
Research Article
Fog-EdgeCollaborativeTaskOffloadingStrategyBasedonChaotic
Teaching and Learning Particle Swarm Optimization

Songyue Han ,1,2 Wei Huang,1 DaWei Ma,1 JiLian Guo ,3 and Hang He4

1Communications Non-Commissioned Officer School, Army Engineering University of PLA, Chongqing 400035, China
232705 Unit of PLA, Xi’an, Shaanxi 710086, China
3Air Force Engineering University, Xi’an, Shaanxi 710032, China
463769 Unit of PLA, Xi’an, Shaanxi 710086, China

Correspondence should be addressed to Songyue Han; colincooper@sina.com and JiLian Guo; guojilian@aliyun.com

Received 18 March 2022; Revised 20 April 2022; Accepted 25 April 2022; Published 28 June 2022

Academic Editor: Kapil Sharma

Copyright © 2022 Songyue Han et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To improve the contradiction between the surge of business demand and the limited resources of MEC, firstly, the “cloud, fog,
edge, and end” collaborative architecture is constructed with the scenario of smart campus, and the optimization model of joint
computation offloading and resource allocation is proposed with the objective of minimizing the weighted sum of delay and
energy consumption. Second, to improve the convergence of the algorithm and the ability to jump out of the bureau of excellence,
chaos theory and adaptive mechanism are introduced, and the update method of teaching and learning optimization (TLBO)
algorithm is integrated, and the chaos teaching particle swarm optimization (CTLPSO) algorithm is proposed, and its advantages
are verified by comparing with existing improved algorithms. Finally, the offloading success rate advantage is significant when the
number of tasks in the model exceeds 50, the system optimization effect is significant when the number of tasks exceeds 60, the
model iterates about 100 times to converge to the optimal solution, the proposed architecture can effectively alleviate the problem
of limited MEC resources, the proposed algorithm has obvious advantages in convergence, stability, and complexity, and the
optimization strategy can improve the offloading success rate and reduce the total system overhead.

1. Introduction

*e development of 5G and mobile edge computing (MEC)
has driven the convergence and evolution of mobile Internet
and IoT services and become the enabling technology for
intelligent transformation of many industries in society. As a
typical example in the field of education, the smart campus
has undergone digitalization, informatization, and intelligent
transformation and is in urgent need of upgrading in teaching
methods and infrastructure. New teaching applications such
as remote mixed reality teaching, ultra-clear live classroom,
and video image recognition require large bandwidth, low
latency, wide connectivity, and high mobility network
bearing, and the traditional central cloud long-distancemulti-
hop transmission mode obviously cannot meet the demand.

Currently, the combination of cloud computing and edge
computing is the main strategy to solve the above problems,

and literature [1] proposes a convergence architecture of
MCC and cloudlet, and literature [2] proposes a “cloud-edge
collaboration” architecture to achieve cloud-edge balancing
of task load. However, with the continuous growth of in-
coming devices and data traffic, MEC servers with limited
resources will face problems such as overload and resource
competition, resulting in additional latency and energy
consumption, which directly affect the end device life cycle
and quality of experience (QoE) of services. To solve this
problem, there are two main directions of related research:
first, at the level of intrinsic mechanism, through offloading
decision and resource allocation as the 2 main entry points,
with service delay, terminal energy consumption, or both
trade-offs as the optimization objectives, respectively, and
single (multiple) user and single (multiple)MEC server as the
scenario model. In [3], a heuristic algorithm is proposed to
solve the joint optimization problem of delay and energy

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 3343051, 21 pages
https://doi.org/10.1155/2022/3343051

mailto:colincooper@sina.com
mailto:guojilian@aliyun.com
https://orcid.org/0000-0001-7986-9574
https://orcid.org/0000-0002-0397-2468
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3343051

consumption in the telematic scenario based on the game
idea; in [4], an adaptive offloading decision based on the
multiarmed slot machine theory is proposed to optimize the
task delay for the time-varying network topology, task load,
and channel state; in [5], a Lyapunov-based online algorithm
is applied to solve the optimization problem of the trade-off
between energy consumption and delay; and in [6], the trade-
off between energy consumption and delay is applied to solve
the optimization problem. In [6], a multi-platform intelligent
offloading and resource allocation algorithm is proposed
with latency as the optimization goal; secondly, at the ex-
ternal architecture level, literature [7] proposes an under-
water “cloud-side-end” architecture to solve the data
processing of hydroacoustic sensing network, and literature
[8] integrates fog computing with 5G network and establishes
a “cloud-fog-end” architecture for industrial scenarios. In [8],
a “cloud-fog-end” architecture for industrial scenarios is
established by integrating fog computing with 5G networks.

However, many computing tasks at the reality level are
not suitable for partial offload, and the differences in their
data partition types and business attributes themselves can
cause time differences in result feedback due to uncertainties
in channel quality, network jitter, and task queues, thus
affecting task experience and completeness. In addition,
while the edge level is oriented to general-scale latency-
sensitive applications, the central cloud is oriented to large-
volume non-latency-sensitive tasks, while a smooth tran-
sition intermediate layer is lacking for tasks that are large in
volume and have high latency requirements. *erefore, this
study uses regional-level macro-base stations as fog com-
puting nodes to design a system architecture with smooth
transition of arithmetic power and latency capability to cope
with differentiated mobile Internet services.

Hence, indoor and outdoor linked teaching in the smart
campus requires a large number of mobile terminals, IoT
devices, and audiovisual collection devices to access the
network efficiently and flexibly, and business data are re-
stricted to flow and processing in local, edge, fog nodes, and
central cloud according to the security level and computing
power requirements, which should also focus on the security
of research-sensitive data isolated from the public network
while taking into account the issues of mobility, limited
resources, and deployment costs. *e existing studies
mentioned above have also focused on the security of iso-
lating sensitive data from the public network. *e existing
research mentioned above has less joint optimization on
offloading decision and resource allocation at the intrinsic
mechanism level and lacks an architecture for smooth de-
scent of arithmetic power gradient at the extrinsic archi-
tecture level. To this end, the following innovative work is
carried out in this study.

(1) Using 5G MEC as the platform base technology, we
propose a four-layer teaching evaluation systembased
on “cloud, fog, edge, and end” architecture for indoor
and outdoor linked teaching scenarios and realize the
collaborative sharing of cloud, fog, edge, and end.

(2) *e joint optimization model of offloading decision,
communication, and computing resource allocation

is proposed with the weighted sum of delay and
energy consumption as the optimization objective,
and simulation experiments are conducted based on
the architecture model to verify the advantages of the
proposed architecture and algorithm strategy from
the external architecture to the internal mechanism
at two levels.

(3) *e proposed CTLPSO is compared with the existing
improved algorithm in terms of convergence speed,
accuracy, and complexity using sine chaos mapping
for population initialization and segmented inertia
weights to enhance the global exploration capability
of the algorithm and give it adaptive characteristics.

2. Related Work

2.1. Cloud, Fog, and Edge Computing. Edge computing
broadly refers to the sinking of computing power, storage,
and communication resources from the central network to
the edge of the network to provide the corresponding ser-
vices [9], thus achieving the goals of bandwidth saving,
latency reduction, load equalization, high isolation, and
strong awareness. *e MEC system architecture is shown in
Figure 1. Its main sponsor, the European Telecommunica-
tions Union organization (ETSI), has defined different
categories, namely mobile edge computing (MEC) and
multi-access edge computing (MEC) for mobile and het-
erogeneous networks, respectively, and as research prog-
resses, heterogeneous access networks are expected to be
extended to non-3GPP networks and other wired networks
[10]. Meanwhile, scholars at home and abroad have given the
definition of MEC mainly from three levels: data flow [11],
network location [12], and cloud computing evolution [13],
with different descriptive perspectives but consistent con-
notations. Computational offloading is one of the core as-
pects and key technologies for MEC to realize service triage.

*e broad category of edge computing is specifically
realized by three paradigms: fog computing (FC), cloudlet
computing (CC), and mobile edge computing (MEC) [14].
*e essential logic of the three is the same, but the difference
lies in the system architecture, hardware facilities and
communication standard, etc. CC is mainly oriented to
traditional telecommunication-specific devices; MEC is
mainly oriented to mobile communication infrastructure
and network architecture. Most of them are general-purpose
servers, which are free from traditional telecom equipment
constraints, so they can be deployed in physical and virtual
forms based on general-purpose servers and do not affect the
network architecture; FC has a large radiation range, and the
overall computing power resources are much larger than
those of MEC, focusing on the relay role between the ter-
minal and the central cloud, and its servers are mostly
compatible with special telecom equipment, and its network
location is farther from the terminal equipment than that of
MEC. It is far away from the end devices, so it is suitable for
processing large volume of computing tasks with certain
demand for latency. *e proposed 4-layer architecture
offload model is shown in Figure 2.

2 Computational Intelligence and Neuroscience

2.2. Smart Campus. *e term “Smart Campus” originates
from the concept of “Smart Earth” proposed by IBM in
November 2008 and evolves under the support of a series of
domestic education informatization policies. Different
definitions are given by domestic scholars: Jiang et al. [15]
define it from the perspective of information technology
support conditions and believe that smart campus is a
further deepening and upgrading of digital campus and an
advanced form of university informatization; Huang et al.
[16] define it from the perspective of learning environment
and believe that smart campus should have the ability of
environment awareness and customized learning;Wang [17]
emphasizes the integration of information technology and
pedagogy; the “Smart Campus General Framework” (GB/T/
T General Framework for Campus” (GB/T36342-2018)

defines a smart campus as an organic interface between
physical and information spaces and emphasizes the human
access to information resource services as they happen [18].
According to the above definitions, a smart campus should
have capability features such as network access on demand,
heterogeneous data fusion, cross-platform interaction of
systems, and open network capabilities to provide high-
quality network support for teaching, research, training, life,
and campus governance with access on demand.

2.3. Swarm Intelligence Algorithm. Existing studies mostly
aim at minimizing the energy consumption under the
maximum delay constraint or minimizing the delay under
the energy consumption constraint, and existing studies

MEC Server

DU MEC Platform

MEC Infrastructure

Virtual Management

Application Management System

MEC
App

MEC
App

Application Platform
Services

Mp1
Mp1

Mp2
Virtualized

Infrastructure

Figure 1: MEC system architecture diagram.

Computational tasks
generated by the device

Calculation task splitting
Local

execution

Tack
offloading

Submit an uninstall
request and generate an

uninstall decision

Is the equipment

Sufficient resources
Allocate computing
resources to handle

computing tasks

Computation
result

encoding
compression

Sufficient resources
Allocate computing
resources to handle

computing tasks

Yes

Terminal
Equipment

No

Sufficient resources
Allocate computing
resources to handle

computing tasks

Computation
result

encoding
compression

Computation
result

encoding
compression

MEC
Nodes

FC Nodes

CC Nodes

MEC
Server

Fog
Computing

Servers

Central
Cloud
Server

Downlink

Uplink

No
Yes

Downlink

Downlink

No

No

Yes

Yes

available?

available?

available?

legal?

Figure 2: Cloud-fog-edge-terminal collaborative computing offload model.

Computational Intelligence and Neuroscience 3

have confirmed that the multi-objective optimization
problem is an NP-hard problem [19]. *erefore, in this
study, we develop a corresponding optimization strategy
based on the swarm intelligence optimization algorithm [20]
and improve the classical swarm intelligence algorithm to
improve the speed, accuracy, and stability of the conver-
gence of the algorithm while improving the classical swarm
intelligence algorithm, which is prone to “premature”
problems. In the meantime, we seek to balance the “de-
velopment” and “exploration” capabilities of the algorithm
to improve the effectiveness of the target system.

3. Model Construction and
Problem Transformation

3.1. System Model. As the smart campus contains a large
number of connected terminals, when the computing re-
sources at the edge layer cannot meet the task computation
requirements, the computation tasks offloaded to the edge
layer are forwarded to the fog computing layer for pro-
cessing, and if the resources at the terminal layer, edge layer,
and fog computing layer cannot meet the task processing
requirements, the tasks are forwarded to the central cloud
for processing. *erefore, this study takes the “cloud, fog,
edge, and end” architecture in Figure 3 as the information
infrastructure of the smart campus and constructs the
corresponding computing model, which includes user ter-
minals, various types of base stations, MEC nodes, FC nodes,
and cloud computing data centers. Four types of compu-
tation nodes are shown in Table 1.

In the model, the relevant equipment and facilities play
the following functions.

(1) User Terminal: it consists of various types of ac-
cess terminal devices, including intelligent mobile

terminals, IoTdevices, and embedded sensing devices,
which mainly provide corresponding information
services and generate various computing tasks. It also
needs toestablishcommunicationwiththehigher-level
computing nodes to determine whether to offload and
the decision of where to offload.

(2) Each Type of Base Station
In the target system, the selection of each node base
station will be carried out by integrating factors such
as service demand, cost budget, deployment cycle,
operation and maintenance threshold, and the
current status of infrastructure. Overall, the route of
smooth evolution of 5G with nonindependent
grouping (NSA) to independent grouping (SA) is
considered. Among them, the fog computing layer
nodes are mainly macro-stations and pole stations,
which constitute macro-cells (macro-cell) with
coverage radius of 1–25 km, and macro-stations
adopt 4.9 or 2.6GHz band, with bandwidth of 160M,
power of 200–320W, and channel number of
32T32R or 64T64R. *e nodes at the edge layer are
mainly micro-base stations, which constitute
microcell with coverage radius of 30–300m, and
micro-stations are mainly in the 1.8 or 2.6GHz band
with 160M bandwidth, 2T2R channels, and 2–5W
power; at the terminal layer, portable stations, UAV
lift stations, and repeater stations are mainly
deployed in combination with carriers such as
personnel, vehicles, and UAVs to play the role of
mobile blindness filling and hot spot enhancement.
In addition, some indoor scenes deploy room sub-
stations as appropriate.
In particular, micro-stations and portable stations
are mainly deployed in the blind spots and hotspots

Central
cloud
layer

Fog
computing

layer

Edge
layer

Terminal
 layer

Fog Node

Data
Center

Edge Node Edge

Fog
Node

Fog
Node k

Microcell

Macro
eNB

User
Terminal

i

node
j

Figure 3: System model.

4 Computational Intelligence and Neuroscience

of macro-stations, which are composed of microcell
with low transmitting power and support small
distance frequency multiplexing and more channels
per unit area, thus significantly increasing service
density and system capacity, while RF interference is
very low; therefore, cells of different capacities are
deployed overlappingly, constituting a macro-cell as
the upper layer. *erefore, overlapping deployment
of cells with different capacities constitutes a mul-
tiple cellular system with macro-cell as the upper
layer of the network and dense microcell, which
makes the whole network system resilience and
capacity significantly increased. However, in the
three-dimensional multilayer cellular, with the
proliferation of frequency-using devices, intra-area
or inter-area interference inevitably occurs. At this
time, the repeater, as a co-channel amplification
device, picks up the signal of the sender antenna in
the downlink, isolates the signal outside the bandpass
through a bandpass filter, and transmits the filtered
signal to the target area again after power amplifi-
cation, which can effectively alleviate the signal in-
terference problem.

(3) MEC Node
While the deployment of MEC under 4G architec-
ture mostly requires the introduction of control
entities and relatively fixed deployment locations, the
deployment of 5G architecture is more flexible,
thanks to NFV and SDN technologies on the one
hand, and the application of SBA architecture with
flexible and tailorable network functions and ar-
chitecture on the other hand, thanks to the fact that
MEC servers are mainly available in two forms:
physical servers and virtual packages running on
common servers. In addition to allocating com-
puting resources for computing tasks offloaded by
terminals, MEC nodes provide location-based cus-
tomized services based on network context and user
information. In addition, it can also provide data
triage routing and hot content caching in conjunc-
tion with content delivery network (CDN).

(4) FC Node
*ere are 3 main categories of fog nodes, which are
fog server, fog-edge node, and thin fog in order from

high to low according to the resource capacity, and
all 3 categories can be deployed in combination with
the corresponding information and communication
infrastructure, and all have certain computing,
storage, and communication capabilities [21]. In the
model of Figure 3, the fog nodes are simplified into
one class, and the target system in this study chooses
a 2-tier fog computing architecture of main fog and
thin fog and deploys fog nodes of different com-
plexities on demand. Among them, the fog server is
regarded as the main fog node with relatively large
computing power and storage resources, but when
its resource load is exceeded, the data tasks can be
transferred to the central cloud for processing; the
fog-edge nodes are regarded as thin fog nodes, which
are composed of intelligent gateways, border routers,
etc. [22]. Mist nodes are not directly connected to the
terminal or the central cloud, but act as middleware
for preprocessing tasks and triaging data for intel-
ligent routing.

(5) Cloud Computing Data Center
*e data center not only provides ample computing,
storage, and communication resources but also has
corresponding business application servers to sup-
port institutions to deploy core network equipment
for education private networks and realize virtual-
ization dedicated under the same physical resources
through network slicing to ensure high network
isolation requirements for sensitive data and core-
sensitive services in the field of teaching and
research.

Based on the foregoing, the modeling is as follows.
In the edge layer, there are user terminal devices, ran-

domly distributed in the edge layer within the cell coverage of
the edge nodes, and the computational tasks generated by the
user terminals are defined as T � T1, T2, T3, . . . , Tn􏼈 􏼉. *ere
are two attributes of tasks, namely data size and workload,
where data size is used for the task offloading process and
workload is used for the task computation process.*erefore,
the tasks generatedby theuser terminal are representedby the
tuple Ti � (Di, Ci), Di is the amount of input data, i.e., the
amount of data required to offload the task. Ti, Ci is the
computing load, that is, the computing resources required to
process taskTi, expressed in CPU cycles.

Table 1: Computational task processing model.

Unload
location Trigger conditions

Local devices Low task volume, local devices can do the task themselves or there are not enough resources available on the edge layer
servers

Edge layer
nodes MEC server resources are fully available and the terminal is unable to complete task processing efficiently

Fog layer node Task volume is too large for local devices to execute alone, and the edge nodes do not have sufficient available resources,
so the tasks are offloaded to MEC and then forwarded to fog nodes for collaborative processing

Data center
*e task volume is very large and the latency requirement is not high, and there are not enough computing resources in
the edge layer and fog layer, or the content-based services do not have the corresponding resources for distribution and

storage in the edge layer and fog layer

Computational Intelligence and Neuroscience 5

Since the model in this study has a 4-layer architecture,
when the first 3 layers are unable to complete the task
processing, the bulk task is offloaded to the cloud computing
center for processing. Usually, such tasks have an extremely
high demand for storage and computing power resources
and are mostly non-latency-sensitive services, so it is not
practical to consider computational latency and energy
consumption in the central cloud layer.*erefore, the model
is mainly built for the first 3 layers, and to simplify the
computational derivation process, offloading decision var-
iables are introduced in the terminal layer and edge layer,
respectively, α and β, α, β ∈ 0, 1{ }.When αi � 1, the com-
puting tasks are offloaded to theMEC server at the edge layer
for processing and then processed locally at the terminal
device when αi � 0; similarly, when βi � 1, the computing
tasks offloaded to the edge layer will be forwarded to the fog
computing node for processing via fiber or microwave
transmission when the time comes and still processed at the
MEC server when the βi � 0. *erefore, the meanings of the
main parameters of the developed model are shown in
Table 2.

3.1.1. Terminal Layer Model. *e arithmetic power of the
user terminal device is expressed in terms of the CPU clock
cycle frequency fuser,i of the device, and the latency of the
task processed at the local user device is as follows:

Ti,exe �
Ci

fuser,i
. (1)

In addition, the energy consumption of tasks processed
at the local user device is as follows:

Ei,local � ku fuser,i􏼐 􏼑
2
Ci. (2)

In (2), ku is the energy factor determined by the built-in
CPU chip architecture of the terminal device [23], and by the
method of literature [24], the scenario in this study takes
ku � 10− 27.

To address the problems of poor terminal standby, high
energy consumption, and high latency of video applications
in system testing, this study uses energy consumption and
latency as the main indicators to reflect the quality of ex-
perience (QoE) of users and introduces a latency weighting
factor δ, which jointly optimizes latency and energy con-
sumption and denotes the total system overhead at the
terminal layer as Fi,local. In practical application, it can be
adjusted according to different service types and optimi-
zation requirements, and the delay weighting factor δ is
increased for delay-sensitive services to obtain better opti-
mization of delay index, and the energy consumption
weighting factor is 1 − δ and vice versa. *en, there are

Fi,local � δTi,local +(1 − δ)Ei,local. (3)

When the computing power of the terminal device cannot
meet the computing demand, the terminal device transmits
the computing task through the uplink to the MEC server at
the edge layer for processing, and the existing mainstream
large bandwidth wireless communication technologies LTE,

5G, and WIFI 6 all adopt orthogonal frequency division
multiple access (OFDMA) technology, and the data can be
transmitted between the uplink channel subcarriers in parallel
without interference, so the transmission rate of the user
terminal i in the sub-band wi is as follows:

R
j
i � wilog2 1 +

PiH
j

i

σ2
􏼠 􏼡. (4)

In (4), wi is the sub-band bandwidth of the uplink
transmission of the terminal, Pi is the transmit power of the
user terminal i, Hj

i is the channel gain between the terminal i

and the edge node j, and σ2 denotes the background noise
variance, and then, the offload transmission delay with the
device i is as follows:

T
j
i,trans �

Di

R
j
i

. (5)

3.1.2. Edge Layer Model. *ere are mainly 3 links for
computing task offloading to the edge layer: uplink trans-
mission, task processing, and result feedback. After the
computing task completes the computing processing, then
after coding and compression, the data volume is already
very small, and the downlink transmission rate is much

Table 2: Main parameter symbol meaning.

Parameters Meaning
Di Input data volume
Ci *e CPU cycles required to complete the first task
Ti,local Task processing latency at the local end device
fuser,i CPU clock cycle frequency of terminal device
Ei,local Calculated energy consumption for local devices
ku End device energy factor
δ Time delay optimization weighting factor
Fi,local Total task local processing overhead
W Uplink bandwidth
wi Task i uplink sub-band bandwidth
Pi *e terminal i device transmits power

H
j
i

Channel gain between terminal device i and edge
node j

σ2 Background noise variance
R

j

i Transmission speed of terminal i to edge node j

T
j
i ,trans Upstream transmission delay of the device i

Tj,exe Processing delay on the MEC side
T

j
i ,mec Task i total latency of unload to MEC processing

fi,mec

MEC server’s allocated computing power resources
for tasks i

fmec,total MEC total computing resources
Ei,trans Task i offload transmission energy to MEC
F

j

i ,mec Task i offload to edge layer processing total overhead

Tk
j ,trans

Task i uplink transmission delay from edge node to
fog node

Tk,exe Processing latency of fog computing nodes
Tk

i ,fog Task i total delay for offload to fog node processing

Rk
j

Uplink transmission delay from edge node to fog
node

fi,fog
Fog computing nodes allocate computing power

resources for tasks i

6 Computational Intelligence and Neuroscience

higher than the uplink, so the delay of the result feedback
link is negligible, and then, the total delay of computing task
offloading to the edge layer to complete the task delivery is as
follows.

T
j
i,mec � T

j
i,trans + Tj,exe, (6)

where Tj,exe is the processing latency of the task i at the MEC
server, and the MEC server allocates the corresponding
computational resources fi,mec for the offloaded tasks i, so
that we have

Tj,exe �
Ci

fi.mec
,

s.t. 􏽘
n

i�1
fi,mec ≤fmec,total.

(7)

When the task offload shunt occurs from the terminal
layer to the edge layer, the energy consumption is mainly
oriented towards the terminal layer devices and can be
derived from the terminal device transmit power as follows.

Ei,trans � PiT
j
i,trans � Pi

Di

R
j
i

. (8)

Since MEC servers and FC servers are deployed based on
communication transmission nodes and secured by utility
power, weak wells, or generators, the total energy con-
sumption of tasks offloaded from the terminal layer to the
edge layer considers transmission energy consumption,
while the offloading from the edge layer to the fog com-
puting layer does not consider the transmission and pro-
cessing energy consumption of both, so the total overhead of
tasks offloaded to MEC servers is as follows:

F
j
imec � δTi,mec +(1 − δ)Ei,trans. (9)

3.1.3. Fog Computing Layer Model. When a large number of
computing tasks are offloaded to the edge layer, which ex-
ceeds the load of the existing MEC server, some of the tasks
are offloaded to the fog node for processing by completing
the uplink transmission through the edge node and the base
station relying on the fog node, and the fog node allocates
computing resources fi,fog for processing according to the
task load, which includes the transmission delay T

j
i,trans from

the terminal to the edge node, the transmission delay Tk
j,trans

from the edge node to the fog node, and the processing delay
Tk,exe of the fog node, and the total delay of the task off-
loading to the fog node for processing is as follows:

T
k
i,fog � T

j
i,trans + T

k
j,trans + Tk,exe, (10)

where the transmission between base stations is via optical
fiber with a fixed transmission rate Rk

j , and then, we have the
following:

T
k
j,trans �

Di

R
k
j

. (11)

*e processing delay of the fog node is as follows:

Tk,exe �
Ci

fi,fog
,

s.t. 􏽘
n

i�1
fi,fog ≤ffog,total.

(12)

Also, in this offload mode, only the transmission energy
consumption of the end layer devices is counted, so the total
offload overhead is as follows:

F
k
i,fog � δT

k
i,fog +(1 − δ)Ei,trans. (13)

Based on the foregoing, the total overhead of the pro-
posed system in this study for processing computational
tasks is the weighted sum of the overheads of the processing
tasks at each layer.

Fsystem � 􏽘
n

i�1
1 − αi(􏼁Fi,local +αi 1 − βi(􏼁F

j
i,mec +αiβiF

k
j,fog. (14)

3.2.Questions toAsk. To further optimize the effectiveness of
the proposed “cloud, fog, edge, and end” four-layer system
architecture, this study sets the goal of reducing latency and
energy consumption, based on a heuristic algorithm to
jointly optimize the offloading decision, communication,
and computing resource allocation problem, and according
to the above model, the offloading overhead represents the
weighted sum of latency and energy consumption; therefore,
from (14), to reduce the total offloading overhead of the
target system, we can obtain problem Q.

min
α,β,fmec ,ffog ,wi

Fsystem, (15)

αi, βi ∈ 0, 1{ }, ∀i ∈ n, (16)

􏽘

n

i�1
fi,mec ≤fmec,total, (17)

0≤fi,mec ≤fmec,total, (18)

􏽘

n

i�1
fi,fog ≤ffog,total, (19)

0≤fi,fog ≤ffog,total, (20)

􏽘

n

i�1
wi ≤W, (21)

0≤wi ≤W. (22)

In the above model, αi � α1, α2, α3, . . . , αn􏼈 􏼉 and
βi � β1, β2, β3, . . . , βn􏼈 􏼉. *e constraints in formulas
(16)–(20) correspond to the communication resource allo-
cation problem, indicating that the communication channels
are allocated for the end devices during offloading and the
sub-bands do not exceed the total bandwidth; (17)–(20)
correspond to the computational resource allocation
problem, indicating that the computational resources are
allocated for the tasks offloaded to the edge nodes or fog

Computational Intelligence and Neuroscience 7

nodes and do not exceed the maximum server limit; (16)
corresponds to the offloading decision, indicating that there
are 2n kinds of decisions for each layer when offloading is
performed at the terminal and edge layers.

In addition, the two offload decision variables are binary
arrays, so the offload decision is a nonlinear restricted 0–1
planning problem, while the communication and compu-
tational resource allocation problems have a large number of
variables with linear relationships between the user tasks, and
the literature [25] has shown that the underlying problem for
the joint optimization of computational offload, communi-
cation, and computational resource allocation is a mixed
integer nonlinear programming (MINP) problem, which is
difficult to find the optimal solution, so the complex problem
is decomposed into a low-complexity problem to solve.

3.3. Question Breakdown. *e complex problem is
decomposed into multiple equivalent problems using the
Tammer decomposition [26] to decouple the relevant var-
iables and then solved by a heuristic algorithm, so that (15) is
decomposed as follows:

min
fmec ,ffog ,wi

min
α,β

Fsystem􏼠 􏼡,

s.t.(18) − (24).

(23)

Let Fsystem′ correspond to the offloading decision problem
in parentheses, and we have the following:

Fsystem′ � min
α,β

Fsystem,

s.t.(18).

(24)

Meanwhile, question Q can be formulated as follows.

min
fmec ,ffog ,wi

Fsystem′ ,

s.t.(19) − (24).

(25)

In this way, problem Q is decomposed into two sub-
problems, i.e., the offloading decision and the resource al-
location problem, and the constraints of the two
subproblems are decoupled. In addition, by replacing the
decision variables, it can be further simplified F’

system that the
offloading decision variables αi � 0 of the terminal layer, the
offloading decision variables αi � 0 of the edge layer and
βi � 0, and the offloading decision variables αi � 1 of the fog
computing layer and βi � 1. Finally, the problem is trans-
formed into a convex optimization problem and solved by
applying the algorithm proposed in this study.

4. Algorithm Improvement and
Validation Experiments

4.1. Algorithm Improvement Ideas. Among many intelligent
optimization algorithms, particle swarm optimization (PSO)
[27] is relatively well developed, although it still lacks strict
mathematical derivation in some parameter values and relies
on scenario-specific experiments and existing research

experience to set them, PSO does not rely on gradient and
curvature, but performs parallel search based on population
intelligence, so for the system proposed in this study that
contains a large number of equipment tasks, it can find the
optimal or suboptimal solution relatively quickly. However,
the classical PSO algorithm is prone to local optimality when
dealing with practical problems, and it adopts a randomized
approach in population initialization, and the potential of
particle ergodicity is not deeply explored, so it is difficult to
achieve an optimal balance between the pre-exploration and
post-exploitation capabilities of the algorithm.

To this end, many scholars in academia have conducted
fruitful research on algorithm improvement. Wang and Liu
[28] proposed the concept of population evolution disper-
sion and a nonlinear dynamic adaptive inertia weight PSO
algorithm (inertial particle swarm optimization, IPSO)
based on sigmoid function; Wu et al. [29] proposed an
adaptive particle swarm algorithm (curves increasing par-
ticle swarm optimization, CIPSO) with a curve-increasing
strategy; and Yan et al. [30] introduced simulated annealing
operation and proposed an adaptive simulated annealing
particle swarm algorithm (adaptive simulated annealing
particle swarm optimization, ASAPSO) based on hyperbolic
tangent function. In addition to the above three improved
algorithms all change the balance between global exploration
and local exploitation of the algorithm by controlling pa-
rameters, the literature [30] also introduced simulated
annealing operation to enhance the ability of the algorithm
to jump out of the local optimum, which effectively improves
the performance of the classical particle swarm algorithm.

To further explore the optimization potential of PSO
algorithm, this study improves PSO from four aspects and
proposes chaotic teach and learn particle swarmoptimization
(CTLPSO), which firstly improves the population initiali-
zation using sine chaos mapping to improve the blindness
causedby random.Secondly, the “teach”phaseof the teaching
algorithm is introduced into the PSO speed update formula,
and the “global exploration” and “local development” ca-
pabilities of the algorithm are enhanced. At the same time, to
enhance the adaptiveness of the algorithm’s “global explo-
ration” and “local exploitation” capabilities, the constant
inertia weights are replaced by segmented inertia weights to
give the algorithm adaptive capabilities, so that the global
optimum, the historical optimum, and the population av-
erage act together on the particles and have a comprehensive
impact on their displacement direction and step size; finally,
the “learning” phase of the teaching algorithm is conducted
on the particle population to improve the algorithm’s effi-
ciency. “Learning” stage of the particle population is con-
ducted to improve the ability of jumping out of the local
optimum in the late iteration of the algorithm.

4.2. Chaotic Teaching and Learning Particle Swarm
Optimization

4.2.1. Particle Swarm Optimization. *e optimization-
seeking process of PSO is completed by the particle simu-
lating the foraging flight of a flock of birds, and the

8 Computational Intelligence and Neuroscience

displacement of the particle in each iteration consists of
three parts, which are the inheritance of the previous ve-
locity, its own learning, and the information interaction of
the population, and its velocity and position update equa-
tions are as follows.

vi(k + 1) � ωvi(k) + c1r1 Pbest,i(k) − xi(k)􏽨 􏽩

+ c2r2 Gbest − xi(k)􏼂 􏼃,

xi(k + 1) � xi(k) + vi(k + 1),

(26)

where ω is the inertia weight coefficient; c1, c2 are the self-
cognitive factor and social cognitive factor, which are im-
portant parameters to control the PSO iteration, respec-
tively. xi(k) and vi(k) represent the position and velocity of
the particle i at the iteration k, respectively; r1 and r2 are the
random coefficients; Pbest,i is the individual optimal position
of the particle i; and Gbest is the population optimal position.

4.2.2. Teaching-Learning-Based Optimization (TLBO).
Teaching-learning-based optimization (TLBO) [31] simu-
lates a class-based learning approach in which the im-
provement of the level of the students in the class is guided
by the teacher’s “teaching,” and at the same time, the stu-
dents need to “learn” from each other to facilitate the ab-
sorption of knowledge. Students need to “learn” from each
other to facilitate the absorption of knowledge. *e teacher
and the learners are equivalent to individuals in an evolu-
tionary algorithm, where the teacher is one of the best
adapted individuals and each learner learns a subject that is
equivalent to a decision variable. *is is defined as follows:

(1) Search Space: the search space can be expressed as
S � X|xL

i ≤ xi≤xU
i , i � 1, 2, . . . , d􏼈 􏼉, d indicates

the spatial dimension (the number of decision var-
iables), and xL

i and xU
i (i � 1, 2, . . . , d) are the upper

and lower bounds of each dimension, respectively.
(2) Search Point: set Xj � (x

j
1, x

j
2, . . . , x

j

d), (j � 1, 2,

. . . , NP) is a point j in the search space, x
j
i (i �

1, 2, . . . , d) is one of the decision variables of point
Xj, and NP is the number of spatial search points,
i.e., the number of potential solutions.

(3) Class: the set of all points in the search space of
TLBO is called class.

(4) Students: a point in the class Xj � x
j
1, x

j
2, . . . , x

j

d is
called as a student.

(5) Teacher: the student Xbest with the best performance
in the class is called the teacher and is denoted by
Xteacher.

(1) “Teaching” Phase. In the “teach” phase of the TLBO
algorithm, each student in the class is denoted by Xj(j �

1, 2, . . . , NP). To make continuous progress and close the
gap between themselves and the teachers, learning is based
on the variability between Xteacher and student averages
Mean.

As shown in Figure 4, the average class grade in the initial
stage is MeanA � 28. *e average grade was low and widely
distributed,but after several sessionsof instruction, theaverage

gradewas raised toMeanB � 74, and the distribution of grades
was gradually concentrated, indicating that the grades im-
proved through “teaching” and “learning,” and the span of the
best and worst grades was reduced. In the “teaching” phase,
each student learned from the teacher by taking advantage of
the difference in level between the teacher Xteacher and the
average of the student’s grades Mean, as follows.

X
i
new � X

i
old + Difference, (27)

Difference � ri. Xteacher − TFi.Mean(􏼁. (28)

Xi
old and Xi

new, respectively, indicate the values of the i

student before and after learning, Mean � 1/NP􏽐
NP
i�1Xi is

the average of all students, and there are two key parameters:
the teaching factor TFi � round[1 + rand(0, 1)] and the
learning step ri � rand(0, 1).

(2) “Learning” Stage. In the “learning” phase, for each
student Xi(i � 1, 2, . . . , NP), a learning target Xj(j � 1, 2,

. . . , NP, j≠ i) is randomly selected in the class. Xi makes
learning adjustments by analyzing the differences between
himself and Xj. *e learning improvement method is
similar to the differential evolution algorithm, except that
the learning step r in TLBO uses a different learning factor
for each student. *e “learning” process is implemented
using (27).

X
i
new �

X
i
old + ri. X

i
− X

j
􏼐 􏼑, f X

j
􏼐 􏼑<f X

i
􏼐 􏼑,

X
i
old + ri. X

j
− X

i
􏼐 􏼑, f X

i
􏼐 􏼑<f X

j
􏼐 􏼑.

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
(29)

In (29), the ri � U(0, 1) denotes the learning factor of the
student i, i.e., the learning step.

(3) Update Method. *e update operation is performed
separately when the learner goes through the “teaching” and
“learning” phases. *e updating idea is similar to the dif-
ferential evolution algorithm. If individual Xi

new after
learning is better than student Xi

old before learning, Xi
old is

replaced with Xi
new . Otherwise, Xi

old is kept unchanged and
updated in the following way.

If Xi
new is better than Xi

old

Xi
old � Xi

new

End if

MeanA

DifferenceA DifferenceB

MeanB

0.02

0 10 20 30 40 50 60 70 80
Adaptability value (achievement value)

90

0.04

0.06

0.08

0.10

Po
pu

la
tio

n
ty

pe

Figure 4: TLBO process model.

Computational Intelligence and Neuroscience 9

4.2.3. Algorithm Improvement Innovation

(1) PSO’s Sine Chaos Initialization. *e PSO population
initialization uses a pseudorandom sequence, although the
population of traversalism is guaranteed, but the perfor-
mance of the chaotic sequence is initialized, crossover and
variation use of the chaotic sequence is often better. Sine
mapping is a typical representative of chaotic mapping, and
its mathematical form is as follows:

xk+1 �
4
a
sin πxk(􏼁, a ∈ (0, 4]. (30)

*e range of x in the sine expression is [0, 1]. *e
distribution of 200 iterations of the sine mapping is shown in
Figure 5.

As can be seen from Figure 5, the sine mapping is
distributed between [0, 1], and the chaotic property is used
instead of random initialization, which can make the
population more uniformly distributed in the search space
and improve the efficiency of population exploration.

(2) Segmented Inertia Weights. In classical PSO, the inertia
weights are constant and the algorithm inherits a constant
speed for its own history, which does not allow the
flexibility to adapt the algorithm performance to different
problems and different search phases. For this reason, an
adaptive mechanism is introduced so that the inertia
weights ω are varied by segments, with the following
expression.

ω �

1 − t

0.7 · MaxIter
, ift≤ 0.7 · MaxIter,

10
3

−
t

0.3 · MaxIter
, else

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (31)

(3) Speed Update into the “Teaching” Phase. By intro-
ducing the TLBO “teach” phase into the PSO, the speed
update equation is improved to

vi(k + 1) � ωvi(k) + c1r1 Pbest,i(k)x(k)􏼐 􏼑

+ c2r2 Gbest − xi(k)(􏼁

+ c3r3 ri. Gbest − TFi.XMean(􏼁(􏼁,

(32)

where c1 � c2 � c3 � 1/3, and XMean is the mean value of the
population.

(4) Population Renewal Based on the “Learning” Phase.
Learning steps in TLBO: the “learning” process is achieved
by applying different learning factors to each student.

X
i
new �

X
i
old + ri. X

i
− X

j
􏼐 􏼑, f X

j
􏼐 􏼑<f X

i
􏼐 􏼑,

X
i
old + ri. X

j
− X

i
􏼐 􏼑, f X

i
􏼐 􏼑<f X

j
􏼐 􏼑.

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
(33)

In equation (33), ri � U(0, 1) is the learning step of
student i. *e CTLPSO algorithm flow is shown in Figure 6.

4.3. Algorithm Performance Comparison Experiment. In this
section, performance verification and comparative analysis

of the TLIPSO algorithm are performed based on the
simulation environment of HUAWEI MateBook 14 with
Intel Core i5 1.6GHz processor and 16GB of memory,
operating system of Windows 10 Professional 64 bit, and
using MATLAB 2018b as the simulation platform.

To verify the performance of the algorithm and ensure
the generality and test integrity of the algorithm, based on
the 11 test benchmark functions shown in Table 3, the
CTLPSO proposed in this study is carried out with classical
PSO, IPSO [28], CIPSO [29], and ASAPSO [30] for simu-
lation comparison experiments, setting the number of
populations to 30, the maximum number of iterations to
200, and running 30 times continuously, respectively. *e

SineMapMap

0
0 20 40 60 80 100 120 140 160 180 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Distribution of sine mapping iterations.

Initialization of particle swarm populations using
sine chaos mapping

Start

Set particle swarm parameters

Calculate the fitness value and update the global
optimum and historical optimum

Calculate the weight coefficients, population
means, and update the velocity values using the

improved formula

Update population location

Updating of populations in the academic phase

Meet the stopping conditions?

Output optimal particles

End

Yes

No

Figure 6: Algorithm flow chart.

10 Computational Intelligence and Neuroscience

optimal fitness value (best), the average fitness value (mean),
the worst fitness value (worst), the standard deviation (std),
and the total running time (time) of each algorithm are
recorded in Table 4. In addition, the comparison of the test
functions and algorithm curves is shown in Figure 7, where
F10 (a) and F10 (b) are local enlargements of F10, and F11
(a) and F11 (b) are local enlargements of F11.

4.3.1. Comparison of Algorithm Convergence Accuracy.
From the optimization search results, the CTLPSO out-
performs other algorithms in all the tested functions except
for the suboptimal solutions in functions F5 and F9. In F1-F4
and F6-F8, the optimal solution is obtained with a great
advantage, and the optimization improvement is up to 50
times compared with other algorithms. In F10 and F11, the
highest convergence accuracy is achieved with a slight
advantage.

4.3.2. Algorithm Convergence Speed Comparison. Figure 7
shows the optimization curve plots for the 11 tested func-
tions, and the experimental results are broadly classified into
3 categories based on the average curve changes of 200 it-
erations per round for 30 consecutive rounds of experiments.

(i) *e convergence speed of the algorithm is in the
2nd place in the early iterations (the first 25 iter-
ations on average) and then reverses to become the
1st, and the convergence accuracy leads by a great
margin. (b) *e conditions are met for F1, F2, F4,
and F6-8.

(ii) *e convergence rate is always in the 1st position.
*e condition is met by F3.

(iii) *e convergence speed is in the 2nd place with a
small disadvantage in the early stage, and then, the

convergence accuracy is in the 2nd place and falls
into the local optimum, which contains F5 and F9.

(iv) *e convergence speed is basically equal to other
algorithms at the beginning of the iteration (average
first 6 iterations), and then, it overtakes in the 1st
with a slight advantage, which is met by F10 and
F11. In summary, the CTLPSO algorithm proposed
in this study has a strong advantage in the con-
vergence speed.

4.3.3. Algorithm Stability Comparison. *e standard devi-
ation of the experimental results shows that CTLPSO results
have the smallest standard deviation among a total of 9 test
functions F1-F8 and F10 and have an exponential advantage
of up to 1054 times, while the stability ranks 2nd and 3rd in
functions F9 and F11, respectively. Overall, CTLPSO has
strong search stability.

4.3.4. Algorithm Complexity Comparison. To enhance the
ability of PSO algorithm to deal with high-dimensional
complex problems and jump out of local optimum, CTLPSO
and ASAPSO integrate the update mechanism of TLBO and
SA algorithms, respectively, in addition to improving the
algorithm parameters and introducing the adaptive mech-
anism. From the level of algorithm design architecture,
compared with other algorithms, the depth-improved al-
gorithm has increased complexity compared with the
classical PSO algorithm and the light-weight-improved al-
gorithm, but the CTLPSO algorithm proposed in this study
achieves a better balance between dealing with complex
high-dimensional problems and reducing the complexity of
the algorithm. *erefore, the CTLPSO algorithm in this
study achieves a lower algorithm complexity on the basis of
the guaranteed algorithm-seeking performance complexity.

Table 3: Set of test functions.

Number Function Dim Range fmin

F1 F1(x) � 􏽐
n
i�1 x2

i
30 [− 100, 100] 0

F2 F2(x) � 􏽐i�1|xi| + 􏽑
n
i�1 |xi| 30 [− 10, 10] 0

F3 F3(x) � 􏽐i�1(􏽐
i
j− 1 xj)

2 30 [− 100, 100] 0

F4 F4(x) � max
i

|xi|, 1≤ i≤ n􏼈 􏼉 30 [− 100, 100] 0
F5 F5(x) � 􏽐

n− 1
i�1 [100(xi+1 − x2

i)2 + (xi − 1)2] 30 [− 30, 30] 0
F6 F6(x) � 􏽐

n
i�1 ix4

i + random[0, 1) 30 [− 1.28, 1.28] 0
F7 F7(x) � − 20 exp(− 0.2

���������
1/n 􏽐

n
i�1 x2

i

􏽱
) − exp(1/n 􏽐

n
i�1 cos(2πxi)) + 20 + e 30 [− 32, 32] 0

F8 F8(x) � 1/4000􏽐
n
i�1 x2

i − 􏽑
n
i�1 cos(xi/

�
i

√
) + 1 30 [− 600, 600] 0

F9 F9(x) � 0.1 sin2(3πxi) + 􏽘
n

i�1
(xi − 1)

2
[1 + sin2(3πxi + 1)] + (xn − 1)

2
[1 + sin2(2πxn)]

⎧⎨

⎩

⎫⎬

⎭

+ 􏽘
n

i�1
u(xi, 5, 100, 4)

30
[− 50, 50] 0

F10 F10(x) � (x2 − 5.1/4π2x2
1 + 5/πx1 − 6)2 + 10(1 − 1/8π)cos x1 + 10 2 [− 5, 5] 0.398

F11 F11(x) � [1 + (x1 + x2 + 1)
2
(19 − 14x1 + 3x

2
1 − 14x2 + 6x1x2 + 3x

2
2)]

×[30 + (2x1 − 3x2)
2

× (18 − 32x1 + 12x
2
1 + 48x2 − 36x1x2 + 27x

2
2)]

2 [− 2, 2]
3

Computational Intelligence and Neuroscience 11

Table 4: Population size of 30 maximum 200 iterations per iteration for 30 consecutive experiments.

Function Algorithm Optimal fitness
value (best)

*e optimal solution
corresponds to the average

fitness value (mean)

Worst adaptation
value (worst)

Standard
deviation (std)

Total time/sec
(time/s)

F1

PSO 688.7089 1457.107 2724.1243 504.927 1.427
CTLPSO 1.0215e-55 1.0012e-51 1.9587e-50 3.5739e-51 2.310
IPSO 115.9884 510.5799 1075.1169 274.0713 1.584
CIPSO 6.2062 55.0759 159.8691 44.6851 1.691
ASAPSO 1.9062e-05 0.20295 1.9261 0.40706 8.118

F2

PSO 11.1739 32.199 94.2118 17.7586 1.494
CTLPSO 2.0644e-28 4.4092e-26 2.5927e-25 6.7801e-26 3.473
IPSO 8.2146 16.1931 31.5735 6.3284 1.615
CIPSO 1.0474 4.5607 8.257 1.7571 1.808
ASAPSO 0.004721 0.17654 0.60898 0.16134 8.348

F3

PSO 5954.4538 14428.6526 41658.4972 8213.2678 3.633
CTLPSO 2.5765e-56 2.3859e-50 6.5794e-49 1.1985e-49 7.821
IPSO 568.288 5400.7559 23845.1894 5275.5004 3.803
CIPSO 50.7281 1189.4411 7562.3882 1608.3223 3.870
ASAPSO 0.025663 37.3842 324.5528 79.0064 23.261

F4

PSO 9.3672 18.0263 27.5438 4.3495 1.531
CTLPSO 1.9901e-28 6.8895e-26 1.5883e-24 2.8894e-25 3.618
IPSO 6.7326 12.1719 21.4339 3.762 1.789
CIPSO 0.95111 3.088 6.5994 1.51 1.847
ASAPSO 1.3805e-06 0.067248 0.3404 0.08106 8.841

F5

PSO 40236.5912 249639.6662 829457.2647 201156.6828 1.918
CTLPSO 28.844 28.9427 28.9771 0.029461 4.423
IPSO 905.6092 17964.6325 121043.1986 22415.7999 2.056
CIPSO 132.2292 989.3633 7020.862 1456.4046 2.153
ASAPSO 0.0027619 1.2898 29.7361 5.3891 11.084

F6

PSO 0.19853 2.9565 25.2302 5.1565 2.565
CTLPSO 1.6319e-05 0.0001902 0.00066071 0.00016004 5.576
IPSO 0.062995 3.5061 21.6622 5.3885 2.770
CIPSO 0.0038062 0.045352 0.16613 0.037 2.873
ASAPSO 2.173e-06 0.001172 0.0038589 0.0011222 12.687

F7

PSO 6.5531 9.3753 11.8192 1.389 1.961
CTLPSO 8.8818e-16 2.0724e-15 4.4409e-15 1.7034e-15 4.162
IPSO 4.6432 7.4084 19.9668 2.8663 2.064
CIPSO 1.456 3.0836 4.6343 0.79603 2.161
ASAPSO 0.00024989 0.10962 1.2343 0.238 10.488

F8

PSO 2.8158 16.2781 35.543 7.216 2.102
CTLPSO 0 0 0 0 4.402
IPSO 1.7522 4.2216 9.4596 1.6479 2.222
CIPSO 1.1187 1.7237 3.9132 0.5486 2.390
ASAPSO 0.00011151 0.15313 1.032 0.24847 11.607

F9

PSO 200.2253 82535.0018 652159.7124 146589.7186 4.361
CTLPSO 2.0832 2.8053 3.5637 0.36512 9.035
IPSO 10.7825 93.5021 1615.3978 288.6328 4.557
CIPSO 3.3443 5.9403 11.5836 1.9598 4.539
ASAPSO 1.6566e-12 0.0077261 0.077976 0.016162 22.418

F10

PSO 0.39789 0.39791 0.39807 4.1782e-05 0.922
CTLPSO 0.39789 0.39789 0.39791 5.0606e-06 2.618
IPSO 0.39789 0.39789 0.39789 0 1.144
CIPSO 0.39789 0.39791 0.39801 3.0198e-05 1.064
ASAPSO 0.39789 0.39789 0.39789 0 7.928

F11

PSO 3.0001 3.0018 3.0124 0.0025442 0.915
CTLPSO 3 3 3 4.8911e-06 2.770
IPSO 3 3 3 6.7162e-14 1.046
CIPSO 3 3.0009 3.0039 0.0012 1.053
ASAPSO 3 3 3 3.5651e-15 7.553

12 Computational Intelligence and Neuroscience

50 100
Number of iterations

150 200

50 100
Number of iterations

150 200

10–40

10–20

100

Average iteration curve of 30 experiments

Average iteration curve of 30 experiments

Average iteration curve of 30 experiments

Fi
tn

es
s f

un
ct

io
n

50 100
Number of iterations

150 200

10–40

10–20

100

Fi
tn

es
s f

un
ct

io
n

10–20

10–10

100

Fi
tn

es
s f

un
ct

io
n

PSO
CTLPSO
IPSO
CIPSO
ASAPSO

PSO
CTLPSO
IPSO
CIPSO
ASAPSO

PSO
CTLPSO
IPSO
CIPSO
ASAPSO

F1

F2

F3

Parameter space

100

x2 x1

0

0.5

1

1.5

2

–100 –100

100

00

F1
 (x

1, x
2)

×104

0

5000

10000

100

x2

–100
x1

–100

100

Parameter space

F2
 (x

1, x
2)

0
0

100

x2

–100
x1

–100

100

Parameter space

F3
 (x

1, x
2)

0

1

2

3

4

5
×104

00

(a)

Figure 7: Continued.

Computational Intelligence and Neuroscience 13

PSO
CTLPSO
IPSO
CIPSO
ASAPSO

50 100
Number of iterations

150 200

Average iteration curve of 30 experiments

10–10

100

Fi
tn

es
s f

un
ct

io
n

Parameter space

Parameter space

F5
 (x

1, x
2)

x1
–200

200

0
0

2000

5

10

15

x2

–200

×1010

F7
 (x

1, x
2)

x1
–1

–0.5–0.5
0.5

0
0

0.5

0

1

2

3

x2

–1

PSO
CTLPSO
IPSO
CIPSO
ASAPSO

50 100
Number of iterations

150 200

Average iteration curve of 30 experiments

102

104

106
Fi

tn
es

s f
un

ct
io

n

PSO
CTLPSO
IPSO
CIPSO
ASAPSO

50 100
Number of iterations

150 200

Average iteration curve of 30 experiments

10–2

100

102

Fi
tn

es
s f

un
ct

io
n

F4

F5

F6

10–20

Parameter space

F4
 (x

1, x
2)

x1
–100

100

1000

50

100

x2

–100

00

(b)

Figure 7: Continued.

14 Computational Intelligence and Neuroscience

PSO
CTLPSO
IPSO
CIPSO
ASAPSO

50 100
Number of iterations

150 200

Average iteration curve of 30 experiments

10–10

10–5

100

Fi
tn

es
s f

un
ct

io
n

F7

PSO
CTLPSO
IPSO
CIPSO
ASAPSO

50 100
Number of iterations

150 200

Average iteration curve of 30 experiments

10–10

10–15

10–5

100
Fi

tn
es

s f
un

ct
io

n

F8

Parameter space

F1
0

(x
1, x

2)

x1
–20

20

0
0

20
0

5

10

20

15

x2

–20

Parameter space

F1
1

(x
1, x

2)

x1
–500

500

0
0

500
0

50

100

x2

–500

PSO
CTLPSO
IPSO
CIPSO
ASAPSO

50 100
Number of iterations

150 200

Average iteration curve of 30 experiments

100

105

Fi
tn

es
s f

un
ct

io
n

F9

Parameter space

F1
3

(x
1, x

2)

x1
–5

5

0
0

5
0

5

10

x2

–5

(c)

Figure 7: Continued.

Computational Intelligence and Neuroscience 15

F10

F10 (a)

F10 (b)

0 5
Number of iterations

10 15

Average iteration curve of 30 experiments

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

Fi
tn

es
s f

un
ct

io
n

PSO
CTLPSO
IPSO
CIPSO
ASAPSO

PSO
CTLPSO
IPSO
CIPSO
ASAPSO

50 100
Number of iterations

150 200

Average iteration curve of 30 experiments

0.4

0.6

0.8

1.2

1

Fi
tn

es
s f

un
ct

io
n

Parameter space

F1
7

(x
1, x

2)

x1
–5

5

0
0

5
0

200

400

x2

–5

Parameter space

F1
7

(x
1, x

2)

x1
–5

5

0
0

5
0

200

400

x2

–5

Parameter space

F1
7

(x
1, x

2)

x1
–5

5

0
0

5
0

200

400

x2

–5 15 2520
Number of iterations

3530 40

Average iteration curve of 30 experiments

0.39

0.4

0.41

0.42

0.43

0.44

0.45

Fi
tn

es
s f

un
ct

io
n

PSO
CTLPSO
IPSO
CIPSO
ASAPSO

(d)

Figure 7: Continued.

16 Computational Intelligence and Neuroscience

PSO
CTLPSO
IPSO
CIPSO
ASAPSO

50 100
Number of iterations

150 200

Average iteration curve of 30 experiments

101

Fi
tn

es
s f

un
ct

io
n

F11

F11 (a)

F11 (b)

PSO
CTLPSO
IPSO
CIPSO
ASAPSO

100 20
Number of iterations

30 40

Average iteration curve of 30 experiments

4

4.5

5

5.5

6

6.5

Fi
tn

es
s f

un
ct

io
n

Parameter space

F1
8

(x
1, x

2)

x1–4
–2

0
4

20
2

4
0

1

2

x2 –4
–2

×108

Parameter space

F1
8

(x
1, x

2)

x1–4
–2

0
4

20
2

4
0

1

2

x2 –4
–2

×108

Parameter space

F1
8

(x
1, x

2)

x1–4
–2

0
4

20
2

4

0

1

2

x2 –4
–2

×108

PSO
CTLPSO
IPSO
CIPSO
ASAPSO

10 20

Number of iterations

30 40

Average iteration curve of 30 experiments

3

3.5

4

4.5

Fi
tn

es
s f

un
ct

io
n

(e)

Figure 7: Graph of experimental results.

Computational Intelligence and Neuroscience 17

4.4. Conclusion. In summary, in most cases, the CTLPSO
algorithm proposed in this study has an obvious advantage
in convergence accuracy, with a maximum difference of 50
times, and in convergence speed, with a slight disadvantage
in the 2nd place at the beginning of the iteration, and then
achieves a speed reversal, and has an obvious advantage in
algorithm stability, with a maximum advantage of times.
*ere are many innovative points, both carry out the im-
provement of parameters, the introduction of adaptive
mechanism and the fusion operation of other algorithm
update mechanism, and carry out the deep improvement to
enhance the algorithm to deal with complex high-dimen-
sional problems and jump out of the local optimum ability,
which objectively also increases the algorithm operation
process; therefore, from the total call time of each algorithm,
the order from simple to complex is PSO, IPSO, CIPSO, and
CTLPSO. However, it can be seen from the data that the
CTLPSO proposed in this study can control the total time
slightly higher than the first three algorithms and much
lower than ASAPSO with one more innovation point than
ASAPSO, so the algorithm proposed in this study achieves a
good balance between improving the algorithm performance
and controlling the algorithm complexity.

Overall, the CTLPSO algorithm improves the efficiency
of the global exploration of the algorithm’s pre-optimization
search, improves the disadvantages of PSO’s easy premature
maturity, and satisfies the needs of the algorithm to deal with
high-dimensional complex problems and different stages of
the optimization search through the innovations of the
population initialization chaos operation, parameter im-
provement, adaptive mechanism introduction, and update
methods, while effectively controlling the complexity of the
algorithm.

5. Experimental Simulation and Result Analysis

5.1. Environment Construction and Parameter Setting.
*is chapter, also based on MATLAB platform, conducts
simulation experiments on the problem presented in Section
3 to compare and analyze the performance of the system
architecture, algorithm model, and offloading strategy
proposed in this study by controlling the variables, and the
simulation parameters are set as shown in Table 5.

5.2. Simulation Analysis

5.2.1. System Architecture Performance Verification.
Firstly, the proposed “cloud, fog, edge, and end” collaborative
architecture is verified by setting different number of tasks to
run under three architectures: terminal, edge, and cloud-fog-
edge based on random offloading strategy. As shown in
Figure 8, when the number of tasks is small, the total overhead
of processing tasks of the three architectures is not much
different, and as the number of tasks increases, the terminal
side cannot meet the processing demand of a large number of
tasks, and the growth of delay and energy consumptionmakes
the total system overhead increase nearly linearly and more.
*e cloud-side architecture has no obvious advantage in a
small number of tasks, and the total overhead is slightly

higher than the edge-side architecture in a medium task
volume of 34–53, because the computational tasks are based
on random offloading strategy, and the increase in trans-
mission path makes the channel quality and other uncer-
tainties increase accordingly, and when the channel quality is
unstable, there is a possibility of offloading to the fog node or
even the central cloud, which causes additional delay and
energy consumption. In contrast, the system has obvious
advantages when facing large task volumes.

5.2.2. Offloading Performance Analysis. Because of the
limited resources at the edge layer, with the surge in the
number of users and data traffic, when the available re-
sources at the edge layer are insufficient, then it needs to be
forwarded to the fog computing layer for processing. Dif-
ferent offloading strategies have different impacts on the
addressing and resource allocation of computing tasks,
which directly affect the success rate of offloading, so the
actual PSO, CTLPSO, IPSO, CIPSO, and ASAPSO-based

Table 5: Main parameter settings.

Parameters Values
Di 100–500 kB take random values
fi 500–1500 cycle/bit
fuser,i 0.5–1GHz take random values
fi,mec 1–100GHz take random values
fi,fog 1–500GHz take random values
Kmax 200
Rk

j 0.1GB/s
W 50MHz
H

j
i 2×10− 10− 2×10–6

σ2 10− 9W
ku 10–27

Pi 0.1W
N 200
c1/c2/c3 1/3

10 20 30 40 50 60 70 80 90 100
Number of tasks (pieces)

0

25

50

75

100

125

150

175

200

To
ta

l S
ys

te
m

 O
ve

rh
ea

ds

Terminal
Edge-Terminal
Cloud-Fog-Edge-Terminal

Figure 8: Performance of the number of tasks in different
architectures.

18 Computational Intelligence and Neuroscience

algorithms are compared and analyzed for number of off-
loading tasks. As shown in Figure 9, when the task volume is
small, the offloading success rates of the five algorithm
strategies do not differ much because the available resources
are abundant, while when the task volume continues to
grow, the competition for communication and computing
resources among offloading users also continues to rise, and
the complexity of the offloading strategy and resource al-
location mechanism will also affect the offloading perfor-
mance when the user offloading behavior is extended from 2
layers at the edge end to 4 layers at the cloud-edge end, and
from the simulation results, when the task exceeds 50, the
algorithm proposed in this study has obvious advantages.

5.2.3. Impact of the Number of Iterations on the System
Overhead. Figure 10 compares the convergence performance
of PSO, CTLPSO, IPSO, CIPSO, and ASAPSO. In the early
iterations, the convergence trend of the remaining four al-
gorithms is relatively flat, while the convergence trend of the
proposed CTLPSO is faster, and it is close to the optimal
solution at about the 100th iteration. *e global exploration
efficiency in the early stage of the algorithm is higher. In
addition, all the five algorithms have a short period of no
fluctuation in the early curve and then return to normal
convergence, which indicates that all of them have the ability
to jump out of the local optimum. Overall, CTLPSO has
significant advantages over PSO, IPSO, and CIPSO in terms
of convergence speed and accuracy, and there is not much
difference in convergence speed compared with ASAPSO,
and CTLPSO converges to the optimal solution at 100 iter-
ations and has obvious advantages in convergence accuracy.

5.2.4. Impact of the Number of Tasks on System Overhead.
Figure 11 compares the changes in the total system overhead
of the 5 algorithms with increasing task volume. When the

task volume is small, the 5 algorithms do not differ much
because they can meet the task processing demand at the
terminal side, and when the task volume increases, the task
processing scope is at the edge range, so the CTLPSO ad-
vantage is not obvious and is close to ASAPSO, but as the
task volume continues to increase and the scope expands to
the fog layer, the complexity of the ASAPSO algorithm will
generate additional delay and thus increase the system
overhead, while the CTLPSO proposed in this study
maintains a good balance of convergence and algorithm
complexity in the face of complex multidimensional
problems, and the advantage gradually expands when the
number of tasks is greater than 60.

10 20 30 40 50 60 70 80 90 100
Number of tasks (pieces)

0

40

80

120

160

200

To
ta

l S
ys

te
m

 O
ve

rh
ea

ds

PSO
CTLPSO
IPSO

CIPSO
ASAPSO

Figure 11: Impact of number of tasks on system overhead.

10 20 30 40 50 60 70 80 100
Number of offloaded tasks (pieces)

0

20

40

60

80

100

N
um

be
r o

f s
uc

ce
ss

fu
l o

ffl
oa

ds

PSO
CTLPSO
IPSO

CIPSO
ASAPSO

Figure 9: Effect of the number of tasks on the success rate of
uninstallation.

20 40 60 80 100 120 140 160 180 200
Number of iterations (times)

0

40

80

120

160

200

To
ta

l S
ys

te
m

 O
ve

rh
ea

ds

PSO
CTLPSO
IPSO

CIPSO
ASAPSO

Figure 10: Effect of the number of iterations of different algorithms
on the system overhead.

Computational Intelligence and Neuroscience 19

6. Conclusion

*e large number of computation-intensive and latency-
sensitive applications poses many challenges to information
system architecture, bearer network, and cloud computing
technology. Although MEC effectively complements and
enhances the information service capability of cloud com-
puting at the edge and achieves the goals of “reduced latency,
bandwidth saving, high isolation, load sharing, and strong
awareness,” it still faces the problems of limited resources
and high deployment costs. To this end, this study proposes a
four-layer architecture of “cloud, fog, edge, and end,” a joint
optimization model for offload decision and resource al-
location, and a chaotic teaching particle swarm algorithm.
*rough experimental verification, the proposed four-layer
architecture can effectively improve the offloading success
rate and reduce the total system overhead of computational
offloading. *is study can be used as an idea to solve the
resource-constrained problem of MEC. In the future, with
the improvement of the industry chain and the reduction in
the cost of MEC devices, the problem of resource saturation
can likewise be solved by means of lightweight MEC clus-
tering deployment.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

*e authors declare that they have no known conflicts of
financial interest or personal relationships that could have
appeared to influence the work reported in this study.

Acknowledgments

*is work was supported by the Army Engineering Uni-
versity of PLA.

References

[1] H.-S. Lee and J. W. Lee, “Task offloading in heterogeneous
mobile cloud computing: modeling, analysis, and cloudlet
deployment,” IEEE Access, vol. 6, no. 99, pp. 14908–14925,
2018.

[2] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading
and resource allocation in mixed fog/cloud computing sys-
tems with min-max fairness guarantee,” IEEE Transactions on
Communications, vol. 66, no. 4, pp. 1594–1608, 2018.

[3] B. Gu and Z. Zhou, “Task offloading in vehicular mobile edge
computing: a matching-theoretic Framework,” IEEE Vehic-
ular Technology Magazine, vol. 14, no. 3, pp. 100–106, 2019.

[4] S. Yuxuan, G. Xueying, J. Song, S. Zhou, and Z. Jiang,
“Adaptive Learning-Based Task Offloading for Vehicular
Edge Computing Systems,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 4, 2020.

[5] Y. Nan, W. Li, W. Bao, and F. C. Delicato, “Adaptive energy-
aware computation offloading for cloud of things systems,”
IEEE Access, vol. 5, pp. 23947–23957, 2017.

[6] Y. Cui, Y. Liang, and R. Wang, “Resource Allocation Algo-
rithm with Multi-Platform Intelligent Offloading in D2D-
Enabled Vehicular Networks,” IEEE Access, vol. 7, p. 1, 2019.

[7] Z. Jin, C. Duan, Q. Yang, and Y. Su, “A new mechanism for
coral reef monitoring based on underwater cloud edge col-
laborative architecture[J/OL],” Systems Engineering and
Electronics Technology, vol. 1, p. 10, 2022.

[8] Ma Z. Yang, Research on Offloading Strategies in Distributed
Wireless Networks for Fog Computing, North University of
Technology, China, 2021.

[9] D. Hu, G. Huang, D. Tang, S. Zhao, and H. Zheng, “Joint task
offloading and computation in cooperative multicarrier re-
laying based mobile edge computing systems[J],” IEEE In-
ternet of Iings Journal, vol. 8, no. 14, p. 1, 2021.

[10] “Edge Computing Industry Alliance, Industrial Internet In-
dustry Alliance,” in White Paper on Edge Computing and
Cloud Computing Synergy, 2018.

[11] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and
D. Sabella, “On multi-access edge computing: a survey of the
emerging 5G network edge architecture & orchestration[J],”
IEEE Communications Surveys& Tutorials, vol. 19, no. 3, p. 1,
2017.

[12] W. Shi, J. Cao, and Q. Y. L. Zhang, “Edge computing: vision
and challenges,” IEEE Internet of Iings Journal, vol. 3, no. 5,
pp. 637–646, 2016.

[13] J. Cao, Q. Zhang, and W. Shi, Edge Computing: A Primer,
Springer International, Salmon Tower in Midtown Manhat-
tan, 2018.

[14] K. Dolui and S. K. Datta, “Comparison of Edge Computing
Implementations: Fog Computing, Cloudlet and mobile Edge
Computing,” in Proceedings of the 2017 Global Internet of
Iings Summit (GIoTS), pp. 1–6, Geneva, Switzerland, 06-09
June 2017.

[15] D. Jiang, F. Yuan, B. Wu, H. Men, and J. Zhu, “*e devel-
opment status of China’s education cloud and countermea-
sure suggestions[J],” China Education Informatization,
vol. 11, pp. 16–20, 2018.

[16] R. H. Huang, Y.W.Wang, and Y. L. Jiao, “Educational change
for the intelligent era - a proposition on the two-way em-
powerment of technology and education,” J]. China’s com-
puterized education, no. 7, pp. 22–29, 2021.

[17] Z. Li and C. Zhao, Study on the construction of smart campus,
China Water Conservancy and Hydropower Press, Beijing,
2020.

[18] GB/T36342-2018, “General framework of smart campus,”
2018, http://www.gb688.cn/bzgk/gb/newGbInfo?
hcno=EB82492C508C0A5148B86E2C5BEE8E30.2018-06-07.

[19] H. Mazouzi, K. Boussetta, and N. Achir, “Maximizing mobiles
energy saving through tasks optimal offloading placement in
two-tier cloud: a theoretical and an experimental study,”
Computer Communications, vol. 144, no. AUG, pp. 132–148,
2019.

[20] W. S. Zhao, B. X. Wang, D. W.Wang, B. Wang, Q. L You, and
G.Wang, “Swarm intelligence algorithm based optimal design
of microwave microfluidic sensors[J],” IEEE Transactions on
Industrial Electronics, vol. 69, no. 99, p. 1, 2021.

[21] J. Li, J. Jin, D. Yuan, M. Palaniswami, and K. Moessner,
“EHOPES: Data-Centered Fog Platform for Smart living,” in
Proceedings of the International Telecommunication Networks
& Applications Conference, IEEE, Sydney, NSW, Australia, 18-
20 November 2015.

[22] M. Jutila, “An adaptive edge router enabling Internet of
things,” IEEE Internet of Iings Journal, vol. 3, no. 6,
pp. 1061–1069, 2016.

20 Computational Intelligence and Neuroscience

http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=EB82492C508C0A5148B86E2C5BEE8E30.2018-06-07
http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=EB82492C508C0A5148B86E2C5BEE8E30.2018-06-07

[23] A. P. Miettinen and J. K. Nurminen, “USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 10),” in Energy
efficiency of mobile clients in cloud computingUSENIX As-
sociation, Boston, MA, 2010.

[24] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Col-
laborative mobile edge computing in 5G networks: new
paradigms, scenarios, and challenges,” IEEE Communications
Magazine, vol. 55, no. 4, pp. 54–61, 2017.

[25] B. Akay, D. Karaboga, B. Gorkemli, and E. kirKaya, “A survey
on the Artificial Bee Colony algorithm variants for binary,
integer and mixed integer programming problems - Scien-
ceDirect[J],” Applied Soft Computing, vol. 106, 2021.

[26] K. Tammer, “*e Application of Parametric Optimization and
Imbedding to the Foundation and Realization of a Gener-
alized Primal Decomposition Approach,” Mathematical re-
search, vol. 35, 1987.

[27] W. Liu, Z. Wang, N. Zeng, and Y. F. E. X. Yuan, “A novel
randomised particle swarm optimizer,” International Journal
of Machine Learning and Cybernetics, vol. 12, no. 2,
pp. 529–540, 2021.

[28] S.-L. Wang and G.-Y. Liu, “A nonlinear dynamic adaptive
inertia weighting PSO algorithm[J],” Computer Simulation,
vol. 38, no. 04, pp. 249–253+451, 2021.

[29] F. Wu, S. Hong, B. Yang, and X. F. Hu, “Research on adaptive
particle swarm algorithm with curve incremental strategy[J],”
Computer Application Research, vol. 38, no. 6,
pp. 1653–1656+1661, 2021.

[30] Q. Yan, R. Ma, Y. Ma, and J. Wang, “An adaptive simulated
annealing particle swarm optimization algorithm[J/OL],”
Journal of Xi’an University of Engineering Science and Tech-
nology, vol. 1-9, 2021.

[31] Z. Chen, Y. Liu, Z. Yang, and X. J. X. Fu, “An enhanced
teaching-learning-based optimization algorithm with self-
adaptive and learning operators and its search bias towards
origin,” Swarm and Evolutionary Computation, vol. 60,
Article ID 100766, 2021.

Computational Intelligence and Neuroscience 21

