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Physiological signals often show complex fluctuation (CF) under the dual influence of temporal and spatial scales, and CF can be
used to assess the health of physiologic systems in the human body.This study applied multiscale cross-approximate entropy (MC-
ApEn) to quantify the complex fluctuation between R-R intervals series and photoplethysmography amplitude series. All subjects
were then divided into the following two groups: healthy upper middle-aged subjects (Group 1, age range: 41–80 years, 𝑛 = 27)
and upper middle-aged subjects with type 2 diabetes (Group 2, age range: 41–80 years, 𝑛 = 24). There are significant differences of
heart rate variability, LHR, between Groups 1 and 2 (1.94 ± 1.21 versus 1.32 ± 1.00, 𝑃 = 0.031). Results demonstrated differences
in sum of large scale MC-ApEn (MC-ApEnLS) (5.32 ± 0.50 versus 4.74 ± 0.78, 𝑃 = 0.003). This parameter has a good agreement
with pulse-pulse interval and pulse amplitude ratio (PAR), a simplified assessment for baroreflex activity. In conclusion, this study
employed theMC-ApEnmethod, integrating multiple temporal and spatial scales, to quantify the complex interaction between the
two physical signals. TheMC-ApEnLS parameter could accurately reflect disease process in diabetics and might be another way for
assessing the autonomic nerve function.

1. Introduction

Under the influences of temporal and spatial scales, physio-
logical signals often show complex fluctuation (CF) [1, 2].The
reduced CF is frequently found in the aged or diseased. This
finding indicates that decreased adaptability of physiologic
systems is an aging or pathological phenomenon [1]. There
are several traditional entropy-based assessments, such as
approximate entropy (ApEn), sample entropy (SampEn),
Shannon entropy, and Kolmogorov-Sinai (KS) entropy, used
to quantify the complexity of a single physiological signal
[3]. Koskinen et al. [4] used ApEn to analyze the electroen-
cephalographic (EEG) signals of anesthetized subjects. The
results showed that EEG signals were more complex when
the subject were in a conscious state than when they were
in an unconscious state. Alcaraz and Rieta [5] used SampEn
to analyse the electrocardiographic (ECG) recordings of

patientswith atrial fibrillation (AF).The results demonstrated
a gradual decrease in the CF of ECG signals 60 minutes prior
to the onset of AF. However, homeostasis of an organism
is the dynamic balance of multiple physiological systems.
Simultaneous assessment of complex multimodal signals is
approaching the real physiological phenomena andmay offer
amore sensitive detection for aging or pathological processes.
For example, cardiopulmonary coupling, by measuring the
interaction between ECG R-R interval (RRI) and respiratory
time series, has decreased in the untreated patients with
major depression as compared with that in the treated
subjects [6]. Cross-approximate entropy (C-ApEn) [6–11] can
be used more effectively to analyze the complex interaction
between two simultaneous physiological signals [12].

With regard to multiple temporal scales, physiological
signals are affected differently by the environment at different
points in time [1]. Analysis of the complexity of physiologic
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systems should not be limited to a single scale, because
results under different temporal scales may provide varying
but equally valuable physiological data. Multiple temporal
scales should be applied when analysing the complexity of
physiological signals [13]. Previous studies have proposed
methods of integratingmultiscale analysis into themultiscale
entropy (MSE) of SampEn to evaluate the CF of physiological
signals under various temporal scales [14–17].

We have used a multiscale cross-approximate entropy
(MC-ApEn) method to assess two physiological signals, RRI
and pulse transit time, simultaneously, and examine the
effects of multiple temporal and spatial scales. It clearly
demonstrates a reduction of complexity of these two signals
among the aged and diabetic [13]. In this study, we used
MC-ApEn to quantify the complex interaction between other
physiological signals (RRI series and photoplethysmography
amplitude series, PPGA), in order to differentiate physical
well-being between upper middle-aged diabetes and age-
matched controls.

2. Methods

2.1. Subject Populations and Experiment Procedure. Between
July 2009 and March 2012, a total of 51 volunteers were
recruited for this study. All diabetic subjects were enrolled
from the Hualien Hospital Diabetic Outpatient Clinic;
healthy controls were recruited from a health examination
program at the same hospital. All subjects were then divided
into the following two groups: healthy upper middle-aged
subjects (Group 1, age range: 41–80 years, 𝑛 = 27) and
upper middle-aged subjects with type 2 diabetes (Group 2,
age range: 41–80 years, 𝑛 = 24). None of the healthy subjects
had personal or family history of cardiovascular diseases.
Type 2 diabetes was diagnosed as either fasting sugar higher
than 126mg/dL or HbA1c ≧ 6.5%. All diabetic subjects had
been receiving regular treatment and follow-up care in the
clinic formore than two years.This studywas approved by the
Institutional Review Board of Hualien Hospital and National
Dong Hwa University. All subjects refrained from caffeinated
beverages and theophylline-containing medications for 8
hours prior to the hospital visit. Each subject gave informed
consent, completed questionnaires on demographic data and
medical history, and underwent blood sampling prior to
data acquisition. The blood tests were administered to each
subject including glycosylated hemoglobin (HbA1c), fasting
blood sugar, high-density lipoprotein (HDL), low-density
lipoprotein (LDL), triglyceride, and cholesterol. All subjects
were permitted to rest in a supine position in a quiet,
temperature-controlled room at 25 ± 1∘C for 5 minutes prior
to subsequent 30-minute measurements. Blood pressure was
obtained once from the left arm of supine subjects using an
automated oscillometric device (BP3AG1, Microlife, Taiwan)
with a cuff of appropriate size, followed by the acquisition
of waveform data from the index finger using a six-channel
electrocardiogram-based pulse wave velocity measurement
system as previously described [18, 19].

ECG

RRI(1) RRI(2) RRI(n)

PPG
PPGA

(1)

PPGA
(2) PPGA
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· · ·

· · ·

Figure 1: 1000 consecutive data points from ECG signals and PPG
signals.

2.2. Data Acquisition. Digital volume pulse signals of PPG
were acquired by an infrared sensor and attached to left index
finger.The pulse signals were transmitted to two-order band-
pass filter at frequency of 0.48 to 10Hz and a low-pass filter
at frequencies of 10Hz. The ECG signals were acquired in
lead II and transmitted to a notch filter set at 59 to 61Hz
and a band-pass filter at frequencies of 0.98 to 19.4Hz. In
order to store and analyze the PPG and ECG signals, a USB-
6009 DAQ (National Instruments, Austin, TX, USA) was
used for converting these two signals to digital signals and
transmitting them to a personal computer at frequency of
500Hz. In the end, we used LabVIEW 8.6 software (National
Instruments, Austin, TX, USA) tomonitor the ECG and PPG
signals simultaneously.

2.3. The Measurement of RRI and PPGA Series. For the PPG
signals, the potential difference between the peak and the
valley, which was prior to the peak, was defined as the pulse
amplitude of PPG signals. The time difference between the
two continous peaks of ECG R wave was defined as RRI(𝑖),
and the amplitude difference of each PPG pulse wave was
defined as PPGA(𝑗), as shown in Figure 1. The data length
of the series in this study was set at 𝑛 = 1000.

2.4. Data Detrending and Normalization. Due to a trend
within physiological signals [1, 20], nonzero means may be
included; therefore, we used empirical mode decomposition
(EMD) [21] to deconstruct the RRI(𝑖) and PPGA(𝑗) series,
thereby eliminating the trend from the original series. We
then normalized the RRI(𝑖) and PPGA(𝑗) series for 1000
consecutive data points, as shown in the following:

nRRI (𝑖) = RRI (𝑖) − RRI
SDRRI

,

nPPGA (𝑗) =
PPGA (𝑗) − PPGA

SDPPGA
.

(1)

In these equations, SDRRI and SDPPGA represent the stan-
dard deviations of 1000 data points of RRI(𝑖) and PPGA(𝑗),
respectively. Also, RRI and PPGA represent the mean of 1000
data points of series RRI and PPGA, respectively. Complexity
analysis was performed on the normalized results, nRRI(𝑖)
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and nPPGA(𝑗).The 𝑖 and 𝑗 represent the 𝑖th point of the nRRI
series and the 𝑗th point of the nPPGA series, respectively.

2.5. Multiple Spatial Scale Analysis Used in C-ApEn. Previous
studies [10, 22] have used C-ApEn, an improved analysis
method of approximate entropy, to analyze two synchronous
physiological time series, define their relationship, and cal-
culate the complexity within that relationship [23, 24]. This
method utilizes the dynamic changes between the two series
to evaluate the physiological system. Similarities between
changes in the two series can be used to observe the
regulatorymechanisms in the physiological system. To obtain
a deeper understanding of the complexity of the physiological
system, we utilized nRRI and nPPGA series to calculate the
C-ApEn, using (6). The details of the whole algorithm are as
follows [25].

Step 1. For given𝑚, for two sets of𝑚-vectors,

x (𝑖) ≡ [nRRI (𝑖) nRRI (𝑖 + 1) ⋅ ⋅ ⋅ nRRI (𝑖 +m − 1)] ,

1 ≤ 𝑖 ≤ N −m + 1, 𝑖 ∈ N,

y (𝑗)

≡[nPPGA (𝑗) nPPGA (𝑗 + 1) ⋅ ⋅ ⋅ nPPGA (𝑗 +m − 1)] ,

1 ≤ 𝑗 ≤ N −m + 1, 𝑗 ∈ N.
(2)

Step 2. Define the distance between the vectors x(𝑖) and y(𝑗)
as the maximum absolute difference between their corre-
sponding elements as follows:

𝑑 [x (𝑖) , y (𝑗)]

=

mmax
𝑘=1

[




nRRI (𝑖 + 𝑘 − 1) − nPPGA (𝑗 + 𝑘 − 1)





] .

(3)

Step 3. With the given x(𝑖), find the value of 𝑑[x(𝑖), y(𝑗)]
(where 𝑗 = 1 to𝑁 − 𝑚 + 1) that is smaller than or equal to 𝑟
and the ratio of this number to the total number of𝑚-vectors
(𝑁 − 𝑚 + 1). That is, let 𝑁𝑚nRRI nPPGA(𝑖) equal the number of
y(𝑗) satisfying the requirement 𝑑[x(𝑖), y(𝑗)] ≦ 𝑟; then

𝐶
𝑚

nRRI nPPGA (𝑖) =
𝑁
𝑚

nRRI nPPGA (𝑖)

𝑁 − 𝑚 + 1

. (4)

𝐶
𝑚

nRRI nPPGA(𝑖)measures the frequency of the𝑚-point nPPGA
pattern being similar (within a tolerance of±𝑟) to the𝑚-point
nRRI pattern formed by x(𝑖).

Step 4. Average the logarithm of 𝐶𝑚nRRI nPPGA(𝑖) over 𝑖 to
obtain 𝜙𝑚nRRI nPPGA(𝑟) as follows:

𝜙
𝑚

nRRI nPPGA (𝑟) =
1

𝑁 − 𝑚 + 1

𝑁−𝑚+1

∑

𝑖=1

ln𝐶𝑚nRRI nPPGA (𝑖) . (5)

Step 5. Increase 𝑚 by 1 and repeat Steps 1–4 to obtain
𝐶
𝑚+1

nRRI nPPGA(𝑖), and 𝜙
𝑚+1

nRRI nPPGA(𝑟).

Step 6. Finally, take C-ApEnnRRI nPPGA(𝑚, 𝑟) = lim
𝑁→∞

[𝜙
𝑚

nRRI nPPGA(𝑟) − 𝜙
𝑚+1

nRRI nPPGA(𝑟)] for ideal case. For 𝑁-point
data, the estimate is

C-ApEnnRRI nPPGA (𝑁,𝑚, 𝑟)

= 𝜙
𝑚

nRRI nPPGA (𝑟) − 𝜙
𝑚+1

nRRI nPPGA (𝑟) ,
(6)

where𝑚 represents the chosen vector dimension, 𝑟 represents
a tolerance range, and 𝑁 is the data length. From Pincus’s
publication [26] to effectively distinguish two data series by
cross-approximate entropy, it would be better to set 𝑁 ≧

1000, 𝑚 ≧ 2, and 𝑟 ≧ 0.1. To ensure efficiency and accuracy of
calculation, the parameters of this studywere set at𝑁 = 1000,
𝑚 = 2, and 𝑟 = 0.15.

2.6. Multiple Temporal Scale Analysis Used in MC-ApEn.
Multiple analysis involves the use of a scale factor 𝜏 (𝜏 =

1, 2, 3, . . . , 𝑛), which is selected according to a 1-D series of
consecutive cycles. This factor enables the application of a
coarse-graining process capable of deriving a new series prior
to the calculation of entropy in each new individual series
[14]. Using this approach, we performed coarse-graining on
the normalized 1-D consecutive cycles of the nRRI(𝑖) and
nPPGA(𝑗) series based on scale factor 𝜏, thereby obtaining
the series nRRI(𝑖) and nPPGA(𝑗) as shown in (7). We then
calculated as follows:

nRRI(𝑢)(𝜏) = 1

𝜏

𝑢𝜏

∑

𝑖=(𝑢−1)𝜏+1

nRRI (𝑖) , 1 ≤ 𝑢 ≤

1000

𝜏

, 𝑢 ∈ 𝑁,

nPPGA(𝑢)(𝜏)

=

1

𝜏

𝑢𝜏

∑

𝑗=(𝑢−1)𝜏+1

nPPGA (𝑗) , 1 ≤ 𝑢 ≤

1000

𝜏

, 𝑢 ∈ 𝑁.

(7)

Repeat Steps 1–6 to calculate MC-ApEn index in scales
2–6. The values of C-ApEnnRRI nPPGA(𝜏) were obtained from
a range of scale factors between 1 and 6 using the MC-
ApEn data analysis method. The summation values of
C-ApEnnRRI nPPGA(𝜏) between scale factors 1 and 3 were
defined as small scale; those between scale factors 4 and 6
were defined as large scale [27]. The sum of C-ApEn between
scale factors 1 and 3 was defined as MC-ApEnSS in (8),
while the sum of C-ApEn between scale factors 4 and 6 was
defined as MC-ApEnLS in (9). Defining and calculating these
two indices of multiscale cross-approximate entropy enable
the assessment and quantification of complexity in RRI and
PPGA between different scale factors as follows:

MC-ApEnSS =
3

∑

𝜏=1

C-ApEnnRRI nPPGA (𝜏) , (8)

MC-ApEnLS =
6

∑

𝜏=4

C-ApEnnRRI nPPGA (𝜏) . (9)

2.7. MSE of RRI and PPGA Series. To assess the complexity of
RRI and PPGA series, sample entropywas used formultiscale
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analysis in six scales [16]. The results of sample entropy
between scale factors 1 and 3 were defined as small scale (SS),
and those between scale factors 4 and 6 were defined as large
scale (LS). The sum of MSE in small scale of RRI and PPGA
series was defined asMSERRI, SS andMSEPPGA, SS, respectively.
Similarly, the sum of MSE in large scale of RRI and PPGA
series was defined asMSERRI, LS andMSEPPGA, LS, respectively.

2.8. Analysis of Conventional Heart Rate Variability. Through
applying frequency domain analysis of R-R interval series
by fast Fourier transform, heart rate variability (HRV) was
used for assessing autonomic function in this study. A low-
frequency power (LFP) was defined as the total power
between the frequencies at range of 0.04 to 0.15Hz; also
a high frequency power (HFP) was defined as the total
power between the frequencies at range of 0.15 to 0.4Hz.
Furthermore, the ratio of LFP to HFP was defined as LHR
(the LFP/HFP ratio), a useful indicator of cardiac autonomic
function.

2.9. Pulse-Pulse Interval and Amplitude Ratio (PAR). Using
half of the maximal value during the measurement as the
low threshold, we applied the first derivative equal to zero
as the local maximum of each PPG pulse signal, which we
regarded as the peak of each PPG pulse wave. Then, PPI was
defined as the time interval between two adjacent peaks of
the PPG signals. PARwasmeasured by spontaneous sequence
technique as our previous publication [28]. The correlation
coefficient of nRRI(𝑖), and nPPGA(𝑗) was defined as 𝑅. We
derived𝑅 value for the number of sets of the three consecutive
increasing nRRI(𝑖) and nPPGA(𝑗), and calculated the slope
of each set through the whole data points. The PAR was
calculated as the mean of all the slopes, while 𝑅 value was
bigger than 0.9.

2.10. Statistical Analysis. Average values were expressed as
mean± SD. Significant differences in anthropometric, hemo-
dynamic, and computational parameters (i.e., MSE(RRI),
MSE(PPGA), MC-ApEnLS, andMC-ApEnSS) between differ-
ent groups were determined using an independent sample
𝑡-test, when the analysis data were normally distributed,
and if the analysis data were not normally distributed, we
used the nonparametric Mann-Whitney 𝑈 test. To assess the
agreement of the MC-ApEn and the PAR, we adopted the
Bland-Altman method [29] to measure agreement between
the two parameters. Statistical package for the social science
(SPSS, version 14.0 for Windows) was used for all statistical
analysis. A 𝑃 value less than 0.05 was considered statistically
significant.

3. Results

3.1. Demographic Data and Blood Biochemical Parameters
between the Two Groups. To control the effect of age, we
recruited healthy subjects at upper-middle age (Group 1) and
age-matched diabetics (Group 2). Table 1 presents significant
differences in physical parameters, such as waist circumfer-
ence (85.89±10.40 versus 94.17±12.27, 𝑃 = 0.012) and pulse

Table 1: Comparisons of demographic, anthropometric, and serum
biochemical parameters between Group 1 and Group 2.

Parameters

Group 1
(𝑛 = 27)
(male: 12,
female: 15)

Group 2
(𝑛 = 24)
(male: 13,
female: 11)

P value

Age, year 54.96 ± 8.75 57.71 ± 7.50 𝑃 = 0.079

BMI, kg/m2
25.73 ± 3.71 27.56 ± 5.09 𝑃 = 0.145

WC, cm 85.89 ± 10.40 94.17 ± 12.27 P = 0.012
SBP, mmHg 119.52 ± 14.70 126.71 ± 16.62 𝑃 = 0.108

DBP, mmHg 76.59 ± 10.18 75.83 ± 9.51 𝑃 = 0.785

PP, mmHg 42.93 ± 10.37 50.88 ± 13.53 P = 0.022
HbA1c, % 5.88 ± 0.33 9.09 ± 1.84 P < 0.001
FBS, mg/dL 99.07 ± 15.85 167.21 ± 56.67 P < 0.001
LDL, mg/dL 124.22 ± 28.90 121.33 ± 31.55 𝑃 = 0.308

HDL, mg/dL 50.48 ± 19.84 42.83 ± 15.78 𝑃 = 0.122

Cholesterol,
mg/dL 208.81 ± 36.36 199.75 ± 47.95 𝑃 = 0.177

Triglyceride,
mg/dL 126.11 ± 97.72 164.96±107.41 𝑃 = 0.113

Group 1: healthy upper middle-aged subjects. Group 2: upper middle-aged
subjectswith type 2 diabetes. BMI: bodymass index. SBP: systolic blood pres-
sure. DBP: diastolic blood pressure. PP: pulse pressure. HbA1c: glycosylated
hemoglobin. FBS: fasting blood sugar. LDL: low-density lipoprotein. HDL:
high-density lipoprotein. WC: waist circumference.

pressure (42.93 ± 10.37 versus 50.88 ± 13.53, 𝑃 = 0.022), and
biochemical parameters including HbA1c (5.88 ± 0.33 versus
9.09±1.84, 𝑃 < 0.001) and fasting blood sugar (99.07±15.85
versus 167.21 ± 56.67, 𝑃 < 0.001), between the two groups.

3.2. Result of Multiscale Cross-Approximate Entropy Analysis
for RRI and PPGA Series in Six Scales. Theresult ofmultiscale
cross-approximate entropy analysis by using RRI and PPGA
series, shown in Figure 2, represents significant differences
between Groups 1 and 2 in scale factors 4 to 6.

3.3. Comparisons of the Complexity of Physiological Series,
PAR, and HRV between Groups 1 and 2 and Agreement
between PAR and 𝑀𝐶-𝐴𝑝𝐸𝑛

𝐿𝑆
. In Table 2, there are signif-

icant differences in MSERRI, LS (5.28 ± 0.47 versus 4.85 ± 0.88,
𝑃 = 0.038), MSEPPGA, LS (4.65 ± 0.95 versus 3.93 ± 1.19, 𝑃 =

0.017), and MC-ApEnLS (5.32 ± 0.50 versus 4.74 ± 0.78, 𝑃 =

0.003). Moreover, significant different PAR exists between
Groups 1 and 2 (0.46 ± 0.14 versus 0.34 ± 0.10, 𝑃 = 0.006).
In addition, result of HRV analysis showed the difference
in LHR (1.94 ± 1.21 versus 1.32 ± 1.00, 𝑃 = 0.031), LFP
(311.66 ± 274.85 versus 100.87 ± 95.96, 𝑃 < 0.001), and HFP
(206.50 ± 184.93 versus 126.02 ± 148.70, 𝑃 = 0.024). Figure 3
demonstrates a good agreement between MC-ApEnLS and
PAR after normalizing both parameters.

4. Discussion

Table 1 demonstrates that the diabetics had larger waist
circumference, higher pulse pressure, and glycosylated
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Figure 2: Result of multiscale cross-approximate entropy analysis
for RRI and PPGA series in six scales.
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Figure 3: The Bland-Altman plot of normalized PAR and
MC-ApEnLS.

hemoglobin as compared with the healthy controls. We
supposed that these diabetic patients should have higher
risk of autonomic neuropathy [30] and arterial stiffness and
lower complexity [16]. There are significant differences in all
HRV parameters (LHR, LFP, and HFP) between these two
groups (Table 2). It is similar to the findings about diabetic
autonomic neuropathy [30]. Meanwhile, the assessments of
arterial baroreflex, PAR, and MC-ApEnLS are also different
between the diabetic and healthy subjects. Previous studies
have never shown decreased baroreflex activity in the dia-
betics [31]. Interestingly, multiscale entropy analysis of RRI
and PPGA series shows significant differences of these two
parameters at large scale but not at small scale between these
two groups. It may suggest that diabetes mellitus decreases
heart rate variability and oscillation of blood pressure [31].
Therefore, adaptive analysis of a single physiological signal
with regard to multiple temporal scale can offer a more
sensitive measurement to detect disease process than the
traditional analyses do.

ECG and infrared digital pulse signals are frequently
referred to as clinical applications. However, according to
recent research [1, 2], the dual impacts of multiple temporal
and spatial scales causing CF in physiological signals are

Table 2: Comparison of MC-ApEn, MSE, PAR, and HRV between
Groups 1 and 2.

Parameter Group 1 Group 2 P value
MC-ApEnSS 5.18 ± 0.59 5.22 ± 1.02 𝑃 = 0.869

MC-ApEnLS 5.32 ± 0.50 4.74 ± 0.78 P = 0.003
MSERRI, SS 5.17 ± 0.48 5.11 ± 1.08 𝑃 = 0.509

MSERRI, LS 5.28 ± 0.47 4.85 ± 0.88 P = 0.038
MSEPPGA, SS 4.14 ± 1.09 4.03 ± 1.21 𝑃 = 0.664

MSEPPGA, LS 4.65 ± 0.95 3.93 ± 1.19 P = 0.017
PAR 0.46 ± 0.14 0.34 ± 0.10 P = 0.006
LHR 1.94 ± 1.21 1.32 ± 1.00 P = 0.031
LFP 311.66 ± 274.85 100.87 ± 95.96 P < 0.001
HFP 206.50 ± 184.93 126.02 ± 148.70 P = 0.024
Group 1: healthy upper middle-aged subjects. Group 2: upper middle-
aged subjects with type 2 diabetes. MC-ApEn: multiscale cross-approximate
entropy. MSE: multiscale entropy. RRI: R-R intervals. PPGA: photoplethys-
mography amplitude. SS: small scale (the sum of the algorithm between scale
factors 1–3). LS: large scale (the sum of the algorithm between Scale factors
4–6). PAR: pulse-pulse interval and amplitude ratio. LHR: low-frequency-
power/high-frequency power ratio. LFP: low-frequency power. HFP: high-
frequency power.

always ignored in clinical work. In this study, we used
the MC-ApEn method which considers the effect of mul-
tiple temporal and spatial scales when evaluating complex
interaction between the RRI series and the PPGA series.
Arterial baroreflex plays a key role in the homeostasis of
blood pressure. It provides a negative feedback loop from
the baroreceptors in the aortic arch and carotid sinuses
to the brainstem. Elevated blood pressure stimulates the
baroreceptors to increase parasympathetic activity and then
slows the heart rate [32, 33]. Based on this physiological
phenomenon, baroreflex sensitivity (BRS) has been quan-
tified as the relationship between the increment of systolic
blood pressure (SBP) and the change of interbeat intervals
of the heart, which could indicate autonomic innervation of
the heart. Previous study [34] showed a time lag of about 5
beats between increasing blood pressure and prolongation of
RRI. In the result of MC-ApEn analysis, there is also a great
difference betweenGroups 1 and 2 in the scales 4–6 (Figure 2).

Recently, we proposed a simplified method to quantify
the relationship between amplitude of pulse wave and pulse-
pulse-interval by spontaneous sequence technique, namely,
PAR. The new parameter can be used to detect early cardiac
autonomic neuropathy of the diabetic subjects [28]. In fact,
the relation between RRI and PPGA series in MC-ApEnLS
might be similar to the relation between PPI and pulse
amplitude, PAR, and also the relationship between PPI and
oscillation measured by conventional instruments such as
Finapres [35, 36]. Through Bland-Altman analysis, we found
a good agreement between PAR and MC-ApEnLS (Figure 3).
So, perhaps MC-ApEnLS would be an effective parameter to
evaluate baroreflex activity.

The current study suffers from a limitation. A lengthy
process of data acquisition and considerable calculation and
off-line processing are needed for MC-ApEn analysis as
opposed to the relatively shorter duration measurement of



6 Computational and Mathematical Methods in Medicine

BRS by conventional method or by our previously proposed
PAR. However, MC-ApEn offers another measurement of
dual interaction of blood pressure and R-R intervals in a
longer period, whichwould bemore consistent than the other
twomeasurements do. Further pharmacological tests or long-
term clinical cohort studies may provide more information
for future clinical applications.

5. Conclusion

In conclusion, this study employed the MC-ApEn method,
which integrates multiple temporal and spatial scales, to
quantify the complex interaction between RRI and PPGA
series. This new parameter has a good agreement with a sim-
plified measurement of baroreflex activities, PAR. According
to our results,MC-ApEn could be used as a usefulmethod for
assessing autonomic nerve function.
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