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Abstract

This article introduces a new formulation of, and method of computation for, the projection

median. Additionally, we explore its behaviour on a specific bivariate set up, providing the

first theoretical result on form of the influence curve for the projection median, accompanied

by numerical simulations. Via new simulations we comprehensively compare our perfor-

mance with an established method for computing the projection median, as well as other

existing multivariate medians. We focus on answering questions about accuracy and

computational speed, whilst taking into account the underlying dimensionality. Such consid-

erations are vitally important in situations where the data set is large, or where the opera-

tions have to be repeated many times and some well-known techniques are extremely

computationally expensive. We briefly describe our associated R package that includes our

new methods and novel functionality to produce animated multidimensional projection quan-

tile plots, and also exhibit its use on some high-dimensional data examples.

1 Introduction: Overview of multivariate medians

The median is an estimator of location that is robust, i.e. not heavily influenced by outlying

values, which are, loosely speaking, points that are far from the main body of the data. Let x =

(x1, . . ., xk)T be a mutually independent and identically distributed (i.i.d.) sample of length k 2
N from a univariate distribution with distribution function F. The univariate population

median functional M(F) is

MðFÞ ¼ inf fx : FðxÞ � 1=2g ¼ supfx : FðxÞ � 1=2g: ð1Þ

There are several equivalent definitions of the univariate median that all yield same unique

value of true median μ for a distribution F with a bounded and continuous density f(μ) at μ.

For multivariate data there is no natural ordering of the data to enable the choice of the

middle observation in the same way as for one-dimensional data. However, several different

multivariate median concepts have been developed that retain some characteristics of the uni-

variate median. For example, an early extension of the multivariate median was suggested by

Hayford [1], which is simply the component-wise median, also known as the vector of
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marginal medians. The spatial median, also known as the L1 median [2, 3], and Tukey’s

median [4] are two other popular variants. Oja’s median [5] provides an alternative to the spa-

tial median, but it is known to be more computationally expensive than other choices. These,

and others, are reviewed in [6–8]. We briefly review some of them here next, not least as we

use them later in our simulation study.

1.1 Component-wise median

Let X = (x1, . . ., xk)
T be an n-dimensional i.i.d. sample with distribution function F : Rn

! R.

We assume that the n marginal distributions have bounded densities f1(μ1), . . ., fn(μn) at the

uniquely defined marginal medians μ = (μ1, . . ., μn). The component-wise median, also known

as the marginal sample median, MCðXÞ 2 R
n minimises

k� 1
Xk

i¼1

fðjxi1 � m1j þ � � � þ jxin � mnjÞ � ðjxi1j þ � � � þ jxinjÞg; ð2Þ

the sum of component-wise distances over m 2 Rn, where m = (m1, . . ., mn). The correspond-

ing population functional, MC(F), for the vector of population medians minimises

Efðjx1 � m1j þ � � � þ jxn � mnjÞ � ðjx1j þ � � � þ jxnjÞg: ð3Þ

1.2 Spatial median

The spatial median MS(X), also known as the L1 median, minimises

k� 1
Xk

i¼1

fjjxi � mjj � jjxijjg; ð4Þ

over m 2 Rn, where jjmjj2 ¼
Pn

i¼1
m2

i is the (squared) Euclidean norm. The corresponding

functional spatial median, MS(F), minimises

EFfjjx � mjj � jjxjjg: ð5Þ

1.3 Oja’s median

Let X = (x1, . . ., xk)
T be an i.i.d. sample in Rn

with distribution function F : Rn
! R. The vol-

ume of the n-variate simplex determined by the n + 1 vertices (m1, . . ., mn+1) is

Vðm1; . . . ;mnþ1Þ ¼
1

p!
det

1 � � � 1

m1 � � � mnþ1

 !�
�
�
�
�

�
�
�
�
�
: ð6Þ

The Oja median, MO(X), minimises

k
n

� �� 1 X

i1<���<in

Vðxi1
; . . . ;xin

;mÞ; ð7Þ

over m 2 Rn
. The corresponding functional MO(F) minimises

EFfVðxi1
; . . . ; xin

;mÞg: ð8Þ
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1.4 Tukey’s median

Let X = (x1, . . ., xk)
T be an i.i.d. sample of size k inRn with distribution function F : Rn ! R.

Let H be the class of all closed half spaces inRn
. For each H 2 H, define the empirical distribu-

tion

F̂ ðHÞ ¼ n� 1
Xk

i¼1

Iðxi 2 HÞ; ð9Þ

where I is the usual indicator function. Then, define the depth, D(μ), of a point μ 2 Rn
within

the dataset, to be the infinum of F̂ðHÞ, that is taken over all closed half spaces H for which μ 2
H. Tukey’s median is defined as the set of points μ of maximal depth.

2 The projection median

This section introduces our new method for computing the projection median, yamm. We

prove that yamm is equivalent to the projection median, as defined by Durocher and Kirkpat-

rick [9] in R2
and then generalised to higher dimensions by Basu et al. [10]. We also explore,

theoretically and numerically, the statistical behaviour of yamm using a mixture of two bivari-

ate normal distributions.

2.1 Review of the projection median

2.1.1 Projection median in R2. Let X be a multiset of points in R2 and θ 2 [0, 2π) be an

angle. Let Xθ denote the multiset defined by the projection of X onto the unit vector uθ = (cos

θ, sin θ), so

Xy ¼ fuyhx; uyi j x 2 Xg; ð10Þ

where h�i denotes the usual inner product.

The projection median of a non-empty finite set X with points in R2 is

MPðXÞ ¼ p� 1
R 2p

0
medðXyÞ dy; ð11Þ

where medðXyÞ 2 R
2

is the median of the projection of X onto the line through the origin,

parallel to uθ.

2.1.2 Generalisation of the projection median. Given a fixed positive integer, n� 2, and

a finite set of points X inRn, the n-dimensional projection median of X is

MPðXÞ ¼ n
R

Xn� 1medðXaÞdaR

Xn� 1da
¼ n

Z

Xn� 1

medðXaÞdf ðaÞ; ð12Þ

where Xn� 1 ¼ fx 2 Rn : jjxjj ¼ 1g is the unit n-dimensional hypersphere, med(Xa) is the

median of the projection of X onto the line through the origin parallel to a, and f is the normal-

ised uniform measure over Xn−1. Hence, for a point x = (x1, x2, . . ., xn)2Xn−1, the n-
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dimensional spherical coordinates are given by

x1 ¼ cosy1

x2 ¼ sin y1 cosy2

x3 ¼ sin y1 siny2 cos�3

� � �

xn� 1 ¼ sin y1 � � � sinyn� 2 cosyn� 1

xn ¼ sin y1 � � � sinyn� 2 sinyn� 1;

ð13Þ

where each angle θ1, θ2, . . ., θn−2 has a range of π and θn−1 has range of 2π. Also, the normalised

uniform measure f over Xn−1 is given by

df ¼
dXn� 1V

R p
0

R p
0
� � �
R 2p

0
dXn� 1V

; ð14Þ

where dXn� 1V ¼ sin n� 2y1 sin n� 3y2 . . . sin yn� 2 dy1dy2 . . . dyn� 1 is the volume element of the (n
− 1)-sphere.

Basu et al. [10] proved that the projection median has a breakdown point of 1/2 for all

n� 2.

2.2 Yet another multivariate median (Yamm)

Let X ¼ ðx1; . . . ; xkÞ
T
2 Rk�n

be a random sample of size k 2 N, xi 2 R
n
. Let a be a n × 1 pro-

jection vector of unit length, 1k be the k × 1 vector of ones and μ a shift vector of length n. Let y

be the projection of X onto a after X has been shifted by μ:

y ¼ ðX � 1k μ
TÞ a; ð15Þ

where y 2 Rk. The univariate median m of the projected points y is

mXðμ; aÞ ¼ mðyÞ: ð16Þ

Now define the integral

MX;mðμÞ ¼
R

fa:aTa¼1g
mXðμ; aÞ

2da: ð17Þ

The yamm estimator of location for X is

μ̂ ¼ yammðXÞ ¼ argminμMX;mðμÞ: ð18Þ

Eqs (17) and (18) illustrate the rationale behind yamm. Intuitively, if the shift vector μ is far

away from the true ‘middle’ of the dataset, then the magnitude of mX(μ, a), as well as the inte-

gral MX, m(μ), will be large. By contrast, a smaller mX(μ, a) can be obtained when the μ is mov-

ing closer to the true ‘middle’ of the data set.

Instead of computing the squared value of mX(μ, a) for the integral, we also considered the

absolute value as an alternative. However, this leads to similar numerical results.

Example. We now generate two polar plots of the absolute value of mX(μ, a), when μ is both

close to, and far away, from the true median, respectively. A random two-dimensional dataset

with k = 100 points was generated, whose Tukey’s median computed as (2.78, 8.16). Here, the

Tukey median is to be interpreted as a ‘sensible’ middle of the data set. The shift vector μ is set

to be (2.2, 8) and (2, 7.5) respectively, and for each plot, two thousand random projections

were used to calculate the univariate median mX(μ, a), using methods to be explained in
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Section 2.4. Fig 1 shows that when μ is near the Tukey’s median, the magnitude of each mX(μ,

a) is less than 0.65, while a larger value, ranging from 0 to 1.2, is shown in the figure when μ is

far away from the median. Overall, when integrated the quantity involving the μ is closer to

the Tukey median it gives a smaller result.

The projection median and yamm definitions seem similar, as both project the multiset

onto the line passing through the origin, and then take the median. However, the projection

median integrates med(Xa) directly over the unit hypersphere inRn
, whereas yamm minimises

the objective function MX;mðμÞ 2 R over the shift vector μ. Despite these differences, the fol-

lowing theorem shows that the projection median and yamm are identical.

Fig 1. Polar plot (in radians) of the magnitude of mX(μ, a). Grey line: μ = (2.2, 8) and Blue line: μ = (2, 7.5).

https://doi.org/10.1371/journal.pone.0229845.g001
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Theorem. For any finite multiset X � Rn with n� 2, yamm is equivalent to the projection
median.

For the proof of the theorem, see S1 Appendix.

2.3 Yamm behaviour on a bivariate normal mixture

To gain insight about the theoretical behaviour of yamm we study the case of yamm applied to

a mixture of two bivariate normals, where one is thought of as the bulk and the other as the

outlier of the distribution. Such a setup enables us to evaluate the robustness of yamm. We

numerically and theoretically assess the influence curve when moving the outlier far from the

bulk.

2.3.1 Bivariate mixture setup. Let X1 � N 2ðn1;S1Þ and X2 � N 2ðn2;S2Þ be independent

bivariate normal random variables, where X1 = (X11, X12)T, X2 = (X21, X22)T with mean vector

ν1 = (ν11, ν12)T and ν2 = (ν21, ν22)T. Let R(θ) be a rotation matrix with angle θ given by

RðyÞ ¼
cosy � siny

siny cosy

 !

: ð19Þ

We are interested in the first row of this matrix, which describes the projection onto direc-

tion θ. Let Yi = (Yi1, Yi2)T = R(Xi − μ) for i = 1, 2 respectively, where μ = (μ1, μ2)T is a shift vec-

tor mentioned in (15). Basic multivariate theory shows that

Yi � N 2fRðνi � μÞ; RSiR
Tg; for i ¼ 1; 2: ð20Þ

Denote Yi = (Yi1, Yi2)T, Yi1 is the first entry of Yi for i = 1, 2. Then, it is immediate that

Yi1 � N ðsi; s2
i Þ, where

s1 ¼ ðn11 � m1Þ cosy � ðn12 � m2Þ sin y and s2

1
¼ ðRS1R

TÞ
1;1
; ð21Þ

s2 ¼ ðn21 � m1Þ cosy � ðn22 � m2Þ sin y and s2

2
¼ ðRS2R

TÞ
1;1
: ð22Þ

The mixture distribution that we study is

fWðw1;w2Þ ¼ ð1 � �ÞfX1
ðw1;w2Þ þ �fX2

ðw1;w2Þ; ð23Þ

where fXi
is the density of Xi, and � 2 [0, 1], is typically small. Here, fX1

is considered to be the

bulk of the distribution and fX2
the outlier.

2.3.2 Projected distribution. Based on the bivariate setup above, the projected distribu-

tion is

fYðyÞ ¼ ð1 � �Þ�s1 ;s2
1
ðyÞ þ ��s2 ;s2

2
ðyÞ; ð24Þ

where s1; s2; s
2
1
; s2

2
are as above and ϕ is the standard normal density.

The distribution function of the projected Y(θ) is

FYðyÞ ¼ ð1 � �ÞFs1 ;s2
1
ðyÞ þ �Fs2 ;s2

2
ðyÞ; ð25Þ

where F is the standard normal distribution function. We require the median of the projected

distribution, i.e. find

ymð�; y; s1; s2;S1;S2Þ such that FYðymÞ ¼ 1=2: ð26Þ
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Finding an analytic exact solution for ym is difficult. Hence, we will simplify the problem

and assume that S1 = S2 = I2, the identity matrix. Since R(θ) is an orthogonal matrix, this

means that s2
1
¼ s2

2
¼ 1 and Eq (25) becomes

FYðyÞ ¼ ð1 � �ÞFðy � s1Þ þ �Fðy � s2Þ: ð27Þ

For small �, we know that the median should be close to the median of the bulk, so the

median of FY should be close to s1, the median of the first component of the mixture in Eq

(27).

2.3.3 Theoretical approximation of yamm on the mixture. We derive a theoretically

based approximation to the empirical influence function. We proceed by using a Taylor series

expansion of FY(y) around s1, the quantity we know is close to our median:

FYðyÞ � ½1þ � � � Erfcfðs1 � s2Þ=
ffiffiffi
2
p
g�=2

þð2pÞ
� 1=2
½1 � �þ � expf� ðs1 � s2Þ

2
=2g�ðy � s1Þ

þOfðy � s1Þ
2
g;

ð28Þ

where Erfc ðyÞ ¼ 2p� 1=2
R1
y e� t2 dt: When y is close to s1, Eq (28) is approximately equal to 1/2

when � is small, which is the behaviour we expect.

To find an approximation to the median we solve FY{ym(θ)} = 1/2. Ignoring remainders,

subtracting 1/2 off both sides of Eq (28) gives

�

2
Erfc

(

ðs1 � s2Þ=
ffiffiffi
2
p

" )

� 1

#

¼
½1 � �þ � expf� ðs1 � s2Þ

2
=2g�ðym � s1Þffiffiffiffiffiffi

2p
p ; ð29Þ

and then

ymðyÞ � s1 þ
�
ffiffiffiffiffiffiffiffi
p=2

p
½Erfcfðs1 � s2Þ=

ffiffiffi
2
p
g � 1�

½1 � �þ � expf� ðs1 � s2Þ
2
=2g�

: ð30Þ

Now using

Erfcfðs1 � s2Þ=
ffiffiffi
2
p
g ¼ 2Ffðs2 � s1Þ=

ffiffiffi
2
p
g; ð31Þ

and exp f� ðs1 � s2Þ
2
=2g ¼

ffiffiffiffiffiffi
2p
p

�ðs1 � s2Þ, we can write

ymðyÞ � s1 þ
�
ffiffiffiffiffiffiffiffi
p=2

p
ð2Ffðs2 � s1Þ=

ffiffiffi
2
p
g � 1Þ

1 � � �
ffiffiffiffiffiffi
2p
p

��ðs2 � s1Þ
: ð32Þ

For small � the denominator is close to 1. From Eqs (21) and (22), we can write:

s2 � s1 ¼ ðn21 � n11Þ cosy � ðn22 � n12Þ sin y ¼ d1 cosy � d2 siny; ð33Þ

where δ1 = ν21 − ν11 and δ2 = ν22 − ν12. Thus

ymðyÞ � fðn11 � m1Þ cosy � ðn12 � m2Þ sinyg

þ
�
ffiffiffiffiffiffiffiffi
p=2

p
½2Ffðd1 cosy � d2 sinyÞ=

ffiffiffi
2
p
g � 1�

1 � � �
ffiffiffiffiffiffi
2p
p

��ðd1 cosy � d2 sin yÞ
:

ð34Þ
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According to Eq (17), our job is to find the optimal μ� ¼ ðm�
1
; m�

2
Þ
T
, which minimises

M ¼
R 2p

0
y2
mðyÞ dy: ð35Þ

The integrand involves the standard normal distribution function, which is tricky to handle

analytically. Hence, we use the approximation, ϕ(z)�(1 + cos z)/2π, for −π< z< π, for the

standard normal density [11], which enables the following proposition.

Proposition. Let X1 = (X11, X12)T and X2 = (X21, X22)T. Suppose that X1 � N 2ðν1;S1Þ and
X2 � N 2ðν2;S2Þ independently, where ν1 = (ν11, ν12)T and ν2 = (ν21, ν22)T, respectively. Let the
mixture, W, of X1 and X2 be

fWðw1;w2Þ ¼ ð1 � �ÞfX1
ðw1;w2Þ þ �fX2

ðw1;w2Þ;

where � 2 [0, 1] is considered small.
An approximation of the yamm estimator, μ� ¼ ðm�

1
; m�

2
Þ, is

m�
1
¼ n11 þ p

� 1=2R�ð1 � R2=32þ R4=1536Þ cosa;

m�
2
¼ n12 þ p

� 1=2R�ð1 � R2=32þ R4=1536Þ sin a;
ð36Þ

where R2 ¼ ðd
2

1
þ d

2

2
Þ, δ1 = ν21 − ν11, δ2 = ν22 − ν12 and α = arctan(δ2/δ1). The approximation

we use is valid whenever jR cos ðyþ aÞj <
ffiffiffi
2
p

p, where θ is the projection direction when com-
puting yamm. This inequality is true for all θ whenever R <

ffiffiffi
2
p

p.

Intuitively, the approximation in the Proposition works whenever the two cluster means

are close enough together, i.e. when R2 ¼ d
2

1
þ d

2

2
< 2p2.

In particular, when ν11 = ν21 or ν12 = ν22 (i.e. when one of the δi = 0, i = 1, 2), we can form a

more accurate approximation. This is because the approximation for the standard normal dis-

tribution function, ϕ(z)�(1 + cos z)/2π, is no longer required to find the optimal μ� ¼

ðm�
1
; m�

2
Þ
T

minimising Eq (35). Without loss of generality, let ν1 = (ν11, ν12)T = (0, 0)T and ν2 =

(ν21, ν22)T = (0, d)T, we obtain the yamm estimator as follows

m�
1
¼ 0;

m�
2
¼ 2� 1=2�d e

�

d2

8 BesselI 0; d2=8½ � þ BesselI 1; d2=8½ �ð Þ;

ð37Þ

where BesselI[n, z] is the modified Bessel function of the first kind, sometimes denoted In(z).

For the proof of the proposition, see S2 Appendix.

2.3.4 The yamm influence curve on the mixture. This section numerically computes and

plots yamm for the case where � = 0.05, X1 � N 2ðν1; I2Þ and X2 � N 2ðν2; I2Þ, with ν1 = (0, 0)T

and ν2 = (0, d)T for d 2 R. We explore how yamm varies as d increases from 0 to 10 in steps of

0.2. If yamm is robust, then it should increase with d, but plateau beyond a certain point.

For each value d we estimate yamm as the mean over five hundred bivariate mixture realiza-

tions, with two thousand projections involved for each yamm computation, using methods

described below in Section 2.4. The numerically computed crosses in Fig 2 show that, for this

setup, yamm plateaus somewhere between d = 2 and d = 4.

The solid red line in Fig 2 shows our theoretical approximation of the yamm influence

curve with the more specific setup, where μ� follows Eq (37). Under this approximation, the

influence curve closely follows the numerically computed crosses. On the other hand, the solid

blue line is the approximation of the yamm under the more general setting of Eq (36), which

exhibits poor approximation after d> 4.5, although it performs reasonably well when the

inter-cluster mean distance 0< d< 4.5, and does not plateau.
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This is because, in the setup, δ1 = d, δ2 = 0, and d> 4.5 implies R2 ¼ d
2

1
¼ d2 > 2p2. How-

ever, the specific setup approximation of yamm obviously does not work for arbitrary values of

ν1 and ν2, whereas the general approximation gives a good theoretical idea of the yamm influ-

ence curve when the two means of the clusters are close enough together.

2.4 Projection median and yamm computation

2.4.1 Projection median computation. A simple Monte Carlo integration [12] can be

used to compute an approximation of the projection median by

M̂ PðXÞ ¼ nJ � 1
XJ

j¼1

medðXaj
Þ; ð38Þ

where J represents the number of projections used, and fajg
J
j¼1

is a set of random, indepen-

dently-drawn, unit length n-vectors over Xn−1.

Calculating approximation of Eq (38) is relatively straightforward, but a large value of J is

required to ensure accuracy. Another approach computes the projection median directly from

the definition in Eq (12), using the spherical coordinates illustrated in Eq (13), where the inte-

gral can be obtained by the trapezoidal rule. For example, in the two-dimensional case, we

apply the trapezoidal rule once on Eq (11). In the three-dimensional case, we have to apply the

Fig 2. Yamm computed on simulated setup, increasing the distance between two bivariate normals. Crosses: numerically computed values; Solid
blue line: approximation computed for general ν1 and ν2; Solid red line: approximation computed when ν1 = (0, 0)T and ν2 = (0, d)T.

https://doi.org/10.1371/journal.pone.0229845.g002
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trapezoidal rule twice for the double integral, and so on. This direct approach is easy to imple-

ment when our dataset has a low dimension, but excessive work is required in not that many

higher dimensions, even with, e.g. n = 10.

2.4.2 Computing yamm. To compute an approximation to yamm, we can also use Monte

Carlo integration together with an optimiser. Let J 2 N be the number of projections, fajg
J
j¼1

be a set of independent random unit length n-vectors, an estimator for MX, m(μ) is given by

M̂ X;mðμÞ ¼ J � 1
XJ

j¼1

mXðμ; ajÞ
2
: ð39Þ

We then numerically minimise M̂X;mðμÞ over μ to obtain our estimated location measure,

using the BFGS optimization method [13–16]. BFGS is a quasi-Newton algorithm searching

for a stationary point of a function via local quadratic approximation. Parallel versions such as

optimParallel exist as easy to use packages in R.

With reasonable starting values, such as the mean or other multivariate medians, yamm

typically provides accurate results with a considerably smaller number of projections than

used by the Monte Carlo projection median method mentioned above.

In conclusion, projection median computation via the trapezoidal rule is fast and accurate

in low dimensions, but increasingly onerous in higher dimensions, as progressively more mul-

tidimensional integration is required. For higher dimensions, we prefer the Monte Carlo

method and prefer yamm over the projection median as it does not require such a large num-

ber of projections, particularly if the optimiser is given a good starting solution.

Overall, approximating the projection median by the trapezoidal rule is a good choice in R2

and R3
, and either of the other two methods can be used in higher dimensions.

3 Empirical performance for different medians

This section reviews the theoretical computational complexity for a variety of medians and

computes some running times for real implementations of several medians computed in R.

We then present some results for accuracy of estimation for these medians.

3.1 Computational complexity and empirical speed

For a dataset inRn
with k observations, the computational complexity for the Spatial median is

O(nk) [17], which is the same for the exact computation of the component-wise median. The

projection median can be obtained in O(k4/3log1+� k) time in R2
[9], and O(k5/2+�) time in R3

[10]. In Rn, with n> 3, Basu et al. showed that O[kn{1−δ
n/(n+1)}+�] time is required to com-

pute the projection median, where δn = (4n − 3)−n and � is a fixed small constant. Several algo-

rithms for other multivariate medians have been developed or the bivariate case. The current

best algorithms for Oja’s and Liu’s medians require O(k log3 k) and O(k4) time, respectively

[18], whereas that for the fastest bivariate Tukey median is O(k log3 k) [19]. The calculation of

these three multivariate medians in higher dimensions is more complicated and approximate

computation is often preferred/required.

To provide empirical assessment of the real computation speed, we apply several R software

medians to simulated data. There are several R functions using different algorithms to com-

pute one median. For example, spatial.median from the library ICSNP estimates the

median with the algorithm developed by Vardi and Zhang [20], while Gmedian developed by

Cardot et al. [21] is faster but, perhaps, less accurate. In addition, l1median [22] from library

pcaPP and med from depth also provide opportunities to compute the spatial median.
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Hence, after some experiments, we choose the best function (evaluated in terms of speed and

accuracy) for each multivariate median in R2
and R3

shown in Table 1. Much of the software

for multivariate medians in R only works in low numbers of dimensions.

The med function can only calculate the bivariate Liu’s median, which is considerably more

challenging in higher dimensions. The calculation of Tukey’s median is exact in one and two

dimensions, and approximate in higher dimensions. We use the approximate Tukey’s median

computation in the med function, due to numerical errors that sometimes surface when using

the exact algorithm. For Oja’s median, the approximate method (evolutionary algorithm) is

used instead of the exact one, as it is faster and can deal with high dimensions.

Table 2 displays mean computation times and their standard deviations across 1000 simu-

lated datasets from the two-dimensional Laplace distribution with different numbers of obser-

vations (k) for each set. The results are produced by running R on a single core of an Intel i7-

8750h processor with 2.20 GHz base clock using 16Gb RAM. For small k, Liu’s median is fast-

est, but its speed is not as fast as others for higher k. In this experiment, Oja’s median is the

slowest for small k values, but its speed does not appear to be particularly sensitive to k. Hence,

its speed is faster than Tukey’s median when k = 200. The projection median is one of the

quickest when k is below 100, while for large k values, the component-wise median and the

Spatial median are faster.

The results in Table 2 are produced by only one possible R function for one median. How-

ever, other functions can be used. For example, the med function from the depth package

can also be used to calculate the spatial median and provides accurate answers. It is extremely

Table 1. R functions used for analysing different multivariate medians.

Median Function Package Source

Spatial l1median pcaPP [22]

CWmed med depth —

Liu’s med depth [23]

Tukey’s med depth [24] [25]

Oja’s ojaMedianEvo OjaNP [26]

Projection PmedTrapz Yamm Ours

https://doi.org/10.1371/journal.pone.0229845.t001

Table 2. Mean and standard deviation (s.d.) of the operation time (×10−5) in seconds for data inR2.

Median k = 10 k = 25 k = 50 k = 100 k = 200

Spatial mean 27 28 30 29 28

s.d. 44 45 57 45 45

Component-wise mean 24 21 25 25 24

s.d. 42 41 43 43 43

Liu’s mean 3 6 14 49 190

s.d. 18 24 35 66 250

Tukey’s mean 67 210 510 970 1890

s.d. 47 28 40 56 100

Oja’s mean 1430 1400 1460 1410 1410

s.d. 410 190 270 190 160

Projection mean 7 12 18 31 60

s.d. 26 32 39 46 49

https://doi.org/10.1371/journal.pone.0229845.t002
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fast for small k and lower dimensions, but it becomes slower than l1median for larger k.

Hence, we use l1median to compute the spatial median, whose performance for small k is

also good.

3.2 Mean squared error for some medians

We assess the accuracy of some of the medians via empirical mean squared error. If X̂ is an

estimator in Rn
with respect to the unknown parameter μ 2 Rn

, then the mean squared error

is

MSE ðX̂ Þ ¼ n� 1EðjjX̂ � μjj2
2
Þ; ð40Þ

where n� 1jjX̂ � μjj2
2

represents the squared Euclidean distance between X̂ and μ, normalized

by the vector length. Smaller MSE ðX̂Þ values are better.

Table 3 shows MSE results based on the same simulations as used for Table 2. Not surpris-

ingly, for this long-tailed data, all medians perform better than the sample mean. The spatial

median and the projection median have smaller mean squared error, the latter performing bet-

ter for small k values. On the other hand, Liu’s median always produces a very high mean

squared error.

Conclusion. Based on these simulations, for the R functions listed in Table 1, the spatial and

projection medians always have the lowest mean squared error, but also fast running speeds.

Although Liu’s median has the shortest computation time, for small k, it is the most inaccurate,

and its computation time becomes long for large datasets. Similarly, the component-wise

median is fast, even when k increases, but it has a large mean squared error. Hence, the spatial

and projection medians are good choices when computing two-dimensional robust measures

of location in this case, and the latter is preferred for small datasets. The computational results

for high-dimensional simulations (n = 3, 5, 10) can be found in S1 Table.

3.3 2D projection median computation functions

The R package DurocherProjectionMedian can be downloaded from Github at

https://github.com/12ramsake/DurocherProjectionMedian.

The DurocherProjectionMedian package provides functions to compute the pro-

jection median via the Monte Carlo integration method using projectionMedianMC)

[27] and an exact method for two dimensions proposed by Ramsay [28] using projection-
Median2D. Tables 4 and 5 show the performance of the different functions computing the

two-dimensional projection median of 1000 simulated datasets from the Laplace distribution

with different k.

Table 3. Mean squared error (×10−2) for data as in Table 2.

Location Estimator k = 10 k = 25 k = 50 k = 100 k = 200

Spatial 67 21 9.7 4.6 2.3

Component-wise 74 26 12.0 5.7 2.9

Liu’s 110 31 14.0 6.3 3.2

Tukey’s 73 21 10.0 4.8 2.3

Oja’s 75 22 11.0 5.6 3.2

Projection 66 21 9.8 4.7 2.3

Mean 110 39 20.0 9.9 5.0

https://doi.org/10.1371/journal.pone.0229845.t003
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For the Monte Carlo Integration method, when k is small (e.g. under 150 inR2
), the com-

putation time of projectionMedianMC is longer than our PmedMCInt under the same

number of projections in both R2
and high dimensions, whereas both implementations have

almost the same MSE.

Although the projectionMedian2D provides a slightly smaller MSE, its running time

is slow. Our PmedTrapz is faster and its MSE performance is comparable to projection-
Median2D, and, hence, the former might be recommended as the best choice forR2

.

4 The yamm R package

Our Yamm R package provides users with functions to compute the projection median accord-

ing to the different methods mentioned in section 2.4. PmedMCInt computes the projection

median using the Monte Carlo approximation; PmedTrapz uses the trapezoidal rule and cur-

rently, it is only valid in two and three dimensions; yamm computes the projection median

using the Monte Carlo approximation to find the shift vector μ minimising our objective func-

tion yamm.obj. The package also includes functions Plot2dMedian and Plot2dMe-
dian to plot different multivariate medians for data in both R2

and R3
. Most functions in our

package are implemented internally using C code. This section provides some brief illustra-

tions of the use of Yamm.

4.1 Yamm projection medians

The function PmedMCInt computes the projection median for any multivariate data, x, by

invoking

PmedMCInt(x, nprojs = 20000)
Since this function uses Monte Carlo integration, we need to choose the number of projec-

tions J, which has a default value of 20000. Typically, a large J is required to obtain a stable

Table 4. Mean and standard deviation (s.d.) of the operation time (×10−5) in seconds for different R functions to produce the projection median.

k
R Function 10 25 50 100 200

PmedTrapz mean 7 12 18 31 60

s.d. 26 32 39 46 49

projectionMedian2D mean 320 1020 3930 11640 44830

s.d. 50 99 420 970 2690

PmedMCInt mean 250 320 490 870 1670

s.d. 40 39 33 50 58

projectionMedianMC mean 930 970 1010 1130 1280

s.d. 49 57 65 60 55

https://doi.org/10.1371/journal.pone.0229845.t004

Table 5. Mean squared error (×10−3) for 1000 sets of data inR2
generated from Laplace distribution.

k
R Function 10 25 50 100 200

PmedTrapz 656 207 98.2 47.1 23.2

projectionMedian2D 656 206 97.4 46.9 22.9

PmedMCInt 659 205 97.8 47.0 23.0

projectionMedianMC 659 205 97.6 47.0 23.0

https://doi.org/10.1371/journal.pone.0229845.t005
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answer, which means the result will not change much if recomputed under the same condi-

tions. This function returns the projection median estimate vector.

The function PmedTrapz computes the projection median inR2
and R3

and is invoked

by

PmedTrapz(x, no.subinterval)
PmedTrapz applies the trapezoidal rule once inR2 and twice in R3 on each entry of the

vector medðXaÞ, mentioned in section 2.1.2, and returns a vector of the projection median

estimate.

The argument no.subinterval determines the number of subintervals for the trape-

zoidal rule. For the bivariate case the no.subinterval argument is a single number that

controls the number of subdivisions for the one-dimensional integration; for the trivariate

case the argument is a vector of length two that controls the number of subdivisions for the

two integrals. In general, it is better to use at least 36 subintervals, which typically produces

accurate results without excessive running time.

More subintervals may be appropriate for more complex datasets. For some unusual data

sets it would be ideal to have a high resolution of the interval of integration in one particular

region, and a relatively low resolution elsewhere, but this is beyond the scope of the current

research. A small number of partitions, e.g. below 15, is not recommended for reasons of

accuracy.

The yamm function is valid for data of any dimension. It uses an optimiser to provide

another method to compute the projection median. The arguments are

yamm(x, nprojs = 2000, reltol = 1e-06,
xstart = l1median(x), opt.method = “BFGS”,
doabs = 0, full.results = FALSE).
The yamm function is a wrapper to minimise the the objective function yamm.obj, which

uses the Monte Carlo method to approximate the squared or absolute value of the univariate

median of the projection of the shifted data matrix. The nprojs argument controls the num-

ber of projections in the Monte Carlo approximation and doabs is an indicator, where 1 uses

the absolute value of the univariate median and 0 forces the use of the squared value. The argu-

ments reltol, xstart, opt.method are supplied directly to the R optimisation function

optim: reltol is the tolerance for the optimiser, with default value of 10−6. Usually, we set

a larger value (e.g. 10−3) to this argument, which will reduce the running time, whilst maintain-

ing accuracy. The argument opt.method controls the selection of optimisation methods,

which can be chosen from any of the four options, “BFGS”, “Nelder-Mead” [29], “CG” [30],

“L-BFGS-B” [31], and “SANN” [32]. The default choice “BFGS” is relatively fast and stable in

our case. See the help page of the function optim in R for further details about the different

optimisation methods. The xstart argument provides the initial value for the parameters to

optimise over, which plays an important role in the function yamm. A good starting point will

reduce the running time and provide a more accurate result, so we use the spatial median as

the default value. Other multivariate medians could be used, but they need to be fast. If full.
results = TRUE, the output of this function involves a list with components obtained

from the optim function, otherwise, it returns a vector containing the multivariate median

estimate.

4.2 Some real examples

We now exhibit results for the projection medians applied to some real datasets. Our plots

show different multivariate medians and the sample mean value for two simulated datasets in

R2
and R3

, respectively, allowing the methods to be compared.
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4.2.1 Beetle data. The famous beetle data [33] takes six measurements on 74 flea-bee-

tles, with each belonging to one of three different species. We apply yamm and obtain the fol-

lowing output:

yamm(beetle, nprojs = 1000, reltol = 1e-3, doabs = 0,
full.results = TRUE)
[1] 180.19194 123.73920 49.97819 135.87913 13.62603 95.49062
$value
[1] 5.585139
$counts
function gradient
90 4
$convergence
[1] 0
$message
NULL
The yamm results show that the optimiser executed 90 calls to the objective function

yamm.obj and constructed 4 gradients. The par component contains the estimate of the

yamm for the beetle data. These results are not that different from the output generated by

PmedMCInt, which is

PmedMCInt(beetle, nprojs = 100000)
[1] 179.54428 124.72128 50.56934 137.47363 13.23372 94.80188
For the beetle data, we chose the number of projections in yamm to be 1000, while many

more projections were required (e.g. 100000) in PmedMCInt to obtain a similar and consis-

tent result; although yamm requires optimisation. Fewer projections for the function PmedM-
CInt may lead inaccurate results for some components of the multivariate median.

PmedTrapz is not valid in this six-dimensional case, but we will show that it has a similar

output when computing projection median in two- and three-dimensions.

4.2.2 Simulated Data in R2 with three clusters. We now use the function Plot2dMe-
dian in the package Yamm to generate and display different multivariate medians for the sim-

ulated data set clusters2d. This set contains three clusters, which are generated randomly

from different independent normal distributions, and two outliers.

Here, we display the three different estimates of the projection median. When computing

other multivariate medians, we use functions from R packages listed in section 3.1. The actual

data points is plotted with grey dots. The first plot in Fig 3 is producing excluding the two out-

liers, whilst the second one includes them. The projection medians produced with different

estimators are very close to each other, and not far from the other median estimators also. Fig

3 also shows that the multivariate medians are not particularly affect by the outliers, whilst the

mean value is.

4.2.3 Simulated data in R3 with four clusters. The function Plot3dMedian in Yamm
plots the three-dimensional medians. The dataset clusters3d has four clusters, each gener-

ated from different independent normal distributions, as well as five outliers. Fig 4 is produced

with the dataset clusters3d, whose outliers have been removed. It shows that apart from

the Oja’s median, the other medians are located close to each other. Again, the three approxi-

mations of the projection median almost coincide in every component.

4.3 The muqie plot and some examples

As well as obtaining a robust location measure, we can use projections to provide information

on the spread and configuration of the data. Obtaining true multivariate quantiles can be
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Fig 3. Bivariate medians and mean for three cluster two-dimensional set. Top: without outliers; Bottom: with

outliers (out of plot area).

https://doi.org/10.1371/journal.pone.0229845.g003
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computationally challenging, and what we produce are not true multivariate quantiles, but

they do enable us to gain useful understanding about multivariate data. The muqie (MUltivari-

ate QuantIlE) plots are constructed as follows.

First choose a unit-length direction vector, u. Then project our yamm-centred multivariate

data onto u to obtain a univariate set. The muqie point, Q(α, u), is merely the vector u rescaled

to have length equal to the α-quantile of the univariate set. A muqie plot is the collection of all

muqie points, Q(α, u) over all unit-length direction vectors u. In practice, we construct our

plot by choosing a number of directions and joining the points. The basic concept, and plots,

are not new, Section 2 of Fraiman and Pateiro-Lopez [34] introduces the concept based on

mean-centred data and is related to ideas in [35]. Our main addition to this body of work is to

(i) centre using yamm, or other robust median and (ii) presenting the muqie plots as dynamic

videos of increasing α.

Fig 5 shows two muqie plots for α = 0.4 and α = 0.8. The latter indicates the three cluster

nature. Surprisingly, this also shows up clearly in the α = 0.4 plot with the 0.4 quantile for, e.g.

Fig 4. Trivariate medians & mean for four cluster three-dimensional set.

https://doi.org/10.1371/journal.pone.0229845.g004
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Fig 5. Muqie plot for the three cluster two-dimensional data set without outliers. The figures are produced for

different values of pseudo-quantile α. The centre point (in blue) in each plot is the yamm median. Left: α = 0.4, Right:

α = 0.8.

https://doi.org/10.1371/journal.pone.0229845.g005
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the bottom-left cluster appearing in a “north-easterly” direction and coloured red in our plot.

The movie Animation shows an animated plot, which includes both the plots in Fig 5 and

many of the others for increasing values of α.

These plots were produced by the muqie() function in the Yamm package. For the ani-

mated plot, the package includes the makeplot() function, which calls muqie() for multi-

ple values of α. Then we use the CRAN package animation to produce an animated GIF

using

saveGIF(makeplot(clusters2d[,-c(102,103)], nprojs = 4000),
diff.col = 3, interval = 0.1, width = 500, height = 500).
The movie beetle shows a three-dimensional Muqie plot using three variables from the

beetle data. The R commands used were:

saveGIF(makeplot3D(beetle, dm = c(1,3,6)), diff.col = 3,
interval = 0.2, width = 500, height = 500)

5 Conclusions and discussions

We have introduced a new method, yamm, to compute the projection median, for data in Rn

with n� 2. We have proved the theoretical equivalence of yamm and the projection median.

Through theoretical and numerical investigations we demonstrate the robustness of yamm on

a simple, but illuminating, bivariate setup.

Then, we illustrated three computation methods for the projection median, which can be

best deployed in different situations. Approximating the projection median by the Monte

Carlo method is valid in any dimensions but requires a large number of projections to ensure

accuracy, while using the trapezoidal rule is computationally fast and accurate in two and

three dimensions, but requires more integration on the projection vector in the higher dimen-

sions, which becomes rapidly more complex. The yamm approximation can also compute the

median in any dimensions. Its computational speed is not as quick as the other two, under the

same conditions (e.g. the number of projections). However, thanks to the optimiser, a small

number of the projections can be chosen to obtain an accurate median with a reasonable start-

ing point (e.g. other multivartiate medians or mean value), which can be a distinct advantage.

Our research also documents the simulated empirical performance for different medians in

terms of the computation time and the mean squared error. Using different R functions to cal-

culate different multivariate medians, we find that the spatial median and the projection

median are always accurate with relatively fast speed using the existing R functions. The per-

formance of other multivariate medians either exhibits slow speed or large mean squared

error.

Finally, we introduce our R package, Yamm, that contains our three methods to compute

the projection median. We show that our methods coincide with each other inR2
and R3

, and

all multivariate medians are not affected by the outliers in the dataset, but the location of the

mean value varies a lot. Currently, the function PmedTrapz in the R package is only valid in

R2
and R3

, further investment can be conducted on extending this function to higher

dimensions.

The Yamm package also introduces our Muqie plots, which are capable of producing ani-

mated plots of two- and three-dimensional sets’ projected quantiles. The animated ‘growth’ of

these “quantile” plots give a vivid picture of the extent, spread and configuration of data in the

sets.

The Yamm package is available on the CRAN archive.
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