultivation
of cells. To examine the ability and limitation of the agarose microstructures, we investigated the
collective epithelial cell migration behavior in two-dimensional agarose confined structures. Agarose
microchannels from 10 to 211 micrometer width were fabricated with a spot heating of a focused
1480 nm wavelength infrared laser to the thin agarose layer coated on the cultivation dish after the
cells occupied the reservoir. The collective cell migration velocity maintained constant regardless of
their extension distance, whereas the width dependency of those velocities was maximized around
30 micrometer width and decreased both in the narrower and wider microchannels. The single-cell
tracking revealed that the decrease of velocity in the narrower width was caused by the apparent
increase of aspect ratio of cell shape (up to 8.9). In contrast, the decrease in the wider channels
was mainly caused by the increase of the random walk-like behavior of component cells. The re-
sults confirmed the advantages of this method: (1) flexible fabrication without any pre-designing,
(2) modification even during cultivation, and (3) the cells were confined in the agarose geometry.

Keywords: photothermal microfabrication; agarose; collective cell migration; epithelial cells

1. Introduction

Recent advancements in microfabrication technologies enabled researchers to examine
the dynamics of singe-cell-based cellular networks in the confined microstructures [1,2].
Microetching and microprinting are two major complementary approaches to form the
confined spatial arrangement of cells. The former is based on the semiconductor etching
technology with photolithography or three-dimensional polymer structures [3,4]. Their
advantages are strict physical control of cell positions in the desired complex spaces of mi-
crostructures for assessing cell behaviors. However, the pre-designing of photomasks and
complicated exposure–development procedures are required for this approach. Especially,
the process of alignment adjustment of photomasks requires experienced techniques. In
contrast, the latter microprinting technology is simple stamping of adhesion factors on
the flat substrate to control the spatial distribution of cells [5,6]. Adding to the simplicity,
stepwise activation of stamped thermoresponsive molecules for direct control of neurite
elongation in pre-designed patterns during cultivation was recently reported [7]. However,
in both technologies, the designs are pre-determined by the photomasks or stamps and
thus renders difficult the preparation of changes in complex structures and additional
micropatterning after the cells are seeded onto the microengineered environment.

One of the intriguing applications of these microfabrication technologies is for spa-
tiotemporal regulation of collective cell migration for analysis. By using the microstructures
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or microprinted patterns, these structures can confine the cell migration in the artificially
defined geometries. In recent years, various research groups have utilized microfabrica-
tion technologies to confine collective cell migration inside spatiotemporally restricted
environments [8–14]. In their research, especially studies on two-dimensional sheets of
epithelial cells have proposed at least two dominant mechanisms of the directional motion
of epithelial cells [12]. One is that all the follower cells in the monolayer cells are regulated
by the leading front cells [15–18]. Another factor is that the mechanical force transmission
also contributes to maintaining the directional movement of cells [19]. For two-dimensional
analysis of Madin–Darby canine kidney (MDCK) epithelial cell sheets, the width depen-
dence of their propagation was analyzed in the stamped fibronectin patterns and concluded
that the average migration velocity of the leading edge of the monolayer was linearly pro-
gressed and independent of distance in each width. Furthermore, the velocity varied
depending on the width of the strips, increasing from 22 µm/h in the wider one (400 µm)
to 39 µm/h in the narrower channel (20 µm) [9]. Similar results were reported featuring
the migration of MDCK cells inside the cell-repellent polyethyleneglycol-dimethacrylate
(PEG-DMA) microchannels (100 µm–300 µm) [11]. In their report, the single-cell tracking
in the one-sided cell sheet revealed the two dominant factors of collective cell migration,
a constant directed cell migration and a diffusion-like behavior, which is enhanced in a
higher density gradient.

The technology was also applied for the fabrication of three-dimensional tubular
structures for analysis of tubulogenesis and cell sheet extension. Xi et al. formed the
tubular structures (25 µm to 250 µm in diameter) by solidifying polydimethylsiloxane
(PDMS) around wires of varying diameters [14]. They also found that the average front
velocity of the formed tubular MDCK cell sheets inside microtubes was constant and
independent of the displacement distance. Furthermore, an increase in migration velocity
was observed as the tube diameter increased, which was in contrast to the results of the
investigation involving a two-dimensional sheet. As demonstrated in the above reports,
the constructive approach can simplify the convoluted circumstances of the cell sheet
environment and can facilitate the analysis for elucidating the undiscovered rules in
collective cell migration behavior. However, all these achievements were limited to the cell
migration behaviors in fixed confined structures. To understand the dynamic response of
cell sheets after the sudden change of environment such as wound healing, technology
with a flexible change of micropatterns during cultivation is needed.

To overcome the limitations of conventional microfabrication technologies, we have
developed another microfabrication technology based on agarose photothermal etching.
This technique can create micrometer-sized engineered structures by melting a portion of
the agarose layer, regardless of whether the cells are present or not, without any photomasks
nor complicated development–exposure procedures [20]. Exploiting the advantages of this
method, we have been able to perform additional processing during cell culture, which
was difficult using existing methods [21].

In this report, we applied the agarose microfabrication technology for the analysis
of collective cell migration in two-dimensional confined structures and examined the
ability and limitation of this technique. The advantages of this analysis method are that
the starting condition of the extension of cells from the reservoir can be regulated by the
agarose etching after the cells proliferated in the reservoir chamber, and also the wide
range of size control for microfabrication of topographical constraints.

2. Materials and Methods
2.1. Cells

We experimented with mouse-derived endothelium-like cell line (MILE SVEN 1 (MS1);
CRL-2279, ATCC, Manassas, VA, USA). The cells were cultured under 37 ◦C and 5% CO2
concentration and subcultured after about 5 days of incubation. The culture medium
used throughout this experiment was Dulbecco’s modified Eagle’s medium (DMEM :
Gibco, Thermo Fisher Scientific, Waltham, MA, USA) with 10% heat-inactivated fetal
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bovine serum (FBS: Gibco, Thermo Fisher Scientific, Waltham, MA, USA) and 100 U/mL
penicillin-streptomycin (Gibco, Thermo Fisher Scientific, Waltham, MA, USA).

2.2. A 1480 nm Laser Photo-Thermal Agarose Microfabrication System

The agarose microfabrication system (schematic shown in Figure 1a) consists of a
laser system (RLM-1-1480, IPG Laser, Oxford, MA, USA) equipped with an inverted bright-
field microscope (IX70, Olympus, Tokyo, JAPAN). The 10X objective lens attached to the
microscope focuses the 1480 nm wavelength laser beam emitted from the laser system. The
laser beam irradiation was regulated by using a shutter controller (FSH-C, SIGMA KOKI,
Tokyo, Japan) which can be controlled manually or by an automated regulation system
modulated by a computer program. The motorized XY microscope stage is controlled by
the joystick controller (FJ-401B, SIGMA KOKI, Tokyo, Japan) and operated through the
feedback Stage Controller.

(b)

(a)

Raman fiber laser

1480 nm IR laserCCD Camera

Monitor

Dichroic mirror
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Objective lens

Motorized XY 
microscope stage Focused IR laser
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Figure 1. Photothermal agarose microfabrication technology for assessing collective cell dynamics.
(a) Schematic of the agarose photo-thermal microfabrication device system. A 1480 nm wavelength
infrared (IR) laser beam is focused by the objective lens onto the culture dish (w/agarose coating
and water) and absorbed by the water present. The induced heat melts a portion of agarose coating
locally, generating agarose removed areas where the cells can adhere. Controlling the motorized
XY microscope stage manually or via program enables the fabrication of patterns accordingly to the
user’s interest. (b) Magnified schematic of the agarose coated cultivation dish with laser irradiation
for fabrication. (c–e) Method of photothermal microfabrication of straight microchannels on one-side
of agarose. First, mouse-derived endothelium-like cell line, MILE SVEN 1 (MS-1) cells were seeded
and adhered on the reservoir chamber (c). When the cells proliferated and became confluent in the
reservoir, micorchannels were formed with focused IR laser (d). The shapes of microchannels were
fabricated through the movement of XY microscope stage (e).
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2.3. Microfabrication of Agarose Structures in the Thin-Coated Agarose Layer on the
Cultivation Dish

A 35 mm tissue culture dish (AGC TECHNO GLASS, Shizuoka, Japan) was uniformly
coated with 2.5 wt.% low melting point agarose (Promega, Madison, WI, USA) by using
the spin coater (IH-D7, MIKASA, Tokyo, Japan) with the setting, 500 rpm for 3 s followed
by 3000 rpm for 18 s. After coating a thin layer of agarose on the tissue culture dish
and letting it rest for 5 minutes, the dish was filled with distilled water and placed on
the microscope stage of the the photo-thermal agarose microfabrication system. Using
the microfabrication system described above, the portion of agarose was dissolved by
locally heating the water with the irradiation of the focused 1480 nm laser beam. The
pattern of interest was microfabricated manually or by operating a Labview program
that automatically controls the x and y direction of the motorized XY microscope stage
and the shutter controller. The progress of the microfabrication was monitored through
the Charged-Coupled Device (CCD) camera (CS-230, Olympus, Tokyo, Japan) which
was projected to the connected monitor (PVM-14M1J, SONY, Tokyo, Japan). After the
fabrication of agarose microstructures has been finished, the distilled water was washed
and replaced with DMEM medium for cell culture. For the additional microfabrication
during cultivation, the culture dish containing MS-1 cells and DMEM growth medium was
set on the microscope stage of the system, and the alignment of the melting position of
agarose microstructure was matched visually on the CCD camera image.

2.4. Cell Cultivation in Agarose Microstructures

A 1 mm (width) to 2 mm (length) dimension reservoir chamber was fabricated on the
thin agarose layer coated on the 35 mm tissue culture dish using the agarose microfabrica-
tion system as described above. The dish was washed with DMEM medium three times
and filled with 2 mL of fresh DMEM medium. Then, 3 × 104 cells MS-1 cells were seeded
on the tissue culture dish and incubated at 37 ◦C under 5% CO2. After about one hour
of incubation, the cells over the reservoir chamber attached and adhered to the bottom
surface of the cultivation dish. The other cells over the agarose coating region could not
adhere and remained inside the supernatant. The DMEM medium was exchanged with a
fresh DMEM medium to remove the excess cells in the supernatant from the dish. After the
cells reached near confluence in the reservoir chamber, the microchannel constraints were
additionally fabricated adjacent to the chamber in the agarose layer to guide cells from
the reservoir chamber. Once the MS-1 cells migrated into the microchannels, time-lapse
recording of the collective cell invasion was captured.

2.5. Time-Lapse Recording and Analysis of Cellular Dynamics

Time-lapse of every 10 min interval images of the cells inside the topographical
constraints were taken by a CCD camera (CytoWatcher WSL-1800, ATTO, Tokyo, Japan) in
the CO2 incubator (MCO-19AIC(UV), SANYO, Osaka, Japan) until they reach the end of
the one-ended microchannels. From the obtained time-lapse images, the front cells, the
observable leading edges, and particular single cells in the cell sheets were tracked by
utilizing the MtrackJ plugin of Java language-based image processing program, ImageJ
(NIH, Bethesda, MD, USA). By manually tracking the positions of the cells for image slices
of 10 min intervals, the displacements and average migration velocities of the collective
cellular flow inside two-dimensional confinement were measured. The aspect ratio of
single cells in the cell sheets was also measured manually with ImageJ after creating binary
images of the single cell. The value of the aspect ratio was evaluated as:

Aspect ratio =
Length o f major axis
Length o f minor axis

, (1)

where the length of the major axis and the minor axis is the longest and shortest part of the
binarized single-cell image.
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The velocity auto-correlation and cross-correlation of cells in the channels are given
by, C(∆t) = 1

N ∑N
i=1 ~vA(ti) · ~vB(ti + ∆t), where ∆t is the given time difference, N is the

total time steps, ~vA(ti), and ~vB(ti) are the velocity vector of cell A and cell B at time ti,
respectively. When cell A and cell B are same, C(∆t) is an auto-correlation. In contrast,
when cell A and cell B are different, C(∆t) is a cross-correlation.

2.6. Statistical Analysis

All statistical values of propagation velocities are presented as mean ± standard devia-
tion (S.D.) of 10 min interval recorded propagation velocities (unless stated otherwise). The
normality of the acquired data was evaluated by the Shapiro–Wilk test. These propagation
velocities were also evaluated using the F-test and following t-test. p < 0.05 was considered
statistically significant. The Shapiro–Wilk test, F-test, and t-test were performed using R
(R Foundation for Statistical Computing, Vienna, Austria).

3. Results
3.1. Epithelial Cell Cultivation in Agarose Microstructures

The schematic of the photo thermal agarose microfabrication system is presented in
Figure 1a. The emission of the focused 1480 nm wavelength infrared (IR) laser is regulated
by the shutter controller and irradiated via the objective lens. When the laser is exposed to
the agarose-coated culture dish containing water (or DMEM medium), the water absorbs
the laser and emits heat. Consequently, a portion of the agarose layer at the focused laser
area (directly under the heat source) melts, enabling µm resolution microfabrication of
patterns of interest. Finally, as the thin agarose layer coated on the cultivation dish prevents
the adhesion of cells on the dish, the vascular endothelial cells can attach only to the
exposed region of the tissue culture dish for proliferation.

The microfabrication process is illustrated schematically in Figure 1b–e, demonstrating
the additional fabrication of a channel adjacent to the cell reservoir chamber. The reservoir
chamber was prepared using the aforementioned device and MS-1 cells were seeded onto
the culture dish (Figure 1c). The cells adhered only to the exposed reservoir region. After the
cells proliferated and the chamber became nearly confluent, one-sided microchannels were
fabricated on the lateral agarose walls by controlling the motorized XY stage (Figure 1d,e).

The micrographs (Figure 2) represent the actual images of the microfabricated reser-
voir and microchannels. First, we fabricated the 1 × 2 mm reservoir chamber on the
agarose layer of the dish (A micrograph, Figure 2a and its schematic drawing, Figure 2e).
Then, 3 × 104 cells MS-1 cells were seeded on the cultivation dish, and only the cells in
the reservoir chamber adhered (Figure 2b,f). After the MS-1 cells proliferated and became
confluent in the reservoir, microchannels were added to the reservoir chamber (Figure 2c,f).
The culturing dish was placed on a timelapse capturing device inside the CO2 incuba-
tor to observe the cell migration phenomenon from the cell reservoir into the channels
(Figure 2d,g).

In this experiment, as demonstrated in Figure 2, we confirmed that we can form
the desired collective cell migration patterns in the confined agarose structures. The
MS-1 cells were captured within the walls of agarose etched patterns of the reservoir and
microchannels, and no cells climbed over these walls. With this two-step microfabrication,
we also can observe the expansion of MS-1 cells from the confluent cell reservoir to a series
of newly added microchannels simultaneously (Figure 3 and Video S1). Moreover, during
the additional microfabrication process of microchannels, the laser was emitted near the
cells in the reservoir. However cell apoptosis was not observed during their movement into
the microchannels (Figure 3 and Video S1. Thus, indicating that this photo-thermal etching
technique is harmless to cells, allowing additional etching even after cells are seeded.
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(a) (b) (c) (d)

Agarose coating MS-1 cells MicrochannelsCell reservoir chamber

(e) (f) (g) (h)

Figure 2. Application of agarose microfabrication technology for assessing collective cell dynamics
in microchannels. (a–d) Micrographs of the stepwise microfabrication of channels for collective cell
migration analysis. To display the whole image of the reservoir chamber and the microchannels as a
micrograph, two micrographs (the left half of the chamber image and the right half of the chamber
image) were taken and combined. (e–h) Schematics of Figures (a–d), respectively. (a,e) Agarose
reservoir chamber was fabricated by melting a part of the agarose coating. (b,f) MS-1 cells were
applied into the culture dish and adhered to the reservoir. (c,g) After MS-1 became nearly confluent,
microchannels were formed in the agarose coating. (d,h) Cells were expanded into the microchannels.
Bar: 300 µm.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
MicrochannelsCell reservoir chamber Microchannels

20 µm

46 µm

131 µm

184 µm

20 µm
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20 µm

46 µm

131 µm

184 µm

Figure 3. Time course images of collective migration of epithelial cells into the newly formed
microchannels. (a) is the schematic drawing of the agarose micropatterns fabricated on the cultivation
dish. Each 10 frame intervals of the supplement 10 min time-lapse movie is picked up from (b–j).
(b) a micrograph just after microchannels fabricated using photothermal etching of focused IR laser;
(j) 900 min later. Bars: 100 µm.

Adding to the ability and the advantage of the photothermal agarose microfabrication
technique explained above, it should be noted that there is another major advantage about
the simplicity and flexibility of this technology for collective cell migration analysis. All of
these microfabrication procedures were operated manually while monitoring the process
of photothermal etching of agarose layer with CCD camera images, which can acquire the
1480 nm wavelength light. The sizes, shapes, and positions of those microstructures are
governed by the position of the microscope stage and the intensity of the IR laser, which are
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variables that are controllable to the user. In this experiment, we formed the microchannels
from 10 µm to 211 µm in width with this simple spot-heating method. The photo-thermal
etching technique introduced here is a direct fabrication method where the user can decide
the dimension of the pattern during the fabrication process. Unlike the conventional
microfabrication systems, it is unnecessary to prepare photomasks or microstamps in
advance for this microfabrication. Therefore, this microfabrication technology requires no
cleanroom circumstances and conventional microfabrication equipment.

3.2. Width Dependency of Collective Cell Migration

Collective cell migration was observed inside straight channel constraints of various
widths ranging from 14 µm to 211 µm (Figure 4a,b). As exhibited in the micrographs, collec-
tive cell migration was observed in all the microchannels from 14.2 µm (top microchannel
in Figure 4a) to 211 µm (bottom microchannel in Figure 4b) simultaneously. In the narrower
microchannels, cells exhibited similar aligned elongated single cells in the direction of the
channel, whereas the shapes of cells in the wider channels were varied.
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Figure 4. Collective cell migration in various width of agarose microchannels. (a) Micrograph of
collective cell migration of MS-1 cells in 14.2, 15, 16.7, and 27.8 µm width agarose microchannels,
respectively (from top to bottom). (b) Micrograph of collective cell migration of MS-1 cells in 58.0,
135, and 211 µm width agarose microchannels, respectively (from top to bottom). (c) Time course
of collective cell migration in various widths of microchannels from 14 µm to 211 µm. The slopes
represent the propagation velocity of their migrations. (d) Channel width dependence of migration
velocity (mean ± S.D.). The peak velocity was observed around 30 µm width microchannels (inverse
triangle). (e) Significance test of narrower width (14 µm), peak velocity width (27 µm), and wider
width (55 µm) samples of (d). *** p < 0.001 unpaired Student’s t-test. Bars: 100 µm.
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First, we examined the propagation distance dependence of the migration velocity
along the direction of each microchannel. The time course propagation distance from the
reservoir for each channel is collectively expressed in Figure 4c. The slope of each sample
was maintained constant including fluctuation regardless of the propagation distance from
the reservoir at least in the range of 900 µm. Additionally, no tendency of deceleration
was observed which indicates that the propagation velocities of collective cell migration in
agarose microchannels were independent of the distance of the cell reservoir. Hence, this
result suggests that the velocity is dominated mainly by the width of the microchannels
rather than by the propagation distance. This phenomenon is similar to the previous
report in the MDCK epithelial cell sheet migration on fibronectin stripes and PEG-DMA
microchannel [9,12].

To reevaluate the influence of the spatial restriction on the cell migration phenomenon,
the width dependence of the migration velocity was examined. The average migration
velocities in various widths of microchannels are also expressed in Figure 4d. As shown in
the graph, the fastest velocity was observed in microchannels around 30−40 µm in width
becoming 0.230 µm/min, and the speed decreased both in narrower and wider microchan-
nels. The decrease in the narrower microchannels demonstrates a linear correlation to the
width of microchannels. In contrast, the decrease in the wider microchannels moderated
and eventually saturated to a stable constant value.

Statistical significance of this one-peak and two-deceleration manner was also tested.
As shown in Figure 4e, the collective cell migration velocities in 14 µm, 27 µm, and 55 µm
width samples were tested as the narrower velocity, peak velocity, and wider velocity
samples, respectively. The results showed that both the narrower velocity and the wider
velocity from the peak velocity became slower, and they were statistically significant
(p = 2.8 × 10−5, 2.2 × 10−16, respectively).

To explain this one-peak and two-deceleration manner, at least two fluid-like factors
were hypothesized to contribute to this velocity reduction, such as (1) cell morphology in
compressed channels in narrower microchannels, and (2) decrease due to the increase of
random walk-like behavior in wider microchannels. To further investigate the possibility
of the above two factors, single-cell tracking was conducted for cells inside narrower
microchannels and wider microchannels.

3.3. Single Cell Tracking in the Collective Cell Migration in Narrower Microchannels

As exemplified in Figure 5a, the shape of single cells in the microchannels in the
narrower channels was significantly different from the cells in the wider channels and the
reservoir. Hence, we examined the relationship between cell morphology and microchannel
width, particularly in the narrower microchannels.

Analysis of single cells inside the narrower microchannels was conducted to identify
the factor of morphology causing the migration velocity reduction in channel widths
smaller than 30 µm. As demonstrated in Figure 5a–c, single-cell images were acquired
from the micrographs of migrating cells in microchannels. Then, those cell images were
binarized to estimate the aspect ratio of those cells (Figure 5d–f). As demonstrated in
Figure 5g, the cell shape analysis revealed an approximately inverse linear correlation
between the channel width and aspect ratio of the cells. In our results, the mean values
of aspect ratio 4.3 in 60 µm width increased gradually and finally reached 8.9 in 10 µm
width. The aspect ratio was greater for cells propagating inside channels of narrower width,
indicating that cells were more elongated as the channel width decreased. As the peak
velocity was achieved in channels around 30 µm, it is possible that an optimal aspect ratio
exists in which the cell cohort can migrate the fastest. Finally, the excessive elongation of
cell shapes appears to be an origin of the deceleration of propagation velocity.

The area analysis was also conducted to investigate the relationship between the area
and the aspect ratio of cells inside different channels (Figure 5h–m). In comparison to
the wider areas, such as the 211 µm channel (Figure 5k–l) and cells inside cell reservoir
chamber (Figure 5m), the narrower channels of 14 µm (Figure 5h), 37 µm (Figure 5i), and
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55 µm (Figure 5j) demonstrate stronger correlation between the aspect ratio and the size of
cells in narrower micorochannels.
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Figure 5. Single cell morphology characteristics in narrower microchannels. (a–c) Examples of
acquired images of single cells in microchannels. Bar: 50 µm. (d–f) Binarized images of single cells of
(a–c), respectively. (g) Microchannel width-dependence of aspect ratio of cell shapes (mean ± S.D.).
In comparison to the wider channels, the cells in the narrower channels maintained elongated cell
shapes. (h–j) Relationship between area and aspect ratio of the cells inside the 14 µm , 37 µm, and
55 µm channels, respectively. Additionally, area and aspect ratio dependence is also analyzed for
211 µm channel, where (k) is the inner follower cells and (l) is the cells in front half of the channel.
(m) The area and aspect ratio analysis of cells inside the cell reservoir area.

It is known that cell cohorts exhibit contraction–elongation-like migration mechanisms
inside narrower channels, inducing a faster migration speed [9]. It is consistent with our
results in microchannels wider than 30 µm. However, in excessively narrow channels
below the width peak such as 30 µm, our results suggest that cells’ aspect ratio increased
significantly, resulting in the decrease in velocity.

Figure 6 exemplifies one of the size distributions of the one-dimensionally organized
cells within the 10 µm width microchannel. The length of the front cell was extraordinarily
long, having the maximum aspect ratio. However, the length of the follower cells seems to
form the smaller cells. In the previous two-dimensional cell sheet studies, it was reported
that the advancing edge of the front cells protrude as leader cells and mechanically attached
follower cells migrated with a density gradient [15–18]. Here, the results indicate even the
linearly organized single cells, which maintain contact solely at the rear and front edges,
follow the protruding leader cell and form shorter cells behind.
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Figure 6. Distribution of aligned single cells in a 10 µm microchannel. (a) Micrograph image of
collective cell migration in 10 µm microchannel. Bar: 100 µm. (b) Binarized image of single cells of
(a). Each color and the number represents a single cell. (c) Normalized area distribution of cells of (a).
(d) Normalized average area distribution of cells in 10 µm microchannels (n = 3). (Bars: mean length
of cells; error bars: S.D. of length).

3.4. Single Cell Tracking in the Collective Cell Migration in Wider Microchannels

In the wider channels, the tracking of a single cell in both the vertical and horizontal
directions was conducted. Figure 7 shows the tracking of single cells in 58 µm, 135 µm, and
211 µm width microchannels. Each plot represents the position of the tracking single cell
in an hour interval, and the color of the plots and the connecting lines were altered every
12 plots. As demonstrated in Figure 7, the cells propagating inside wider microchannels
exhibited more fluctuation both in time and trajectory in contrast to the narrower channels
such as 58 µm, in which the cells proceeded straight forward with longer strokes between
neighboring two plots.

To clarify the contribution of fluctuation in collective cell migration velocity, the root-
mean-square end-to-end distance and the root-mean-square total displacement distance
of single cells in each microchannel were calculated and compared. Figure 8 represents
the results of the microchannel width dependence. As demonstrated in the graph, the
end-to-end distance and the total displacement distance in the narrower microchannels
were almost equal. This indicates that the cells migrated straight forward with only minor
fluctuation in displacement. In contrast, the values of these two indices deviated in the
wider channels, suggesting the contribution of randomness in the movement direction
during the propagation of cells. As a result, the random walk-like behavior in the wider
channels causes the migration velocity to decrease overall.
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Figure 7. Tracking of single cells inside collective migration in wider microchannels. (a–c) Micro-
graphs of collective cell migration with superimposed single cell tracking in wider microchannels
having 58 µm (a), 135 µm (b), and 211 µm (c) widths. Each plot shows the position of the cell trac-
ing in 1 h interval and lines connecting those plots to indicate the tracking of single cells in the
microchambers. The colors of plots and lines of each tracking was changed every 12 plots from red,
green, yellow, to blue, respectively, to emphasize the temporal aspect of these tracking intervals.
(d–f) Graphs of those plots and tracking lines of (a–c), respectively. X-direction represents the direc-
tion of microchannel length, and Y-direction represents the direction perpendicular to the direction
of microchannel length or the direction of microchannel width. Bar: 100 µm.
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Figure 8. Evaluation of single cells’ total displacement distance and end-to-end distance in various
microchannels. The tracking of single cells inside collective migration was computed to acquire
the root-mean-square total displacement distance (blue bars) and the root-mean-square end-to-end
distance (orange bars). In channel width axis, ∞ represents the tracking of isolated single cells in the
free space without spatial constraints on the cultivation dish.

Note that the total displacement distance itself has a peak at 27 µm width in this graph.
As aforementioned, the decrease in both the end-to-end and total displacement distance
is observed in the narrower microchannels. However, in the wider channels, the total
displacement distance converged to a constant value after decreasing from the peak value,
whereas the end-to-end distance decreased continuously according to the increase of the
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width of microchannels. The tendency can be explained by two reasons. The constant
values of the total displacement distance indicate the step size of displacement in single cells
is constant. Under this constant condition, the decrease in the end-to-end distance occurs
when the free space of displacement increases. Applying this interpretation, the results of
isolated single cells in free space can be interpreted that the step size of displacement of
isolated single cells was smaller than that of the collective cell migration and the direction
of displacement of isolated single cells was completely random in space.

Figure 9 shows the velocity auto-correlation of cells in the various widths of microchan-
nels. As described in auto-correlation graphs, the cells contain the tendency of coordinated
collective migration behavior rather than the simple random walk-like diffusive movement.
Cross-correlation results also indicate the coordinated behavior of two-component cells in
the wider microchannels.
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Figure 9. The velocity auto-correlation of cells in the microchannels. (a–d) Auto-correlation of
the velocities of cells traced in 10 µm (see Figure 6), 58 µm (Figure 7a), 135 µm (Figure 7b), and
211 µm width channels (Figure 7c), respectively. (e,f) Cross-correlation of two cells in each of 135 µm
(Figure 7b), and 211 µm (Figure 7b) channels, respectively. The auto- and cross-correlation values
C(dt) were normalized by C(0).

3.5. The Strengths and Limitations of Photothermal Agarose Microfabrication Technology

As described above, agarose microfabrication technology was applied for collective
cell migration study. The advantages and limitations of this technology are summarized
in Table 1. As the minimum size of the focus area of the infrared laser is limited by the
diffraction limit of optics, the spatial resolution of photothermal agarose microfabrication
is determined by the wavelength of light.

Recently, we improved the photothermal agarose microfabrication technology by
exploiting the conversion of IR laser into absorption heat on a 0.7 µm diameter platinum-
coated microneedle for more precise microfabrication. This method can overcome and
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complement the potential limitations of photothermal microfabrication, and the diffraction
limit of optics [21].

A quick and simple microfabrication procedure is also another advantage of this
technology. Fabrication velocity is in the range of 100 µm/s for removing the agarose
layer. Hence, when we set the spot size at 10 µm, we can form agarose microstructures in
103 µm2/s resolution.

As this low melting point agarose gel changed into sol state at 60 ◦C, the focused IR
beam does not damage the surface of the cultivation dish under such a weak intensity. In
our previous studies, the collagen or poly-D-lysine layer on the dish was not damaged by
the photothermal fabrication procedure and worked effectively for cardiomyocyte network
study or neuronal network formation studies [21–23].

The cross-sectional image of the photothermal agarose microstructure was reported
previously [24]. In this report, we showed the formation of a sharp rectangular agarose
wall after irradiating a focused IR laser to the thin agarose layer. Hence the narrow and
deep agarose microchannels can be formed within the resolution of the diffraction limit
of optics.

Table 1. Summary of photothermal agarose microfabrication technology.

Specification Value

Spatial resolution (µm) 2
Fabrication speed (µm/s) 100

Modification during cultivation ©
Damage on substrate surface ×

High-aspect ratio wall formation ©
© : Yes, ×: No.

4. Discussion

We evaluated the ability of agarose photothermal microfabrication technology and its
microstructures for collective cell migration studies. We applied the photothermal technol-
ogy for forming one to two mm sized cell reservoir chamber and straight microchannels
from 10–211 µm width in the thin agarose layer coated on the bottom surface of the cultiva-
tion dish. The results demonstrated that the agarose reservoir chamber and microchannels
confined the cells and controlled the direction of collective cell migration within these
confined structures effectively without any cells escaping, such as climbing over or entering
under the boundary walls of agarose structures.

Adding to the ability to restrict cells in the structures, we also examined another
advantage of the photothermal agarose microfabrication technology, which is the additional
microfabrication during cell cultivation. As described in Figure 2c,d, microchannels were
formed after the cells were filled in the reservoir chamber by proliferation to set the timing
of collective cell migrations into microchannels near synchronously. The results also
demonstrated that the additional microfabrication of microchannels using laser absorption
did not induce apoptosis of cells in the reservoir. The cells in the reservoir started to
proceed simultaneously into a series of different sizes of microchannels as soon as the
microtunnels were formed at the edge of the reservoir chamber regardless of the width
difference of channels. Thus, this evidence also supports that the agarose microfabrication
is undestructive for collective cell migration assay. Hence, we concluded that the potential
damage caused by the microfabrication of microchannels during cultivation was minimal
in the experiments.

These results also suggest the potential and possibility of this flexible change of
microstructures during cultivation as one of the next step technologies to assess collective
cell migration inside spatially confined environments. For example, by exploiting the
photothermal etching (during cultivation), the recovery of the wounded tissue model can
be designed by abruptly changing the restriction area of the agarose reservoir chamber.
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In this study, we also introduced some examples of measurement results during the
examination of the ability of photothermal agarose microfabrication technology. Adding to
the conventional findings of the collective cell migration, we confirmed the co-existence of
two factors contributing to the propagation velocity of cells, the cell’s aspect ratio, which
caused the velocity decrease in narrower microchannels, and the induced random walk-like
behavior in wider microchannels. The mean propagation velocity has a peak around 30 µm
width (as shown in Figure 4d), and decreased both in the narrower and the wider mi-
crochannels from this peak velocity. The mean migration velocity in microchannels smaller
than 30 µm decreased as the aspect ratio of cell shapes increased, which is contrasting
with the previous report explaining that the collective migration velocity becomes faster
when the channel width becomes narrower under the condition of the width ranging from
20 µm to 400 µm of fibronectin patterns [9]. The difference may be a result of the confining
material or cell morphology. In the typical fabrication technology attempting to control
the width through fibronectin patterns, the aspect ratio of the cells appears less elongated
than in our system, even in the narrowest width at 20 µm. Other reports also proclaimed a
similar tendency of acceleration in propagation velocity for narrower microchannels [12].
However, here the cells in narrower agarose microchannels increased in aspect ratio, and
the detailed single-cell tracking in our narrower agarose microchannels revealed the corre-
lation between the increase of the shapes’ aspect ratio and deceleration of the cell. Agarose
may have emphasized the increase of aspect ratio of cells in narrower microchannels espe-
cially for cases smaller than 30 µm, whereas other materials in previous reports may not
have influenced the aspect ratio of cells in the range of widths of their experiments.

The tracking of single cells in wider microchannels also exhibited that the decrease
of propagation velocity in collective cell migration was caused by the less coordinated
movement of component cells. This is consistent with the previous reports [9,12] where the
orientation of the cell was introduced as a crucial factor for the increase of the migration
velocity in narrower microchannels. Hence, the decrease in velocity in narrower channels
reported in our above results may not abide by the same principle of the previous reports
and have not been observed before.

The presented results of the propagation velocity in narrower width microchannels
are consistent with the hypothesized dominant mechanism of collective cell migration
that the follower cells in the monolayer cells are regulated by the leading front cells [12].
In Figure 5, we demonstrated that the aspect ratio of single cells increased in narrower
channels. Moreover, the front cells were the longest in this alignment and the follower cells
were shorter (Figure 6).

As exhibited in the wider microchannels (Figure 8), we have observed a decrease
in the end-to-end distance while the total displacement distance was maintained. The
random walk-like behavior of cells in the two-dimensional cell sheets was already reported
using PIV analysis of single-cells and concluded that the collective cell migration is a
mixture of directional motion and diffusive motion [9,12]. This result is also similar to the
emergence of cell swirls reported in the recent paper [25–27]. It includes the idea that the
cells not only spread diffusively but also larger random walk-like fluctuation, in which the
movement was occasionally against the direction of diffusion (see Figure 7), appeared in
the wider microchannels.

The above results were the observation of collective cell migration in the open-ended
confined geometries exploiting microfabrication technologies regardless of the contribution
of extracellular matrix or hydrogels. As the stiffness of agarose gel is in the range of
1 × 10−2 N/m2, the difference of stiffness of agarose microstructures against stiffer PDMS
structures might have induced different behavior of collective cell migration [28]. How-
ever, to understand how tissues or organs attain their shapes, we need to consider the
contribution of cell migration through the extracellular matrix (ECM) and its effect on
the self-organization of cells into tubular structures [29,30]. Especially the importance
of stiffness of ECM in cell migration and invasion was reported [31]. Tumor invasion
in the thin confined geometry of ECM-based microchannels revealed that the migration
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velocity of cells in those thin microchannels was much faster than those in wider ECM
microchannels caused by the increased polarization of cell-ECM traction forces, which
increased as ECM stiffness rise [32]. When we take into account that the agarose walls are
non-adhesive and thus do not allow for the attachment of stress fibers to walls, the results
for the excessively thin agarose microchannels showing lower migration speeds might
be explained.

In this report, we examined the advantages of photothermal agarose microfabrication
technology for the application of collective cell migration study. As the next step of agarose
microfabrication technology for studying collective behavior should be about the migration
in more complicated structures and focusing on the interactions of cells when exposed to
abrupt micropattern changes. These responses should elucidate further veiled rules that
govern collective cell migration for more precise and practical model formation.

5. Conclusions

We applied the photothermal agarose microfabrication technology for collective cell
migration measurement. The technology was successfully adopted and acquired the width-
dependent propagation manner from 10 µm to 211 µm. The cells propagated from the
reservoir remained inside the etched microchannels and no cells exceeded the etched
structures even though a covering lid was not placed on the agarose microstructures. In
the single-cell size microchannels, we observed that constriction in the environment can
increase the aspect ratio of single cells. We also have demonstrated another advantage of
agarose microfabrication, which is the flexible stepwise microfabrication even during cell
cultivation, for regulation of initial starting timing of cell propagation after the cells were
confluent in the reservoir. Exploiting the advantage of agarose microfabrication technology,
agarose microchannels from 10 µm to 211 µm were fabricated with a spot heating of a
focused infrared laser after the cell reservoir is filled by the cells. We measured the structural
dependency of the front and follower cell velocities of epithelial cells. In straight channels,
the velocity maintained constant regardless of their extension length, whereas the convex
width dependency in velocity was observed; a peak velocity at around 30 µm in width and
decreased both in wider and narrower channels. This width dependence can be explained
by two rules; (1) velocity is decreased in the narrower width with the apparent increase of
aspect ratio of cell shape, and (2) velocity is decreased by the increase of random walk-like
behavior as width increases. Hence, we conclude that agarose microfabrication can be
successfully applied to assessing collective cell migration and has shown great promise
for more facilitated and flexible preparation of topologically confined environments for
probing collective mechanical behavior.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/mi12091015/s1, Video S1: MP4 time course 10 min interval 120 images of collective migration of
epithelial cells from reservoir into the newly formed microchannels. Bar: 100 µm.
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