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MOTIVATION Gene function in cancer can be altered through protein-affectingmutations, copy number al-
terations, and gene fusions, thereby splitting the signal of the somatic mutation effect across mutation
types.We developedOncoMerge to systematically integrate the threemutation types into a single mutation
profile that better captures the impact of somatic mutations on cancer phenotypes. As a tool, OncoMerge
fills the gap between the sophisticated variant calling pipelines and downstream analyses.
SUMMARY
Somatic mutations occur as random genetic changes in genes through protein-affecting mutations (PAMs),
gene fusions, or copy number alterations (CNAs). Mutations of different types can have a similar phenotypic
effect (i.e., allelic heterogeneity) and should be integrated into a unified gene mutation profile. We developed
OncoMerge to fill this niche of integrating somatic mutations to capture allelic heterogeneity, assign a func-
tion to mutations, and overcome known obstacles in cancer genetics. Application of OncoMerge to TCGA
Pan-Cancer Atlas increased detection of somatically mutated genes and improved the prediction of the so-
matic mutation role as either activating or loss of function. Using integrated somatic mutation matrices
increased the power to infer gene regulatory networks and uncovered the enrichment of switch-like feedback
motifs and delay-inducing feedforward loops. These studies demonstrate that OncoMerge efficiently inte-
grates PAMs, fusions, and CNAs and strengthens downstream analyses linking somatic mutations to cancer
phenotypes.
INTRODUCTION

The accumulation of somatic mutations in patient tumors drives

and reinforces cancer phenotypes. The three main types of so-

matic mutations that modify the function of a gene or render it

non-functional are (1) protein-affecting mutations (PAMs), (2)

gene fusions, and (3) copy number alterations (CNAs). A PAM

is a point mutation, short insertion, or short deletion inside a

gene’s coding region or splice sites.1 Gene fusions occur when

genomic rearrangements join two genes into a novel chimeric

gene or place a promoter in front of a new gene, causing misex-

pression.2 Finally, CNAs occur frequently in tumors where whole

chromosomes, chromosomal arms, or localized genomic seg-

ments are duplicated or deleted.3,4 Somatic mutation via PAM,

gene fusion, or CNA can have similar effects on cancer pheno-

types, i.e., allelic heterogeneity. This interchangeability and the

erratic circumstances that produce somatic mutations lead to

the mixture of mutation types observed in large cohorts of pa-

tient tumors.1
Cell R
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Describing how somatic mutations in a gene impact cancer

phenotypes requires integrating the information from all three

mutation types. Most studies linking somatic mutations to can-

cer phenotypes focus on one mutation type. This leads to

missing associations for mutations primarily found in another

type and reduced power to detect associations for mutations

with high allelic heterogeneity that span the mutation types.

Thus, a current obstacle facing those studying the downstream

effects of somatic mutations is the lack of an establishedmethod

for integrating PAMs, gene fusions, and CNAs into a comprehen-

sive genemutation profile. The lack of integrationmethods is due

to several complicating factors. First, the allelic heterogeneity

observed in and between tumors means that different mutations

in the same gene can be equivalently oncogenic. Second, it is

challenging to discern driver (causal) from passenger (non-

causal) somatic mutations. Third, an algorithm must be able to

systematically integrate the binary PAM and gene fusion

(mutated or not) with the quantitative copy number from CNAs.

Last, some tumors have drastically higher somatic mutation
eports Methods 3, 100442, April 24, 2023 ª 2023 The Author(s). 1
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rates than others (e.g., microsatellite instability5 and hypermuta-

tion6). These higher mutation rates confound any frequency-

based integration approach and drive the discovery of spurious

somatic mutations. We developed OncoMerge to fill the somatic

mutation integration niche by providing an algorithm that sys-

tematically overcomes these obstacles to generate an integrated

gene mutation profile. The input for the OncoMerge algorithm is

the output from state-of-the-art methods for detecting PAMs

(MC31 and MutSig2CV7), transcript fusions (PRADA2,8), and

CNAs (GISTIC2.09). Each method provides the likelihood that a

somatic mutation happens by chance alone. Filtering on these

statistics focuses integration efforts on genes most likely to har-

bor functional mutations. The integrated mutation profiles

improve the power to detect associations with cancer pheno-

types leading to a more comprehensive understanding of how

genetic alterations drive cancer phenotypes.

The tremendous amount of cancer genome sequencing data

generated in the past 10 years has enabled efforts to discover

and catalog somatic mutations across many cancers.1,10 Many

algorithms have been developed to discern which somatic muta-

tions are drivers, how themutations affect genes,6,7,11–17 and da-

tabases to search and view somatically mutated driver

genes.16–18 There also exist approaches for integrating somatic

mutations. OncoPrint from cBioportal18 can visually overlay so-

maticmutation types across patient tumors for a gene of interest.

The OncodriveROLE algorithm13 was developed to discover

driver genes by systematically integrating PAMs and CNVs.

However, neither OncoPrint nor OncodriveROLE provides an in-

tegrated mutational profile that can be used in downstream an-

alyses. The impact of somatic mutations can be classified as

activating (Act) gene function (typically found in oncogenes) or

loss of function (LoF) (typically found in tumor suppressor

genes).13 It has also been demonstrated that the systematic inte-

gration of PAM and CNA somatic mutations for a gene improves

the ability to determine Act or LoF status.13 These foundational

studies have created a platform to develop an algorithm that sys-

tematically integrates the three somatic mutation types.

The systematic integration of somatic mutations requires

choosing a gene-level model that determines how the data for

the three somatic mutation types will be integrated, the somatic

mutation role. We determine the somatic mutation role by em-

ploying rules similar to those in OncodriveROLE (Figure 1).13

The possible somatic mutation roles in OncoMerge are PAM,

Fusion, CNA amplification (CNAamp), CNA deletion (CNAdel),

Act, or LoF. The PAM, Fusion, CNAamp, and CNAdel somatic

mutation roles use the unintegrated somatic mutation profile

for the chosen role in the final mutation matrix. The Act and

LoF are integrated mutation roles that harness allelic heteroge-

neity. Allelic heterogeneity is especially prevalent in tumor sup-

pressor genes, where mutations at many positions in a gene

disrupt its function to prevent cancer phenotypes.3 Allelic het-

erogeneity is less prevalent for oncogenes where a small number

of specific gain-of-function alleles are needed to drive cancer

phenotypes.3 Genes underlying CNAs can add another layer of

information as tumor suppressors are often deleted, which has

an equivalent oncogenic effect as missense or truncating

PAMs. The LoF role is designated when PAMs, Fusions, and

CNAdels are integrated. Oncogenes are often amplified, as this
2 Cell Reports Methods 3, 100442, April 24, 2023
typically leads to overexpression of the underlying genes, which

has a similar positive effect on gene function as a gain-of-func-

tion PAM. The Act role is designated when PAMs, Fusions, and

CNAamps are integrated. Systematic determination of the so-

matic gene role and application of the rules laid out above are

used to integrate the three mutation types into a comprehensive

somatic mutation profile.

The lists of somatically mutated driver genes provide a set of

gold standard mutations with somatic mutation roles that can

be used to assess the performance of OncoMerge. The gold

standards are classified by whether the somatic mutation of a

gene was cancer specific or not. TCGA consensus6 and Cancer

Gene Census (CGC) from COSMIC11 were used to develop gold

standards with cancer-specific somatically mutated gene roles.

The 20/20 rule,3 OncodriveROLE,13 and Tokheim ensemble12

were used to create gold standards with somatically mutated

gene roles. Comparisons of somatic mutation role between

OncoMerge and the gold standards were facilitated by convert-

ing oncogenes to Act and tumor suppressors to LoF. Finally, a

combined gene role agnostic gold standard was developed

based on a union of all somatic mutations from all five gold stan-

dards. These gold standards were used to assess the utility of fil-

ters and the quality of the OncoMerge integrated somatic muta-

tionmatrices through their ability to recall somaticmutationswith

the appropriate gene role.We chose five gold standards that em-

ployed different algorithms for somatic mutation discovery to

avoid overfitting to any one gold standard when assessing the

performance of OncoMerge.

OncoMerge is designed to construct a comprehensive somatic

mutation profile that increases the power to link mutations with

cancer phenotypes. Previously, we have used the Systems Ge-

netics Network AnaLysis (SYGNAL) pipeline19 to build causal

andmechanistic gene regulatory networks (GRNs) for 31 cancers

from TCGA Pan-Cancer Atlas.20 Using SYGNAL, we linked so-

matic mutations through transcription factor (TF) and microRNA

(miRNA) regulators to the hallmarks of cancer,21,22 thereby linking

somaticmutations to cancer phenotypes.Wehypothesize that in-

tegratedsomaticmutationmatrices fromOncoMergewill increase

our power to infer causal relationships for pan-cancer SYGNAL

networks and that these will yield novel biological insights.

RESULTS

Establishing a baseline for the integration of somatic
mutations
We developed OncoMerge as a systematic method to integrate

PAM, fusion, and CNA somatic mutations into a more compre-

hensive mutation matrix for subsequent analyses. OncoMerge

systematically integrates somatic mutations and defines a role

for each gene (Figure 1): PAM, fusion, CNAdel, CNAamp, Act,

and LoF. The role assigned to a gene describes the rubric

used to integrate the data from the source data matrices.

A significant part of developing OncoMerge was constructing

and optimizing the statistical filters that provide an essential qual-

ity control step to identify integrated somatically mutated genes

more likely to be functional in tumor biology. The selection and

optimization of OncoMerge statistical filters were performed us-

ing the 9,584 patient tumors from 32 cancers profiled by TCGA



Figure 1. OncoMerge integrates PAMs, fusions, and CNAs into an integrated mutation matrix with the most suitable mutation type for each

gene

The input data for OncoMerge includes the PAM, transcript fusion, and CNAmatrices. OncoMerge then generates six matrices (PAM, Fusion, CNAamp, CNAdel,

Act, and LoF) and uses mutational frequency and statistical filters to determine each gene’s most suitable somatic mutation role.
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Pan-CancerAtlas1,6,20 (cancer typeabbreviations canbe found in

STARMethods).Weused threemetrics to assess the value of po-

tential filters: (1) impact on the number of somatically mutated

genes (Figure 2A), (2) impact on the distribution of the number

of genesmapping to genomic loci (Figure 2B), and (3) significance

of the overlap between somatically mutated genes from

OncoMerge with gold standard datasets (including overlap with

gene roles and tumor-specific gene roles; Figure 2C; Tables S2

and S3). These metrics ensure that the integrated somatic muta-

tions are consistentwith prior knowledge and that the size ofCNA

mutations does not overwhelm the integration algorithm.
First, we needed to prove that the seed genes alone would not

drive significant enrichment for the gold standard comparisons.

We applied OncoMerge to somatic mutation matrices with ran-

domized gene labels fromTCGAPan-Cancer Atlas without any fil-

ters applied. None of the gold standards significantly overlapped

with the OncoMerge identified somatic mutations (all p values

R0.4; Table S4). Thus, even though MutSig2CV and GISTIC 2.0

determine the seed genes, the actual somatic mutation data and

filters are required to achieve the full integration potential of

OncoMerge. This result from applying OncoMerge to randomized

data demonstrates that the signal from the gold standards is not
Cell Reports Methods 3, 100442, April 24, 2023 3
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driven by the seed genes alone. Thus, we can safely use the gold

standards to assess the performance of OncoMerge.

Next, we determined the integration baseline by applying

OncoMerge to TCGA Pan-Cancer Atlas without filtering. Slightly

less than one-third of the genome was considered somatically

mutated in at least 5% or more of tumors in at least one of the

32 cancers (30% or 6,028 genes, Figure 2A). We observed a sig-

nificant overlap betweenOncoMerge somatically mutated genes

and the combined gold standard (genes = 395, p value = 1.1 3

10�44, Figure 2C) when gene role was not considered. Significant

overlaps existed between the LoF somatic mutations from three

gold standards (TCGA consensus, CGC, and Vogelstein) with

the somatic mutations with the LoF predicted role from

OncoMerge (Figure 2C). None of the comparisons of Act somatic

mutations were significantly overlapping (Figure 2C). Many of the

6,028 genes map to the same copy number alteration genomic

locus (Figure 2B). These unfiltered results reveal two main inte-

gration biases. First, the overlaps were insignificant between

Act somatic mutations and previously identified Act mutations.

Second, the integration with CNAs is causing the inclusion of

many passengermutationsmapping to the same genomic locus.

OncoMerge applied to TCGA Pan-Cancer Atlas without filtering

provides a baseline to benchmark success. Addressing the inte-

gration biases we observed is our impetus for developing and

optimizing filters for OncoMerge.

Developing a filtering strategy for the integration of
somatic mutations
The power of integration is that aggregating somatic mutation in-

formation can boost the mutation frequency of a gene enough to

become significant, even though the constituent mutations do

not reach significance alone. The first filter determined if the final

mutation frequency after integrating PAM, fusion, and CNA so-

matic mutations is larger than expected by chance alone. A per-

mutation-based approach empirically determined the back-

ground integrated mutation frequency distribution. Then the

observed frequencies are compared with the randomized back-

ground distribution to calculate permuted p values, which are

corrected using the Benjamini-Hochberg method to provide

permuted q values. A permuted q value %0.1 denotes a signifi-

cant final mutation frequency. The permuted q value (PQ) filter

reduced the number of somatically mutated genes to 4,240 (Fig-

ure 2A). This filtering improved LoF somatic mutations from three

to four gold standards (TCGA consensus, CGC, Vogelstein, and
Figure 2. Assessing the performance of OncoMerge filters and condu

(A) Impact of filter sets on the number of somatically mutated genes inferred by

(B) Impact of filter sets on the distribution of genes per CNA locus using the same

indicates the 10 genes per loci cutoff that invoke the MFF filter.

(C) Enrichment of the gold standard (GS) Act or LoF somatic mutations with Onco

(None); PQ filter; MFF; combined PQ andMFF; and combined PQ,MFF, andMHC

or equal to the Bonferroni corrected a level of 4.83 10�4 (a = 0.05, number of tests

orange arrowheads indicate OM Act vs. GS Act, and the green arrowheads indic

(D) Comparing GISTIC thresholds: cutoff of one equates to shallow amplification

(E) Comparing the possible values for the MFF filter parameter maximum numbe

(F) Comparing the possible cutoff values of the minimum mutation frequency (M

(G) Comparing the possible cutoff values of the PQ filter permuted q value (Perm

highlighted in red and had p value less than or equal to the Bonferroni corrected a

corrected a = a/number of tests per parameter = 0.05/21 = 2.4 3 10�3). The pur
OncodriveROLE) with the somatic mutations that had the LoF

predicted role from OncoMerge. Still, the Act comparisons did

not show significant enrichment (Figure 2C). The PQ filter had

a minimal impact on the number of genes per locus (Figure 2B).

This lack of significant overlap for Act somaticmutations demon-

strates that further filtering is required.

A key consideration in developing OncoMerge was that inte-

grating the somatic mutation types should highlight the func-

tional somatic mutations over passenger mutations. Therefore,

we created a filter to prioritize somatically mutated genes more

likely to be functional. An average CNA encompasses 3.8 ± 7.9

Mb of genomic sequence,23 and genomic segments of this

size typically include many genes. These large genomic regions

make it difficult to determine which of the affected genes are the

functional gene(s) underlying the CNA locus without integrating

additional information. We assert that passenger genes underly-

ing a CNA locus are considered noise and can be identified by

the lack of allelic heterogeneity. Thus, functional gene(s) can

be identified through allelic heterogeneity that boosts the so-

matic mutation frequency for a gene above the background

CNA frequency. We designed a low-pass filter that retains only

the gene(s) with the maximum final frequency (MFF). TheMFF fil-

ter is only applied if a locus has more than 10 genes. Application

of the MFF filter dramatically reduced the number of somatically

mutated genes from 6,028 to 1,459 (Figure 2A) and the number of

genes per locus (Figure 2B). The MFF filter also helps make the

average contribution of PAMs and CNAs to the final mutation fre-

quency more even (Figure S2; Table S5). We additionally

observed a marked improvement in overlap with the gold stan-

dards. Significant enrichment was observed for four Act gold

standards with somatic mutations that OncoMerge predicts as

Act. All five of the LoF gold standard vs. OncoMerge predicted

LoF comparisons (Figure 2C). Thus, the MFF filter directly ad-

dresses the issue of too many genes in a CNA locus. Removing

more than three-quarters of the somatically mutated genes im-

proves the overlaps with gold standards.

We then assessed the impact of applying both the PQ and

MFF filters. Simultaneous application of both filters reduced

the number of somatically mutated genes beyond the MFF filter

(1,145 genes; Figure 2A), and the number of genes per locus was

further improved (Figure 2B). There was also an improvement in

the significant overlap with gold standards where all five LoF

gold standard vs. OncoMerge predicted LoF and significant

overlap for four Act gold standard vs. OncoMerge predicted
cting sensitivity analyses

OncoMerge in at least one cancer.

set of filtering conditions (y axis is distributed on a log scale). The dashed line

Merge (OM) Act or LoF somatic mutations for each filtering condition: no filters

. Significant enrichments fromC are highlighted in red and had p value less than

= 105, Bonferroni corrected a = a/number of tests = 0.05/105 = 4.83 10�4). The

ate OM LoF vs. GS LoF.

and deletions, and cutoff of two equates to deep amplifications and deletions.

r of genes in the loci (Max. loci genes) with 1, 5, 10, 15, and 20 genes.

in. mut. freq.) with 1%, 5%, 10%, and 20%.

. q value) with 0.01, 0.05, 0.1, and 0.2. Significant enrichments from (D)–(G) are

level of 2.43 10�3 (a = 0.05, number of tests per parameters = 21, Bonferroni

ple arrowheads indicate the final parameterization chosen for OncoMerge.
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Act (Figure 2C). Importantly, none of the gold standard Act vs.

LoF or LoF vs. Act comparisons were significant for any filter

combination, demonstrating that theOncoMerge predicted roles

are consistent with prior knowledge.

Reducing biases due to microsatellite instability and
hypermutation
Microsatellite instability (MSI) and hypermutation drastically in-

crease the number of somatic mutations in a tumor. The PQ and

MFF filters and OncoMerge’s core algorithm rely upon somatic

mutation frequency, which is susceptible to confounding by MSI

or hypermutation. Fortunately, all TCGA tumors used in this study

are characterized for both MSI5 and hypermutation6 status (Fig-

ure 3A). We observed a highly significant positive correlation be-

tween MSI/hypermutation frequency and the total number of so-

matic mutations per cancer after integration by OncoMerge (R =

0.68 and p value = 2.0 3 10�5). This strong positive correlation

demonstrates that MSI/hypermutation likely inflates the number

of somatic mutations discovered by OncoMerge. Therefore, we

created the MSI and hypermutation censoring filter (MHC) to

exclude these tumors while OncoMerge determines which genes

to include in the final somaticmutationmatrix. Themutation status

for tumors with MSI and hypermutation are included for genes in

the final integratedmutationmatrix. Applying theMHCfilter along-

side the PQ andMFF filters reduced the overall number of somat-

ically mutated genes (905 genes; Figure 2A) and had minimal

impact on the number of genes per locus (Figure 2B; Data S1).

ThecombinedPQ,MFF,andMHCfiltersdecreased thecorrelation

between theMSI/hypermutation frequency (R= 0.48 andp value =

5.83 10�3). All 10 of the gold standardAct vs. Act and LoF vs. LoF

comparisons were significant. These results established that the

MHC filter is valuable for removing passenger mutations intro-

duced by tumors with severely increased somatic mutation rates.

The PQ, MFF, and MHC filters comprise the default and final

OncoMerge filter set. The filters deal with known complications

in cancer genetics and ensure that the mutation roles in the inte-

grated matrix are correctly assigned.

Sensitivity analyses to optimize filtering cutoffs and
parameters
We then used sensitivity analyses of the filtering parameters to

determine their optimal parameterization for OncoMerge

(Figures 2D–2G and Table S6). First, we testedwhether a shallow

(R1) or deep (R2) GISTIC threshold cutoff was optimal for inte-

gration purposes (Figure 2D). The shallow GISTIC threshold led

to many more somatically mutated genes, but impaired the dis-

covery of meaningful activating mutations, as shown by the lack

of significant overlap with gold standard activating mutations.

Therefore, the deep GISTIC threshold was chosen for

OncoMerge. Second, we varied the MFF gene number threshold

of a CNA locus across the values 1, 5, 10, 15, and 20 genes (Fig-
Figure 3. Summary of effect on number and frequency of somatic mut

(A) Frequency of hypermutation and MSI across cancers.

(B) Number and distribution of mutation types.

(C) Number of somatically mutated genes added because of integration.

(D) Integrated somatic mutation frequencies.

(E) Increases in somatic mutation frequency relative to PAM frequency after inte
ure 2E). Significant overlap with all gold standard activating mu-

tations is observed up to 10 genes per loci threshold. These re-

sults demonstrate that the optimal MFF cutoff is 10 genes per

loci. Next, we tested the sensitivity of OncoMerge to the mini-

mum mutation frequency threshold by setting it with the values

of 0.01, 0.05, 0.1, and 0.2 (Figure 2F). There was little impact

on the significance of the gold standard analysis across the

range of thresholds. However, the number of somatic mutations

is significantly impacted by this threshold. A 1% or smaller min-

imum mutation threshold would be warranted for somatic muta-

tion discovery. On the other hand, ensuring sufficient somatically

mutated samples to achieve statistical power for downstream

analyses warrants a 5% minimum mutation threshold. Finally,

we tested the sensitivity of OncoMerge to the permuted q value

threshold from the PQ filter across the values 0.01, 0.05, 0.1, and

0.2 (Figure 2G). The lowest threshold of 0.01 led to a loss of sig-

nificance for the overlap of the activatingmutations for the Vogel-

stein et al.3 gold standard. The number of somatically mutated

genes increased by hundreds of genes as the permuted q value

threshold increased, and thus 0.05, 0.1, and 0.2 are all reason-

able threshold values. The permuted q value threshold of 0.1

was chosen because it removed integrated somatic mutations

that could have happened by chance alone and retained many

somatically mutated genes. These sensitivity analyses provide

a reasonable rationale for choosing the values for the filtering

cutoffs and parameters, which alternative values might be

used, and an idea of which contexts they might be useful.

Benefits of an integrated somatic mutation matrix
Weevaluated the benefits of systematic somaticmutation integra-

tion by comparing OncoMerge integrated somatic mutation

matrices with those from PAMs. The PAM somatic mutation

matrices were used as a reference point because we have suc-

cessfully used them as the sole source for somatic mutations in

previous studies.19,20 We assessed the benefits of integration by

tabulating the number of somatic mutations and their roles (Fig-

ure 3B), the number of genes added by integration (Figure 3C),

and the increase in somatic mutation frequency due to integration

(Figure 3E). Act and LoFmutations represented the bulk of the so-

matic mutations in 30 cancers (Figure 3B). Thyroid carcinoma

(THCA) and kidney chromophobe (KICH) were the only cancers

that lacked Act or LoF mutations. Consistent with Agrawal

et al.,24 THCA had only three mutations with a frequency R5%

BRAF, NRAS, and RET. On the other hand, KICH was under-

sampled in the TCGA Pan-Cancer atlas (n = 65), and LoF and

Act mutations would likely be discovered with the inclusion of

more patient tumors.

We then investigated how many new genes the integration

added for each cancer. Integration added at least one somatically

mutated gene for each cancer (Figure 3C) and more than 60 so-

matically mutated genes for bladder urothelial carcinoma
ations after integrating mutation types

gration.
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(BLCA), lung adenocarcinoma (LUAD), stomach adenocarcinoma

(STAD), and uterine corpus endometrial carcinoma (UCEC) (Fig-

ure 3C). The somatically mutated genes added by OncoMerge

make the integrated somatic mutation matrices more

comprehensive.

Next,we investigated the frequencies of the somaticmutations

from the OncoMerge integrated mutation matrices. The genes

with the highest frequency map to well-known oncogenes (e.g.,

BRAF, KRAS, and EGFR) and tumor suppressors (e.g., APC,

CDKN2A, and TP53; Figure 3D). The APC gene was mutated in

more than 80% of tumors for rectum adenocarcinoma (READ).

The TP53 gene was mutated in more than 80% of tumors for

esophageal carcinoma (ESCA), lung squamous cell carcinoma

(LUSC), ovarian serous cystadenocarcinoma (OV), READ, and

uterine carcinosarcoma (UCS). These frequently mutated genes

in the OncoMerge integrated mutation matrices are consistent

with prior knowledge of somatic mutations for each cancer.

Finally, we calculated the frequency added through integration

bysubtracting the integratedmutation frequency fromthePAMfre-

quency. The most substantial increases in somatic mutation fre-

quencywere observed forTMPRSS2-ERG inprostate adenocarci-

noma (PRAD) and CDKN2A in ESCA, glioblastoma multiforme

(GBM), and mesothelioma (MESO) (Figure 3E). Neither

TMPRSS2-ERG nor CDKN2A would have been identified as so-

matically mutated without incorporating fusions and CNAs,

respectively. These findings demonstrate that OncoMerge signifi-

cantly improves the number and frequency of somatically mutated

genes inmostcancers.Also, these results showthat thesystematic

integration of PAM, fusion, and CNA somatic mutations is crucial

for obtaining a comprehensive mutation matrix for each cancer.

Pan-cancer somatic mutations capture many known
tumor suppressors and oncogenes
Genes mutated in multiple cancers are of great interest as selec-

tive pressures have found a common solution to influence can-

cer phenotypes in different contexts. Therefore, we searched

for genes somatically mutated in at least five cancers in the

OncoMerge integrated mutation matrices. The resulting gene

list could be broken down into two groups of somatic mutations:

the LoF set (n = 23, Figure 4A) and the Act set (n = 13, Figure 4B).

The genes FBXW7 and KMT2C were somatically mutated with

only PAMs. Both genes were previously classified as tumor sup-

pressors25–27 and were grouped with the LoF set.

The pan-cancer somatically mutated genes harbored many

well-known tumor suppressors and oncogenes (Figure 4C). As

expected, tumor suppressors27 were significantly enriched in

the LoF group (overlap = 18, p value = 5.0 3 10�20), and onco-

genes28 were significantly enriched in the Act group (overlap =

8, p value = 1.63 10�10). The top threemost somaticallymutated

tumor suppressors were TP53, PTEN, andCDKN2A. These three

tumor suppressors control essential checkpoints in the cell cy-

cle, making them functionally interesting. The gene TP53was so-

matically mutated in 24 cancers, primarily by PAMs, but four

LoFs were also observed for GBM, liver hepatocellular carci-

noma (LIHC), PRAD, and sarcoma (SARC). The top two most

mutated oncogenes across cancers were PIK3CA and KRAS,

which become overactive kinases when mutated. Both PIK3CA

and KRAS have PAM and Act mutation roles across the different
8 Cell Reports Methods 3, 100442, April 24, 2023
cancers, and only the NFE2L2 gene has a similar mixture of PAM

and Act mutation roles. The genes CASC8, CCND1, and TERT

included cancers with a CNAamp mutation role. The somatic

mutation roles are all Act for the remainder of the oncogenes.

These pan-cancer analyses further validate the systematic so-

matic mutation integration by OncoMerge through the unbiased

recall of tumor suppressors and oncogenes.

Improving gene regulatory network inference
Next, the integrated somatic mutation matrices for TCGA cancer

types were used to construct GRNs (Table S7) and compared

with networks built using only PAMs (legacy).20 The GRNs con-

nected somatic mutations to TFs and miRNAs that regulate the

expression of a set of genes associated with cancer phenotypes

or patient survival.

The average degree was the first metric we considered to

compare the GRNs. The degree of a node is the number of edges

connecting it to other nodes. The average degree is a standard

network metric computed as the average of all node degrees in

the network. We found that the average degree was larger for 23

OncoMergeGRNs relative to legacyGRNs (Figure 5A). The excep-

tions were GBM (average degreewas equal) and colon adenocar-

cinoma (COAD), kidney renal clear cell carcinoma (KIRC), skin cu-

taneious melanoma (SKCM), and STAD (legacy had a larger

average degree). The COAD, SKCM, and STAD cancer types har-

bor more MSI and hypermutation tumors (Figure 3A), and we

observed a reduction in the number ofCOADandSTADmutations

in the OncoMerge GRN relative to the legacy GRN (Figure 5B).

These results suggest that theMHC filter removed spurious asso-

ciations. Thus, we have increased the average degree for most

networks and addressed a systematic bias in legacy networks.

Next, we compared the number of mutations in each GRN pre-

dicted to modulate the activity of regulators. The OncoMerge

GRNs contained more somatic mutation nodes than the legacy

GRNs for all cancers but COAD and STAD, likely due to MSI and

hypermutation (Figure 5B). Then, we assessed the recall of so-

matic mutations previously associated with each cancer from

the DisGeNET database.29 All but twoOncoMergeGRNs recalled

more previously associated somatic mutations than the legacy

GRNs (Figure 5C). The exceptions were uveal melanoma (UVM)

with the sameamount andCOADwith fewer (Figure 5C). These re-

sults demonstrate that OncoMerge integrated mutation matrices

provide increased power to infer associations with somaticmuta-

tions, especially previously associated with each cancer.

Finally, we considered the number of causal and mechanistic

TFs in each GRN. The OncoMerge GRNs contained more pre-

dicted TFs than legacy for 22 GRNs, the same number of TF reg-

ulators for STAD, and fewer TFs for COAD, GBM, KIRC, THCA,

and UCEC (Figure 5D). We also assessed the recall of TFs previ-

ously associated with each cancer from the DisGeNET data-

base.29,30 Twenty of the OncoMerge GRNs recalled more previ-

ously associated TFs than legacy GRNs (Figure 5E). The COAD

and UCEC GRNs had the same amount, and GBM, kidney renal

papillary cell carcinoma (KIRP), SKCM, and THCA had fewer,

and KICH and UVM had no recall of previously associated TFs

in either GRN (Figure 5E). In summary, using OncoMerge inte-

grated mutation matrices constructs GRNs that are more exten-

sive and biologically meaningful.
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Figure 4. Pan-cancer somatic mutations with a consistent functional impact across at least five cancers

(A) Pan-cancer somatic mutations from the loss of functions group.

(B) Pan-cancer somatic mutations from the activating group.

(C)Prior knowledgeof tumorsuppressororoncogenestatus for eachsomaticallymutatedgene (blacksquare indicatesknowntumorsuppressororoncogeneactivity).
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Comparing active and static TF regulatory network
architectures
The interactions between TFs are important for generating the

transcriptional state of a human cell. The underlying architec-

ture of TF regulatory networks, composed of TFs and

their interactions, are typically explored by enumerating all

three-node network motifs and computing their enrichment

or depletion into triad significance profiles (TSPs).31 Most

studies of network motif enrichment have relied upon un-

signed interactions,31–36 which ignore whether the interaction

is activating or repressing. To facilitate comparisons, our first

analysis of network architecture uses unsigned TSPs to

compare static and active TF regulatory networks. Static TF

regulatory networks were constructed using chromatin acces-

sibility and DNA binding motifs for 41 cell types.32 These TF

regulatory networks are static because they do not incorpo-

rate gene expression data in their construction. Active TF

regulatory networks are derived from the OncoMerge

augmented SYGNAL pan-cancer GRNs, which were trained

using patient tumor transcriptional data and therefore are

composed of active TF regulatory interactions. We calculated

TSPs for 25 TF regulatory networks and the median TSP

(Figures 6A and 6B; Table S8). We excluded the cancer types
DLBC, KICH, KIRP, OV, testicular germ cell tumors (TGCT),

and thymoma (THYM) because they had too few inferred

regulatory interactions (<50 interactions). In addition, we

recalculated the TSPs for the static TF regulatory networks

using a more recent version of the mfinder algorithm

(Figure 6B).

The median TSPs of the active and static TF regulatory net-

works were highly correlated (R = 0.75, p value = 3.0 3 10�3;

Figure 6B), demonstrating that the architecture of the active

network resembles the static network. However, the maximum

enriched network motifs were different. The regulated and

regulating feedback motifs (motifs 108 and 46) were the most

highly enriched motifs from the static TF regulatory networks

and were still enriched, although not as significant, in the active

networks. In contrast, the feedforward loop (FFL, motif 38) is

the most highly enriched motif in the active TF regulatory net-

works. These two motifs are quite similar in structure and differ

only by a single edge. Feedback motifs and FFLs can be further

broken down into 10 and eight signed network motifs that each

have a unique functional output.37 Thus, we can discover what

functions are being selected for by evolution in general and the

microcosm of tumor biology by exploring the enrichment of

signed network motifs.
Cell Reports Methods 3, 100442, April 24, 2023 9
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Figure 5. Demonstrating improvements in downstream SYGNAL analysis by comparing GRNs constructed with an OncoMerge integrated

somatic mutation matrix vs. a legacy network using only PAMs

(A) Average degree of nodes in the PanCaner SYGNAL networks.

(B) Mutations per cancer network.

(C) Mutations that overlap with genes previously associated with a specific cancer in DisGeNET.

(D) TFs per cancer network.

(E) TFs that overlap with genes previously associated with a specific cancer in DisGeNET.
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Coherent FFLs enriched in active TF regulatory
networks
Incorporating the sign of the regulatory interactions (activating or

repressing) splits the FFL motif into eight signed network motifs

classified as coherent (C1, C2, C3, and C4) and incoherent (I1, I2,
10 Cell Reports Methods 3, 100442, April 24, 2023
I3, and I4).37 Simulation studies have demonstrated that

coherent FFLs lead to delays in target gene expression, and

incoherent FFLs accelerate target gene expression.37 FFLs

were significantly enriched in active TF regulatory networks,

which led us to question whether coherent, incoherent, or both
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(legend on next page)
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FFLs were enriched. In active GRNs, the sign of the correlation

between the TF regulator to TF target can be used to determine

the sign of the interaction (R > 0 equates to activation, R < 0

equates to repression). The four coherent FFLs were enriched

in the active TF regulatory networks (Figure 6C; Table S9), and

incoherent FFLs were severely under-enriched (Z � 0). In sum-

mary, coherent FFLs were enriched in our active TF regulatory

networks, suggesting that transcriptional delay mechanisms

must provide a valuable function for TF regulatory networks.

Coherent switch-like feedbackmotifs enriched in active
TF regulatory networks
The regulated and regulating mutual feedback motifs have a two-

node feedback loopat their core. The double-positive anddouble-

negative two-nodemutual feedback loops act like switches.38We

tested the 20 signed regulated and regulating mutual feedback

network motif configurations for enrichment in TF regulatory net-

works. Three regulating and three regulated signed mutual feed-

back motifs (Figure 6C; Table S9). These six enriched regulated

and regulating mutual feedback motifs had a common configura-

tion. First, all the network motifs were coherent. Coherent regu-

lated and regulating feedback loops have interaction signs be-

tween the feedback loop that are either double-positive or

double-negative. The regulated or regulating node interacts with

the feedback loop nodes using the same sign for double-positive

feedback loops and the opposite sign for double-negative feed-

back loops. Thus, there are three coherent configurations for

both regulated and regulating mutual feedback motifs making six

total, coinciding with the six enriched configurations (Figure 6C;

Table S9). The enriched motifs containing a double-positive feed-

back loop had the same interactions with the non-feedback loop

node, both activating or repressing (Figure 6C). The enrichedmotif

containing a double-negative feedback loop had opposing inter-

actions with the non-feedback loop node, one activating and

one repressing (Figure 6C). These enriched signed network motifs

are the configurations that function as molecular switches.39

Again, evolution has selected for coherent network motif configu-

rations likely because of their function.

DISCUSSION

We avoided overfitting while developing and optimizing parame-

ters for OncoMerge in three ways. First, we used five gold stan-

dards that use different methods for somatic mutation discovery

to avoid overfitting to one specific gold standard. This diversifica-

tion approach was successful because we observed variable

enrichment scores across thegold standards. Second, the sensi-
Figure 6. The architecture of functional disease-specific TF regulatory

(A) Active TF regulatory network construction pipeline: (1) TFs from all cancer re

interactions was constructed, (3) TF/ TF relationships were filtered using Pears

significance profiles using mfinder.

(B) Comparison of active TF regulatory network based on SYGNAL GRNs (red

accessibility (blue, Neph et al.32).

(C) FANMOD enrichment normalized Z scores for the three most enriched motifs

action roles (activation or repression). The first row, titled Coherent motifs, is sha

Normalized Z scores are reported for each cancer, and diagonal dashed lines are

bottom of each column, colored with regulatory roles. C1, C2, C3, C4 = coheren
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tivity analyses we conducted over a plausible set of parameter

values demonstrated the robustness of OncoMerge to different

parameterizations. This is important because it shows that

OncoMergehas not beenparameterized into ananomalous over-

fit state. Instead, the parameters were chosen based on carefully

considered statistical choices and trends in the data. Third, we

avoided overfitting to a specific cancer somatic mutation profile

by applying and assessing the performance of OncoMerge

across 32 cancer types. The ability of OncoMerge to be applied

to a pan-cancer cohort with many different mutation profiles

strongly suggests that OncoMerge should be generalizable to

new cancer cohorts. We employed all three of these approaches

to avoid overfitting and to ensure that OncoMerge could be

applied to new datasets without having to tune parameters.

In addition, we provide sensitivity analyses that can guide

users who want to change OncoMerge parameters by observing

how specific parameter values impact its performance. For

example, the minimum mutation frequency can be set to zero

to conduct somatic mutation discovery, providing a more

comprehensive list of somatic mutations and their types. In this

study, we chose a 5%cutoff for theminimummutation frequency

to ensure there were enough somatically mutated tumors to po-

wer downstream GRN inference. The sensitivity analyses of can

beused toguide the choice ofOncoMergeparameters to achieve

different goals than the default parameterization.

The construction of active GRNs enabled the exploration of

signed network motifs and led to the discovery that specific

signed network motif configurations are being enriched. The

SYGNAL GRN construction method identifies active gene regu-

latory interactions by discovering interactions that are supported

by gene expression data from patient tumors.19 On the other

hand, prior networks were static maps of DNA binding sites con-

structed using digital genomic footprinting and the similarity of

the underlying sequence of the footprints for known DNA binding

motifs.32 The active networks use a correlation-based method to

determine TF regulatory roles (activator or repressor) for the in-

teractions, which is not possible using static binding maps.

Analyzing signed network motifs provides a leap forward in un-

derstanding how the underlying architecture of GRNs functions

in real-world biological systems. OncoMerge integrated somatic

mutations offer a more solid platform to infer active GRNs that

can be used to explore the functional architecture of TF regula-

tory networks.

We discovered that coherent regulated and regulating feed-

back and FFL network motifs were enriched in cancer TF regula-

tory networks. We cannot say whether this enrichment of

network motifs will generalize to all active GRNs or if this is a
networks from human tumors

gulatory networks were identified, (2) a putative map of TF regulatory network

on’s correlations computed from patient tumor data, and (4) compute the triad

) to the static TF regulatory network based on ENCODE DNA binding and

from the active TF regulatory network after incorporating TF regulatory inter-

ded when the motif configuration is coherent and white when it is incoherent.

inserted when no Z score was returned. The network motif can be found at the

t FFLs. I1, I2, I3, I4 = incoherent FFLs.



Article
ll

OPEN ACCESS
cancer-specific phenomenon. In normal organismal develop-

ment, feedback motifs have been previously shown to be essen-

tial for cell fate decision-making.40,41 On the other hand, in tumor

cells and other cells in the tumormicroenvironment, the enriched

feedback motifs may be maintaining a cell fate, or the disease

could be coopting the circuit to drive tumor biology. Likewise,

coherent FFL network motifs have also been associated with

enhanced drug resistance.42 These coherent motifs are relevant

for normal and diseased cell biology, and evolution has specif-

ically selected thesemotif configurations because of their unique

functional outputs.

Future improvements to the OncoMerge algorithm include a

more quantitative integration approach for the somatic muta-

tions, a replacement for or an improved maximum final fre-

quency filter, aggregation across pathways, and a determination

of whether other genomic featuresmay be integrated (extrachro-

mosomal circular DNA [ecDNA]43 or epigenomics44). In addition,

in future single-cell studies with both transcriptome and genome

information, it would be helpful to have an OncoMerge imple-

mentation that integrates PAM, fusion, and CNA for every single

cell. We envision OncoMerge as a valuable tool in the somatic

mutation characterization pipeline. We hope it will facilitate

multi-omic studies and lead to novel discoveries that can be

translated into clinical insights.

Limitations of the study
Currently, OncoMerge assumes that the somatic mutations will

be PAM, CNA, or gene fusions, meaning it will miss somatic mu-

tations such as ecDNA,43 epigenomics,44 etc. Somatic muta-

tions were seeded by PAMs or CNAs that were mutated more

than expected by chance alone, which may exclude mutations

of lower frequency from being discovered. Future studies could

be used to come up with alternative methods of seeding somatic

mutations. Using a 5% cutoff for somatic mutation frequency

means that lower-frequency mutations will be overlooked.

Setting the minimum mutation frequency cutoff to less than

5% would provide a complete list of somatic mutations.
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Lead contact
Requests for further information should be directed to the lead contact, Christopher Plaisier (plaisier@asu.edu).

Materials availability
This study did not generate new materials.

Data and code availability
This paper analyzes existing, publicly available data. All the datasets used as input for our study were deposited in Figshare (https://

doi.org/10.6084/m9.figshare.21760964.v1) and they are publicly available as of the date of publication. Newdatasets generated from

our studies were deposited in Figshare (https://doi.org/10.6084/m9.figshare.20238867.v1) and they are publicly available as of the

data of publication.

The OncoMerge original code has been deposited at GitHub (https://github.com/plaisier-lab/OncoMerge) and is also accessible

through Zenodo using the DOI https://doi.org/10.5281/zenodo.5519663.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
TCGA cancer abbreviations

Study Abbreviation Study Name

ACC Adrenocortical carcinoma

BLCA Bladder Urothelial Carcinoma

LGG Brain Lower Grade Glioma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and

endocervical adenocarcinoma

CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and Neck squamous cell carcinoma

KICH Kidney Chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

DLBC Lymphoid Neoplasm Diffuse Large

B-cell Lymphoma

MESO Mesothelioma

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and Paraganglioma

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SARC Sarcoma

SKCM Skin Cutaneous Melanoma

STAD Stomach adenocarcinoma

TGCT Testicular Germ Cell Tumors

THYM Thymoma

THCA Thyroid carcinoma

UCS Uterine Carcinosarcoma

UCEC Uterine Corpus Endometrial Carcinoma

UVM Uveal Melanoma
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METHOD DETAILS

Clinical and molecular data from TCGA
These studies used standardized, normalized, batch corrected, and platform-corrected multi-omics data generated by the Pan-

Cancer Atlas consortium for 11,080 participant tumors.20 Complete multi-omic profiles were available for 9,584 patient tumors.

TCGA aliquot barcodes flagged as ‘‘do not use’’ or excluded by pathology review from the Pan-Cancer Atlas Consortium were

removed from the study. The overall survival (OS, OS.time) data used were obtained from Liu et al.45

d Somatic protein-affecting mutations (PAMs) in TCGA – Somatic PAMs were identified by the Multi-Center Mutation Calling in

Multiple Cancer (MC3) project1 and were downloaded from the ISB Cancer Gateway in the Cloud (ISB-CGC; https://isb-cgc.

appspot.com/). PAMs were required to have a FILTER value of either: PASS, wga, or native_wga_mix. In addition, all PAMs

needed to be protein-coding by requiring that Variant_Classification had one of the following values: Frame_Shift_Del,

Frame_Shift_Ins, In_Frame_Del, In_Frame_Ins, Missense_Mutation, Nonsense_Mutation, Nonstop_Mutation, Splice_Site,

or Translation_Start_Site. Additionally, mutation calls were required to be made by two or more mutation callers

(NCALLERS >1). When both normal tissue and blood were available, the blood was used as the germline reference.

d Statistical significance of PAMs in TCGA – The likelihood that a gene is somatically mutated by chance alone was determined

using MutSig2CV7 and downloaded for each cancer from the Broad GDAC FIREHOSE (https://gdac.broadinstitute.org/).

Genes with a MutSig2CV False Discovery Rate (FDR) corrected p-value (q-value) less than or equal to 0.1 were considered

significantly mutated.7

d Somatic transcript fusions in TCGA – The TumorFusions portal2 provides a pan-cancer analysis of tumor transcript fusions in

the TCGA using the PRADA algorithm.8

d Somatic copy number alterations (CNAs) in TCGA –Genomic regions that were significantly amplified or deletedwere identified

using Genomic Identification of Significant Targets in Cancer (GISTIC2.0)9 and downloaded for each cancer from the Broad

GDAC FIREHOSE.

Somatic mutation data import and preprocessing
An essential first step in OncoMerge is loading up and binarizing the somatic mutation data (Figure S1). The somatic mutation data

comprised of four primarymatrices: 1) PAMs, 2) fusions, 3) CNAamplifications (CNAamps), and 4) CNAdeletions (CNAdels) (Figure 1).

In addition, two derivative matrices Act and LoF are created by merging the PAM with the CNAamps or CNAdels matrices, respec-

tively (Figure 1). All files are formatted as comma-separated values (CSV) files with genes as rows and patients as columns unless

otherwise noted.

d PAMmatrix - Thematrix values are [0 or 1]: zero indicates the gene is not mutated in a patient tumor, and one indicates the gene

is mutated in a patient tumor.

d Fusion matrix - Thematrix values are [0 or 1]: zero indicates no gene fusion in a patient tumor, and one indicates the gene fused

to another genomic locus in a patient tumor.

d CNAamp and CNAdel matrices – The all_thresholded_by_genes.csv GISTIC output file is used to populate the CNAamp and

CNAdel matrices. The all_thresholeded_by_genes matrix values range from �2 and have no positive bound, and the values

indicate the copy number relative to the background. A cutoff of greater than or equal to 2 was used to identify deep amplifi-

cations and less than or equal to �2 for deep deletions. Only deep amplifications or deletions were included in these studies

due to heterogeneity of cell types and tumor biopsy purity. Oncomerge allows this threshold to bemodified through a command

line parameter (‘-gt’ or ‘–gistic-threshold’).
B CNAampmatrix – The matrix values are [0 or 1]: zero indicates a gene is not amplified in a patient tumor, and one indicates

the gene is amplified in a patient tumor.

B CNAdel matrix – The matrix values are [0 or 1]: zero indicates a gene is not deleted in a patient tumor, and one indicates a

gene is deleted in a patient tumor.

d Actmatrix – The Act matrix is the bitwise OR combination of the PAM, Fusion, andCNAampmatrices. The Act matrix has genes

as rows and patients as columns. The matrix values are [0 or 1]: zero indicates the gene is not mutated or amplified in a patient

tumor, and one indicates the gene is either mutated, fused, amplified, or some combination in a patient tumor.

d LoFmatrix – The LoFmatrix is the bitwise OR combination of the PAM, Fusion, and CNAdel matrices. The LoFmatrix has genes

as rows and patients as columns. The matrix values are [0 or 1]: zero indicates the gene is not mutated or deleted in a patient

tumor, and one indicates the gene is either mutated, fused, deleted, or some combination in a patient tumor.

Seeding OncoMerge with putative somatic mutations
OncoMerge focuses on likely causal somatic mutations by considering only somatic mutations that were statistically shown to be

mutated more often than expected by chance alone. Likely causal somatic mutations are also required to have a mutation frequency

greater than 5%, the definition of a common mutation,46 as this ensures sufficient patient tumors will be mutated to power down-

stream analyses. These statistically significant common mutations were used as seeds for OncoMerge integration. PAMs used as
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seeds were identified with MutSig2CV q-values less than or equal to 0.114 and a mutation frequency greater than 5%. Gene fusions

used as seeds were identified as significant in PRADA2,8 and had amutation frequency greater than 5%. CNAamps or CNAdels used

as seeds were identified as significantly amplified or deleted from the amplified genes (amp_genes) or deleted genes (del_genes)

GISTIC output files with residual q-values less than or equal to 0.05.47 CNAs from sex chromosomes (X and Y) were excluded. Genes

from sex chromosomes can enter OncoMerge as seeds from PAMs or fusions. These seed genes become the starting point of the

OncoMerge integration. Subsequent steps determine if Act or LoF merged mutation profiles or their component PAM, Fusion,

CNAamp, or CNAdel mutation roles are the most appropriate integration model for a gene.

Merging somatic mutations in OncoMerge
The mutation role for each seed gene is assigned based on the frequencies of the mutation types for a gene from the original (PAM,

Fusion, CNAamp, CNADel) andmerged (Act and LoF) somatic mutation matrices and statistical thresholds for PAM (MutSig2CV) and

CNAs (GISTIC). The function g is applied to each seed gene to choose the mutation role using the following parameters: fMMF the

minimum mutation frequency (defaults to 5%), fAct the frequency of the merged Act mutations, fLoF the frequency of the merged

LoF mutations, fPAM the frequency of the PAM mutations, fFusion the frequency of the gene fusion mutations, fCNAamp the frequency

of CNA amplification mutation, fCNAdel the frequency of the CNA deletions mutations, qvMutSig2CV significance of PAM mutations as

MutSig2CV q-value, and qvGISTIC significance of CNA mutations as GISTIC residual q-value.

g
�
fMMF ; fAct; fLoF ; fPAM; fFusion; fCNAamp; fCNAdel;qvMutSig2CV ;qvGISTIC

�

=

8>>>>>><
>>>>>>:

Act; if ðfAct >maxðfLoF ; fPAM; fFusion; fCNAamp; fCNAdelÞÞ and ðfAct R fMMFÞ
LoF; elif ðfLoF >maxðfAct; fPAM; fFusion; fCNAamp; fCNAdelÞÞ and ðfLof R fMMFÞ

PAM; elif ðfPAM RmaxðfAct; fLoF ; fFusion; fCNAamp; fCNAdelÞÞ and ðfPAM R fMMFÞ and
�
qvMutSig2CV %0:1

�
Fusion; elif ðfFusion RmaxðfAct; fLoF ; fPAM; fCNAamp; fCNAdelÞÞ and ðfFusion R fMMFÞ

CNAamp; elif ðfCNAamp RmaxðfAct; fLoF ; fPAM; fFusion; fCNAdelÞÞ and ðfCNAamp R fMMFÞ and ðqvGISTIC %0:05Þ
CNAdel; elif ðfCNAdel RmaxðfAct; fLoF ; fPAM; fFusion; fCNAampÞÞ and ðfCNAdel R fMMFÞ and ðqvGISTIC %0:05Þ

The mutation role for each seed gene is chosen using this decision tree based on mutational frequencies and statistical signifi-

cance. The Act and LoF are first in the decision tree because merging mutation types should lead to a larger mutation frequency

than any individual source mutation frequency (fPAM; fFusion; fCNAamp; fCNAdel ). A strict inequality (greater than) is used so that the Act

or Lof is disregarded if it has the same mutation frequency as a source mutation frequency. If an Act or LoF integrated mutation

role is not chosen, then the source mutation with the highest frequency is chosen. And in the case of ties the non-strict inequalities

(greater than or equal to) determine the order of preference for the tied mutational roles: PAM > Fusion > CNAamp > CNAdel. This

ordering ensures that integrated mutation roles are chosen when possible and that the most frequent source mutation role is other-

wise chosen. The PQ,MFF, andMHC filters further modify the assigned genemutation roles to determine the final genemutation role.

Permuted q-value (PQ) filter
For putative Act and LoFmutations, a permuted q-value is computed by randomizing the order of rows in the PAM, Fusion, and CNA

mutation matrices’ and then calculating the randomized frequency distribution for Acts and LoFs. The observed frequency for an Act

or Lof mutation is then compared to the randomized frequency distribution to compute the permuted p-value. Permuted p-values are

corrected into q-values using the multiple-test Benjamini-Hochberg FDR-based correction method. Only Acts or LoFs that had a

permuted q-value % 0.1 were retained. Any Act or LoF with a permuted q-value > 0.1 was set to the mutation role of either PAM,

Fusion, CNAamp, or CNAdel based on which mutation role had the highest frequency. This modifies the function g into gPQ that in-

cludes the permuted q-value as a new input variable qvpermuted, and is included as a constraint for the calls of Act and LoF.

gPQ

�
fMMF ; fAct; fLoF ; fPAM; fFusion; fCNAamp; fCNAdel;qvMutSig2CV ;qvGISTIC;qvpermuted

�

=

8>>>>>><
>>>>>>:

Act; if ðfAct >maxðfLoF ; fPAM; fFusion; fCNAamp; fCNAdelÞÞ and ðfAct R fMMFÞ and
�
qvpermuted %0:1

�
LoF; elif ðfLoF >maxðfAct; fPAM; fFusion; fCNAamp; fCNAdelÞÞ and ðfLof R fMMFÞ and

�
qvpermuted %0:1

�
PAM; elif ðfPAM RmaxðfAct; fLoF ; fFusion; fCNAamp; fCNAdelÞÞ and ðfPAM R fMMFÞ and

�
qvMutSig2CV %0:1

�
Fusion; elif ðfFusion RmaxðfAct; fLoF ; fPAM; fCNAamp; fCNAdelÞÞ and ðfFusion R fMMFÞ

CNAamp; elif ðfCNAamp RmaxðfAct; fLoF ; fPAM; fFusion; fCNAdelÞÞ and ðfCNAamp R fMMFÞ and ðqvGISTIC %0:05Þ
CNAdel; elif ðfCNAdel RmaxðfAct; fLoF ; fPAM; fFusion; fCNAampÞÞ and ðfCNAdel R fMMFÞ and ðqvGISTIC %0:05Þ

The permuted q-value cutoff defaults to 0.1 and can be set to another value through a command line parameter (‘-pq’, –perm_qv’).

Maximum final frequency (MFF) filter
The maximum final frequency (MFF) filter is a low-pass genomic filter designed to remove passenger genes from frequently mutated

CNA loci that contain many underlying genes. By default, the filter is applied when there are 10 or more genes in a locus. Let LMFF be

the set of loci with greater than 10 genes, locus be defined as the set of genes in a CNA locus, and len a function that returns the

number of genes in a set.
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LMFF = flocusj locus in L; and lenðlocusÞ R 10g
Let Glocus be the set of all n genes underlying a CNA locus.

Glocus = fgene1; gene2;gene3;.;geneng
The first step of the filter defines the maximum mutation frequency (fMFF ) for the genes of locus. This requires using two functions:

freq which returns the mutation frequency for a gene, and max which returns the maximum value from a set.

fMFF = max ðffreqðgene1Þ; freqðgene2Þ; freqðgene3Þ;.; freqðgenenÞgÞ
Only the gene(s) that have a mutation frequency equal to the fMFF are retained for locusMFF .

locusMFF = fgenej gene in Glocus; and freqðgeneÞ == fMFFg
The genes from each locusMFF are included in the final mutation matrix. The number of genes underlying a CNA locus can be set

through a command line parameter (‘-mlg’, –max_loci_genes’).

Microsatellite hypermutation censoring (MHC) filter
The TCGA tumors used in this study have been characterized for both MSI5 and hypermutation6 (Table S1). The tumors with MSI or

hypermutation are loaded as a blocklist of patient IDs through a command line parameter (‘-bl’ or ‘–blocklist’). All tumors in the block-

list are excluded from consideration by the PQ and MFF filters while determining the genes to include in the final somatic mutation

matrix. The mutation status for blocklist tumors are included in the final integrated mutation matrix.

Optimizing OncoMerge filtering parameters
Sensitivity analyses of filtering parameters (GISTIC threshold, maximum loci genes, minimum mutation frequency, and permuted

q-value cutoff) for the OncoMerge algorithm was conducted by varying one input parameter while fixing all others. The number of

somatically mutated genes and enrichment of gold standards from each parameterization of OncoMerge was evaluated to determine

the optimal values for each input parameter.

OncoMerge outputs
OncoMerge provides four output files that provide valuable information about the integration process and the final integrated muta-

tion matrix that can be used in downstream studies. Here is a brief description of each file and its contents:

d oncoMerge_mergedMuts.csv – The integrated mutation matrix is comprised of genes (rows) by patient tumors (columns) of

mutation status after integration by OncoMerge. The matrix values are [0 or 1]: zero indicates that the gene is not mutated

in a patient tumor, and one indicates that the gene was mutated in a patient tumor.

d oncoMerge_CNA_loci.csv – A list of the genes mapping to each CNAamp or CNAdel locus included in the OncoMerge inte-

grated mutation matrix.

d oncoMerge_ActLofPermPV.csv – List of all significant Act and LoF genes, their OncoMerge mutation role, frequency, empirical

p-value, and empirical q-value. This output is before the application of the low-pass frequency filter.

d oncoMerge_summaryMatrix.csv – Matrix of genes (rows) by all information gathered by OncoMerge.

To aid in comparisons between runs, we provide the save permutation option (‘-sp’ or ‘–save_permutation’) to output permutation

results so that the same permuted distribution can be used with different parameters in separate runs. We also provide the load

permutation option (‘-lp’ or ‘–load_permutation’) to load up the permuted distribution from a previous run. The permuted distributions

are saved in the following files if requested:

d oncomerge_ampPerm.npy, oncomerge_delPerm.npy – Snapshot of the non-deterministic permutation results from combining

PAM, Fusion, and CNAamp or PAM, Fusion, and CNAdel frequencies, respectively.

Gold standard cancer-specific gene role validation datasets
Gold standard datasets are vital to validating the usefulness of each feature in OncoMerge. Two different sources of gold standard

cancer-specific gene role (Act or LoF) datasets were used to validate the OncoMerge predicted tumor-specific gene roles:

d TCGA consensus: The TCGA consensus is a list of driver genes identified from the TCGA Pan-Cancer Atlas labeled with so-

matic mutation role (oncogene or tumor suppressor) and cancer type. The TCGA consensus was constructed by Bailey

et al., 2018 wherein they catalog a list of 299 unique oncogenesis associated genes.6 In the TCGA consensus 280 cancer-spe-

cific oncogene roles were identified, and 417 cancer-specific tumor suppressor roles were identified (Table S2).

d Cancer Gene Census (CGC): The CGC fromCOSMIC is an expert-curated database of human cancer driver genes labeled with

somatic mutation role (oncogene and tumor suppressor) and cancer type. The CGC was developed by Catalogue of Somatic

Mutations in Cancer (COSMIC) as an expert-curated database of human cancer-driving genes.11 CGC cancers were mapped
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to the TCGA cancers by manual curation (Table S2). In the CGC 205 cancer-specific oncogene roles were identified, and 304

cancer-specific tumor suppressor roles were identified (Table S2).

Gold standard gene role validation datasets
Three different sources of gold standard gene role (Act or LoF) datasets were used to validate the OncoMerge predicted gene roles:

d 20/20 rule: The 20/20 rule defines oncogenes (Act) by requiring >20% of mutations in recurrent positions, and tumor suppres-

sors (LoF) as >20% of recorded mutations are inactivating (missense or truncating).3 With the 20/20 rule, 54 oncogene roles

were identified, and 71 tumor suppressor roles were identified (Table S2).

d OncodriveROLE: OncodriveROLE is a machine learning algorithm that classifies genes according to their role (Act or LoF)

based on well-curated genomic features.13 With OncodriveROLE, 76 oncogene (Act) roles were identified, and 109 tumor sup-

pressor (LoF) roles were identified (Table S2).

d Tokheim Ensemble: Ensemble-basedmethod from Tokheim et al.,12 which integratesMutSigCV, 20/20+, and TUSONmethods

for predicting gene roles (oncogene and tumor suppressor). With the Tokheim Ensemble, 78 oncogene (Act) roles were iden-

tified, and 212 tumor suppressor (LoF) roles were identified (Table S2).

Computing overlap between OncoMerge and gold standards
A hypergeometric enrichment statistic was used to compute the significance of overlap observed between each gene role in

OncoMerge versus the gold standards. When possible, the tumor specificity of the gene role was taken into consideration (TCGA

consensus and CGC). A total of 105 hypergeometric enrichment tests were conducted for the comparison to gold standards to

test out different filters (5 combined gold standard tests + 5 gold standard datasets * 5 filter conditions [None, PQ, MFF, PQ MFF,

and PQ MFF MHC] * 4 GS & OM functional tests [Act vs. Act, Act vs. LoF, LoF vs. Act, and LoF vs. LoF] = 105 tests). An a level of

0.05 was chosen, and significant overlaps were determined as p-values less than or equal to the Bonferroni multiple hypothesis cor-

rected alpha level of 4.8 3 10�4 (a/number of tests = 0.05/105 = 4.8 3 10�4). This cutoff ensures that the comparisons to the gold

standards are not likely to have occurred by chance alone, even though we conducted 105 independent tests.

For each sensitivity analysis we conducted 21 tests against the gold standards (1 combined gold standard test + 5 gold standard

datasets * 4 GS & OM functional tests [Act vs Act, Act vs LoF, LoF vs Act, and LoF vs LoF] = 21 tests). An a level of 0.05 was chosen,

and significant overlaps for sensitivity analyses across the potential parameter values for OncoMerge were determined as p-values

less than or equal to the Bonferroni multiple hypothesis corrected alpha level of 2.43 10�3 (a/number of tests = 0.05/21 = 2.43 10�3).

This cutoff addresses the impact of the 21 independent tests for each parameter value in the sensitivity analysis.

Availability of OncoMerge
We provide the Oncomerge software and data in several standard distribution formats to facilitate future studies that aim to integrate

somatic mutations. The source code for OncoMerge is available on GitHub (GitHub code: https://github.com/plaisier-lab/

OncoMerge). Finally, an OncoMerge Docker image was created that can be run as a virtual machine with all dependencies pre-

installed (DockerHub image: https://hub.docker.com/r/cplaisier/oncomerge). Detailed documentation is provided, along with a tuto-

rial that describes the use of OncoMerge. The goal of disseminating OncoMerge in these ways is to give end-users flexibility to

choose what distribution method best fits their computational platform.

OncoMerge TCGA Pan-Cancer Atlas input and output files
We also provide the Pan-Cancer Atlas TCGA somatic mutation data used as input for OncoMerge (Figshare data: https://doi.org/10.

6084/m9.figshare.21760964.v1). And the resulting OncoMerge integrated somatic mutation matrices for those planning studies that

use somatic mutations from the TCGA Pan-Cancer Atlas (Figshare data: https://doi.org/10.6084/m9.figshare.20238867). These in-

tegrated somatic mutation matrices can be used for any downstream analyses incorporating somatic mutations and will provide the

same power boost observed in our studies. In addition, we also offer the pan-cancer SYGNAL GRNs and TF regulatory networks as

supplementary tables (Tables S7, S8, and S9) to expedite systems genetics studies of TCGA cancers.

TCGA pan-cancer SYstems genetics network AnaLysis (SYGNAL)
The mRNA and miRNA expression data required to run SYGNAL were obtained from Thorsson et al.20 The SYGNAL pipeline is

composed of 4 steps and command line parameters for all programs are described in detail in Plaisier et al.19 Each cancer was

run separately through the pipeline to reduce the confounding from tissue of origin differences. Highly expressed genes were discov-

ered for each cancer by requiring that genes have greater than or equal to the median expression of all genes across all conditions in

R50%of patients.19 These gene sets were then used as input to SYGNAL to construct the gene regulatory networks (GRNs) for each

cancer.

The underlying cMonkey2 biclustering results are identical to those from Thorsson et al.20 as they do not rely upon genetic infor-

mation. All immune-specific filters were removed for these analyses, and all bicluster filteringwas done as described in Plaisier et al.19

Using Network EdgeOrienting (NEO)48 somaticmutations are integrated with bicluster and regulator expression in the next step. Two

networks were constructed by applying systems genetics analysis with NEO to the biclusters: 1) GRNs were inferred using PAM-only
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somatic mutation matrices as a baseline; 2) GRNs were inferred using OncoMerge integrated somatic mutation matrices. Impor-

tantly, the PAM-only somatic mutation matrices used were the same ones used as input for OncoMerge.

TF regulatory network construction for PanCan-SYGNAL networks
A TF regulatory network was built for each cancer in three steps (Figure 6A). First, the TFs regulating survival-associated biclusters

were extracted from each cancer’s SYGNAL GRN. Second, a preliminary TFregulator/TFtarget regulatory network was constructed

based on the presence of a binding site for a putative TFregulator in the promoter of a TFtarget from the Transcription Factor Target

Gene Database19 (http://tfbsdb.systemsbiology.net). TF family expansion19 was used to supplement TFs that did not have an exper-

imentally determined DNA recognition motif in the database. The assumption was that the motifs within a TF family would not vary

significantly. Therefore, TF family members from the TFClass database49 with a known DNA recognition motif can be used as a proxy

for a TF with no known DNA recognition motif. Finally, the putative TFregulator/TFtarget regulatory network was filtered by requiring a

significant Pearson correlation between the mRNA expression of the TFregulator and TFtarget (Pearson’s |R|R 0.3 and p-value% 0.05;

Figure 6A; Table S9). The sign of the correlation coefficient can be used to determine the role of a regulatory interaction: a positive

correlation coefficient equates to the TFregulator being an activator, and a negative correlation coefficient equates to the TFregulator be-

ing a repressor. Networks with fewer than 50 interactions were not included in the analyses as they were not sufficiently powered to

run the network motif analysis. The cancer regulatory networks for DLBC, KICH, KIRP, OV, TGCT, and THYM were excluded from

further studies.

TF regulatory network motif analysis
Three-node network motifs were enumerated from the TF regulatory networks using mfinder50 in the same manner as Neph et al.32

and used to compute triad significance profiles (TSPs).31 The parameters used with mfinder v1.20 were32: motif size set at 3 (-s 3),

requested 250 random networks to be generated (-r 250), and the Z-score threshold was set at �2000 to ensure all motifs are re-

ported (-z �2000). All Z-scores were extracted for each cancer and converted to triad significance profiles using the methods of

Milo et al.31

For consistency, the TF regulatory networks for the 41 different cell types from Neph et al.32 were downloaded from http://www.

regulatorynetworks.org/ and analyzed using the same approach described above.

Signed network motif analysis incorporating TF regulator interaction roles
The enrichment of signed feed-forward loops (FFLs), regulated feedback, and regulating feedback network motifs was computed

using FANMOD,51 which takes into consideration TF regulatory roles (activation and repression). The command line version of

FANMOD from IndeCut52 was used with default parameters, except for the inclusion of regulatory role (colored edges)51 (fanmod

3 100000 1 <input_file> 1 0 1 2 0 1 0 1000 3 3 <output_file> 1 1). Z-scores for signed FFLs, regulated feedback, and regulating feed-

back networkmotifs were extracted for each cancer and converted to triad significance profiles using themethods ofMilo et al.31 The

signed FFL network motifs are broken down into C1, C2, C3, C4, I1, I2, I3, and I4, as described previously.37

QUANTIFICATION AND STATISTICAL ANALYSIS

A nominal alpha value (p-value or q-vaule cutoff) of 0.05 was used unless otherwise stated. Statistical analyses are described in detail

in the methods sections where they were used, and we provide a brief synopsis of the statistical methods below. Hypergeometric

enrichment analysis was used to identify significant overlaps of OncoMerge-derived gene sets with gold-standards gene sets.

When appropriate for the gold-standard analyses, Benjamini-Hochberg FDR multiple hypothesis correction was applied to the hy-

pergeometric p-values. Cutoff were as described in the methods or results. Permuted p-values were computed for each integrated

somatic mutation and Benjamini-Hochberg FDRmultiple hypothesis correction was applied to generate permuted q-values. Pearson

correlations were used to compare two sets of quantitative values (e.g., number of somatic mutations and MSI/hypermutation fre-

quency) and the correlation coefficient (R) and p-value are reported. Triad significance profiles (TSPs) were used to quantify the

enrichment of three node network motifs.
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