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A B S T R A C T

Background: The importance of whole-food antioxidants in terms of promoting antioxidant recycling in the body
in complex human diseases is not fully understood. We aim to discuss the benefits of whole-food antioxidants in
ameliorating the diabetic complications in vivo and to address the effect of germination versus heat processing or
drying on the potential therapeutic effect of whole grains and legumes. We studied the antioxidant status of
alloxan-diabetic (AD) male Spargue Dawley rats, injected intraperitoneally with alloxan dose of 150mg/kg body
weight, and fed on experimental diets based on the flour of soybean, broadbean and whole-wheat for five weeks.
Results: Diabetes-induced oxidative stress in liver was manifested by significant increase in hepatic mal-
ondialdehyde (MDA), erythrocytes superoxide dismutase (eSOD) and plasma alpha-tocopherol (α-T) levels,
reduction in hepatic glutathione (GSH) levels and catalase (CAT) activity. Consumption of soybean and whole-
wheat both had beneficial effects on the oxidative status of AD rats more than broadbean. Feeding dried wheat
was effective in improving MDA, GSH and α-T levels. Soybeans and wheat lowered triacylglycerols (TAGs) and
tended to lower total cholesterol. Germination enhanced the effect of soybeans on TAGs and in the case of soy
and wheat enhanced the effect on total cholesterol.
Conclusion: Whole foods containing naturally occurring phytochemicals and antioxidant vitamins such as le-
gumes and whole grains are recommended, alongside medication, for controlling hyperglycaemia, blood lipids
and oxidative status in diabetes.

1. Introduction

Diabetes mellitus (DM) is a major clinical and public health problem
worldwide [1–3] with equal rates in both women and men [3]. DM is a
clinically and genetically heterogeneous group of disorders character-
ized by abnormally high levels of glucose in the blood. Hyperglycaemia
is due to deficiency of insulin secretion or to resistance of the body’s
cells to the action of insulin, or a combination of these. Often there are
also disturbances of carbohydrates, fat, and protein metabolism [8].
The criteria for the classification and diagnosis of DM are as follows:

Type I: caused by β-cell destruction, often immune mediated, that

leads to loss of insulin secretion and absolute insulin deficiency.
Type II: caused by a combination of genetic and sporadic factors

that result in insulin resistance and insulin deficiency. The specific
genes are unknown but have been under intense investigation. Sporadic
factors include aging, high caloric intake, overweight, central adiposity,
sedentary lifestyle, and low birth weight.

Other specific types: These comprise a heterogeneous etiologic
group that include cases in which the causes are uncovered or partially
known. The later includes known genetic defects affecting β-cell func-
tion or insulin action, diseases of exocrine pancreas, endocrinopathies,
drug-or chemical-induced pancreatic changes, diseases and conditions
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in which the incidence of diabetes is substantially elevated but a precise
aetiology has not been established.

Gestational diabetes: caused by insulin resistance and relative in-
sulin deficiency associated with pregnancy [9].

Oxidative stress is a pathogenetic mechanism in diabetic compli-
cations [4–7]. Long-term effects of diabetes include glycation of pro-
teins, increased risk of cardiovascular diseases, atherosclerosis, retino-
pathy, nephropathy, and neurological dysfunctions [4–7].
Hyperglycaemia is a widely known cause of enhanced free radical
concentration. The generation of reactive oxygen species (ROS) has
shown increment in DM patients [10].

Although streptozotocin (STZ) is preferable than alloxan in induc-
tion of DM, alloxan-induced diabetes is very widely used and acceptable
disease model [11]. The procedure for chemical induction of DM
proved to be effective [12]. Alloxan-induced DM experimental model
adds to various others [13,14] and can be used as alternative model in
studies carried out in several fields such as plastic surgery [15]. Accu-
mulating evidence showed that “alloxan is comparable to STZ” [16].
Evidence for upregulated oxidative stress responses in diabetes includes
observations of decreased plasma antioxidant concentrations in both
diabetic subjects [17] and animal models [18]. Mechanisms that con-
tribute to increased oxidative stress in diabetes have been reviewed
[4,19,20]. In addition, glycation in DM modifies lipids, lipoproteins as
in the case of apo B and low density lipoprotein (LDL) [21], and in-
creases the susceptibility of LDL to oxidation [22].

Tissue GSH and thiols (-SH) are the ultimate bastion against oxi-
dative stress and tissue injury, and are maintained in the reduced state
by the concerted action of tissue tocopherols and other reducing factors
such as urates [23].

GSH is the most abundant non-protein thiol in mammalian cells
[24]. It is a tripeptide, γ-glutamylcycteinylglycine. It has two structural
features responsible for much of its biochemical functions. They are its
thiol group (-SH due to cysteine) and the γ-glutamyl bond (linking
cysteine to glutamate). The −SH is responsible for most of the catalytic
and reactive properties of GSH. It confers of GSH the ability to parti-
cipate in both oxidation-reduction reactions. Thus it occurs both in
reduced GSH and oxidized GSSG forms [25].

GSH is the major intracellular redox buffer in almost all cell types
[26,27]. A relatively high concentration of GSH is present in β-cells
[28]. GSH plays a central role in the cellular defence against chemical
and ROS injury [29], because of its role in xenobiotic detoxification and
free radical metabolism. i.e. GSH serves as a substrate for the GSH-S-
transferase that catalyzes the addition of −SH group of GSH to the
activated intermediate of various xenobiotics, thereby facilitating their
excretion from the cell [30]. Additionally, GSH is used by GSH perox-
idase to reduce H2O2 and other hyderoperoxides to less destructive
metabolites [31]. Furthermore, GSH is a cosubstrate in destroying hy-
deroperoxide fatty acids located in phospholipids [32].

GSH is also a scavenger of %OH radical and singlet O2, in the case of
%OH radical, the thiyl radical is generated [33]. In addition, serum−SH
groups act as an important extracellular scavengers of peroxides and are
therefore helpful in protecting the surrounding tissues [34]. Thiol
compounds also could prevent Millard reaction in vitro [35]. The GSH
redox cycle is a major determinant of the antioxidative capacity of
plasma and its constituents [36]. A decrease in the levels of both plasma
and intracellular antioxidants such as GSH, vitamin E, −SH and as-
corbate has been demonstrated in both types of DM [37]. GSH has
beneficial effects against diabetes-induced nerve damages and was
shown to decrease in nerves [22]. Blood GSH was significantly reduced
by 25% at the first two years of diagnosis of type II diabetes. Moreover,
a progressive decline of GSH was associated with the increased perox-
idation [38], while plasma GSH was reduced by 50% [36]. This was
also found in chronic diabetes for longer periods [39,40].

Isoflavones are a subclass of the more ubiquitous flavonoids. The
primary isoflavones in soybeans are genistein and daidzein and their
respective glycosides, genistin and daidzin [55].

In western countries, beans play only a minor dietary role despite
the fact that they are low in fat and are excellent sources of protein,
dietary fibers, and a variety of micronutrients and phytochemicals. Dry
beans and soy foods offer benefits in the prevention of diabetes and in
the clinical management of established diabetes [41]. Cereal fibers have
long attracted attention in relation to the prevention of chronic diseases
[42]. Whole grains and wheat germ are the richest dietary sources of α-
Tocopherols [43].

Heat processing, enzymatic hydrolysis, and fermentation, can sig-
nificantly alter the isomeric distribution of the three major isoflavones
in soy and broadbean [44–46]. Germination is an alternative process for
the improvement of protein quality of legumes. Although antioxidants
supplementation may be of benefit to diabetic patients, it may be as-
sociated with risks i.e.: excessive antioxidant treatment may impair
vascular function in small mesenteric arteries of STZ-diabetic rats [47].
For this reason, considerable attention has been focused on possible
protective factors in the diet. We aim to assess the impact of naturally
occurring phytochemicals after being processed by germination, heat-
processing and drying, on the oxidative metabolism in AD rats.

2. Materials and methods

Seeds were prepared either by germination, heat treatment or
drying. After soaking in water for 8 h [48], soybean was germinated for
3 days at 25 °C while broadbean for 2 days at 20 °C [49]. Heat treatment
for soybean and broadbean was carried out in a water bath at 90 °C for
10min[50]. Dried wheat was used directly without treatment. All seeds
were then dehulled, dried at 50 °C, and ground into a fine powder. The
six types of flours were conducted to proximate analysis of major
neutrients (total proteins and fats). Table 3 shows the chemical con-
stituents of the experimented seeds (g/100g). Total fat content was
determined by Soxhelt method [51], protein content of dry base was
determined by macro Kjeldahl method [52], by multiplying protein
nitrogen (N)×6.25 in case of soybean and broadbean, while (N)× 5.7
in case of wheat. Ash and fiber were determined according to [53]. The
antioxidant composition of the experimental legumes and seeds is
published [46,54,55]. Most of the isoflavones (99%) occurs as 7-0-
monoglucosides, of which genistin, daidzin and glycitin accounts ap-
proximately for 64%, 23%, and 13% respectively [56,57]. Song et al.
[58] found that the total isoflavone content in soygerm equal 23201 μg/
g. Also, they referred to that soybeans and soy products contain about
1–3mg isoflavones/g protein. Whole grain cereals antioxidant con-
certation was compared with the standard antioxidant Trolox and was
expressed as Trolox equivalents (as 1mM) concentration [59]. Each
100 g of cereals were found to contain 2200–3500 Trolox equivalents.
The most recently studied class is lignin.

2.1. Experimental design

All protocols were approved by Ain Shams University at Cairo,
Egypt. Adult male albino rats (Sprague-Dawely) weighing 200–250 g
were used. Rats were housed individually in mesh bottom metallic
cages and were fed a control “basal” diet, Table 1, for 1 week as an
adaptation period. Antioxidants content in soy is in the oil portion. All
diets contained 10% oil and 10% protein at the expense of starch.
Diabetes was induced by intraperitoneal injection of freshly prepared
alloxan monohydrate solution in saline at a dose level of 150mg/kg
body weight [60]. Five days after alloxan injection, blood samples were
collected by amputation of the tail tip of all surviving animals and the
blood glucose levels were determined using a Haemo-Gluco test and a
glucometer (Boehringer Mannheim). Rats with blood sugar levels>
200mg/dl were considered diabetic and were employed in the study.
Diabetic rats were then divided into 7 groups as shown in Table 2 . Body
weight of all rats and food intake were recorded at weekly intervals to
monitor the average body weight changes, Fig. 1(A).
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2.2. Biochemical analysis

At the end of the experimental period, animals were fasted over-
night, anesthetized with diethyl ether and sacrificed. Blood samples
were collected from posterior vena cava in heparinized and non-he-
parinized tubes. Immediately after sacrificing, organs (liver, kidney,
heart, spleen and testes) were plotted free of adhering blood, washed
with cold saline, dried between filter papers and weighed. Plasma and
serum were separated by centrifugation at 3000 r.p.m. for 15 mins.
Fresh serum was used for the determination of serum glucose and
protein thiol. Plasma aliquots were frozen at −10°С until further de-
terminations of other parameters. After separation of plasma the red
blood cells of 2 ml blood were washed twice with cold saline and an

aliquot of packed cells were diluted with cold distilled water. An
ethanol-chloroform extract was prepared for the assay of SOD activity
as will be described later.

Non-heparinized blood was centrifuged and the separated serum
was used for estimation of uric acid (UA), and protein −SH content
after [61–63] respectively. Heparinized blood was centrifuged at 3000
r.p.m and plasma was used for α-T determination using High Pressure
Liquid Chromatography (HPLC) after [64]. Erythrocytes Cu-Zn SOD
was assayed in saline-washed red blood cells using the method de-
scribed by [65]. Immediately after sacrificing rats, their livers were
excised, plotted free of adhering blood and washed with cold saline.
Liver tissue preparation: Three tiny weighed portions (≈1 g) were
homogenized separatly. The first portion was homogenized in 1.15%
KCl, the second in M/15 phosphate buffer pH 7, and the third portion in
3% ice-cold metaphosphoric acid to make 10% W/V liver homogenate
which was used for the determination of MDA according to [66], CAT
according to [67], and GSH according to [68]. Protein content of the
liver was estimated by the method of [69]. Plasma was used for the
determination of TAGs [70], HDL [71], LDL [72] and total cholesterol
[73] levels using enzymatic kits provided by bioMérieux, France.

2.3. Determination of MDA in the liver homogenate

Lipohydroperoxides or MDA precursor reacts with thiobarbituric
acid (TBA) in an acid medium containing phosphoric acid (at pH 2) to
produce colored TBA complex that is measured colorimetrically from
the difference in the readings at two wavelengths 535 and 520 nm,
according to Uchiyama and Mihara [66].

2.4. Determination of fasting serum glucose

The pink color formed in the enzymatic determination of glucose
depends on the reaction described by Trinder [61]. The kit was pro-
vided from bioMérieux, Sa, France. The absorbance of sample was read
against the blank at 505 nm within 30 mins.

2.5. Determination of protein thiol in serum

Protein-SH groups react with 5,5′-dithiobis-(2-nitrobenzoic acid)
[DTNB-Ellman's reagent] at pH 7.4 to give a colored product, 5-thio-2-
nitrobenzoic acid (NBA), which is measured colorimetrically at 412 nm.
The method was described by Koster et al. [63].

2.6. Determination of serum UA

The pink color formed in the enzymatic determination of UA
depends on two step reactions: in the first step allantoin is formed by
the effect of uricase on UA, and in the second step 3,5 dichloro-2-
hydroxybenzene-sulfonic acid reacts with 4-aminoantipyrine in the
presense of peroxidase to form chromogen. The absorbance of the
latter is read against the blank at 520 nm within 30 mins., according
to Artiss and Entwistle [62]. The kit was provided from bioMérieux,
Sa, France.

2.7. Determination of GSH in the liver homogenate

Determination of reduced GSH and non-protein-SH groups is based
on the development of stable yellow color when 5,5'-dithiobis-(2-ni-
trobenzoic acid) (DTNB) is added to sulfhydril compounds. This color is
related to the amount of GSH. The method is described by Beutler et al.
[68].

2.8. Determination of protein in the liver homogenate

The reduction of phosphomolybdic-phosphotungestic reagent by the
copper-treated protein in alkaline medium at room temperature, results

Table 1
Composition of control and experimental diets.

Constituents Diet Experimental diets

(g/100 g diet) Control dietb 1 2 3 4 5 6

Casein 13 – – – – – –
Germinated soybeana – 60 – – – – –
Heat-processed soybeana – – 37 – – – –
Germinated broadbean – – – 94 – –
Heat-processed broadbean – – – – 43 – –
Germinated whole wheat – – – – – 139 –
Dried whole wheat – – – – – – 79
Sunflower oil (ml) 10 4 4 10 10 10 10
Salt mixturec 4 4 4 4 4 4 4
Vitamin mixtured 1 1 1 1 1 1 1
Cellulose 5 5 5 5 5 5 5
Cornstarch 67 26 49 – 37 – 1

Choline chloride (0.5 ml of 20% solution/100 g diet) was added to all diets. Cod liver oil
to supply 2000 IU vitamin A, 200 IU vitamin D were added to all diets at the expense of
sunflower oil.
All the ingredients of the vitamin mixture were purchaced from Sigma.

a Soy flours used were full fat.
b According to Campbell et al. (1963).
c According to Hegsted et al. (1941).
d According to AOAC. The Association of Official Analytical Chemists Incorporation.

Arlington, Virginia, USA [53].

Table 2
Experimental groups.

G1 (7) Normal control rats fed 10%
protein (casein)

G5 (7) Fed 10% protein (germinated
broadbean)

G2 (7) Diabetic control rats fed 10%
protein (casein)

G6 (12) Fed 10% protein (heat-
processed broadbean)

G3 (7) Fed 10% protein (germinated
soybean)

G7 (6) Fed 10% protein (germinated
whole wheat)

G4 (8) Fed 10% protein (heat-
processed soybean)

G8 (6) Fed 10% protein (dried whole
wheat)

G=Group. Number of rats per group is presented between parentheses.

Table 3
The chemical constituents of the experimented seeds (g/100g).

Seed type and
treatment

Moisture Protein Fat Carbohydrates (by
difference)

Ash Fiber

Heat-treated soy 33.235 26.75 16.38 17.23 3.45 2.93
Germinated soy 58.32 16.7 10.22 10.77 2.16 1.83
Heat-treated

broadbean
18.17 23.35 1.25 44.21 2.78 4.67

Germinated
broadbean

62.75 10.63 0.63 22.44 1.41 2.13

Germinated
wheat

49.2 7.19 1.06 41.33 0.03 1.19

Dried wheat 10.27 12.7 1.87 73.01 0.05 2.10
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in the formation of blue color that is measured spectrophotometrically
at 500 nm. The method was described by Lowry et al. [69].

2.9. Determination of CAT activity/g protein in the liver homogenate

The ultraviolet absorbtion of H2O2 solution is easily measured be-
tween 230 and 250 nm. On decomposition of H2O2 with CAT, the ab-
sorption decreases with time and from this decrease the enzyme activity
can be calculated. This method can only be used with enzyme solutions
which do not absorb strongly at 230–250 nm. The method was de-
scribed by Maehly and Chance [67]. One unit of CAT activity is the
amount of enzyme which liberates half the peroxide oxygen from an
H2O2 solution of any concentration in 100 s at 25°С.

2.10. Determination of eSOD activity

The determination of eSOD activity is based on the ability of the
enzyme to inhibit the reduction of nitroblue tetrazolium (NBT), (i.e. to
inhibit formazan formation), by the superoxides generated in the re-
action of photoreduced riboflavin and oxygen. The method was de-
scribed by Winterbourn et al. [65].

2.11. Determination of plasma α-T by HPLC

The method was described by Bieri et al. [64]. Plasma was depro-
tinized with ethanol, and the lipid was extracted with hexane. After an
aliquot of the solvent phase was evaporated, the residue was dissolved
in ethanol. A portion of the solution was injected into a C18 reversed-
phase chromatographic column, and the absorbance of the vitamins and
standard were measured at 285 nm. α-T is quantified by applying the
peak area ratio method.

2.11.1. Liquid chromatograph
Model 204 with model 6000-solvent delivery system, a U6K uni-

versal injector, and model 440-absorbance detector (all from Waters
Associates, Inc., Milford, Massachusetts).

2.11.2. Chromatographic column
Reversed-phase U Bondapk C18

2.11.3. Standard curve and calculation
Constant amount of α-tocopheryl acetate was combined with vari-

able amount of the corresponding alcohol form of the vitamin to give
solutions with a three-fold range of weight ratios. These solutions were
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chromatographed and the peak-area ratios were recorded.

2.12. Determination of plasma TAGs concentration

The pink color formed in the enzymatic determination of TAGs
depends on the reaction described by Fossati and Prencipe [70]. The kit
was provided from bioMérieux, Sa, France. The absorbance of sample
was read against the blank at 505 nm within 30 mins.

2.13. Determination of plasma total cholesterol

The pink color formed in the enzymatic determination of total
cholesterol is based on the reaction described by Allain et al. [73]. The
test kit was provided from bioMérieux, Sa, France. The absorbance of
sample was read against the blank at 500 nm within 30 mins.

2.14. Determination of plasma HDL cholesterol

The chylomicrons and lipoproteins of very low density (VLDL) and
low density (LDL) contained in the sample are precipitated by the ad-
dition of phosphotungestic acid in the presence of magnesium ions. The
supernatant obtained after centrifugation contains HDL, from which
cholesterol can be determined enzymatically as was described by
Burstein et al. [71]. The absorbance of sample was read against the
blank at 500 nm within 30 mins. The kit was provided from bioMérieux,
Sa, France.

2.15. Calculation of plasma LDL cholesterol concentration

The method used for determining LDL involves an equation in
which the VLDL is estimated from the TAGs concentration in plasma.
The equation used was developed by Friedewald et al. [72] where the
TAGs value is divided by 5 when measurements are in units of mg/dl to
give VLDL. The LDL is then estimated by subtraction from total cho-
lesterol concentration as follows:

LDL− cholesterol (mg/dl)= Total cholesterol− (HDL− choles-
terol+ TAGs/5).

2.16. Statistical analysis

Statistical analysis of data was accomplished using the Statistical
Package for Social Sciences (SPSS) for Microsoft Windows release 8.0
statistical software package. The Bonferroni t-test was used for multiple
comparison at a significance level of Alpha p < 0.05, p < 0.01,
p < 0.001. All values are expressed as Mean ± Standard Error of the
Mean (SEM).

3. Results

As compared with initial body weight, final body weight of normal
control group was increased, while that of all diabetic control group
was decreased, Fig. 1(A). Normal and diabetic rats did not score dif-
ference in food intake, Fig. 1(B).

As shown in Fig. 2(A), germinated soybean induced the most pre-
dominant effect in normalizing fasting serum glucoe level of diabetic
rats. Serum glucose levels of germinated soy or whole wheat-fed groups
were significantly lower as compared to the diabetic control group. The
elevated hepatic MDA of diabetic rats decreased significantly in groups
fed heat-treated soybean, germinated broadbean and wheat-based diets
compared to the diabetic control. The most favorable effect in reducing
hepatic MDA levels was achived by whole-wheat and heat processed
soy, Fig. 2(B).

Whole wheat restored the diminshed hepatic GSH content of the
diabetic control rats and most favorably by dried wheat, Fig. 3(A). The

rest of the experimental diets induced similar reduction in hepatic GSH
from the normal and diabetic controls. Hepatic CAT activity was sig-
nificantly decreased in all diabetic groups as compared to the normal
control group, Fig. 3(B). The tested diets have no significant effect on
CAT activity compared to the diabetic control group. All the experi-
mental diets restored eSOD levels to baseline values and even above
such values Fig. 3(C). Heat-processed soybean and dried wheat induced
the most favorable increase in eSOD compared to the diabetic control
group.

Fig. 4(A) showed that diabetes induced significant reduction in
protein −SHs levels compared to normal control. Such reduction was
restored to normal levels by all experimental diets. Our results showed
that diabetes did not change serum UA levels from normal, Fig. 4(B).
Germinated soybean, heat-processed broadbean and dried wheat-based
diets reduced serum UA compared to the diabetic control significantly,
whereas dried wheat normalized such level. Diabetes induced a sig-
nificant elevation of plasma α-T levels compared to normal control, and
the most predominant increase above the baseline value was induced by
dried wheat. Such elevation was reduced significantly compared to
diabetic control group by soybean and heat-treated broadbean.

Diabetes did not change TAGs levels compared to normal, Fig. 5(A).
Comparing to normal control, plasma total-, HDL- and LDL-cholesterol
levels of diabetic control were significantly elevated by 27%, 32%, and
38% respectively, Fig. 5(B). This increase tended to decline significantly
by the experimental diets compared to diabetic control.

Soybeans and whole wheat had a strong lowering effect on TAGs
and even normalized TAGs levels. Germinated soy caused the most
favorable TAGs-lowering effect than heat-processed soy. Germinated
and dried wheat induced similar effects on lowering TAGs. Broadbeans
did not have such effect.

Soybeans and wheat also had a significant lowering effect on total
cholesterol, but only if germinated. Significant reduction was observed
in plasma total cholesterol in germinated soy group (by 28%) and
germinated wheat group (by 34%) as compared to the diabetic control
group.

The experimental diets did not improve plasma HDL-cholesterol
compared to diabetic control rats, and induced HDL-cholesterol levels
comparable to normal, except heat-processed broadbean that reduced
HDL- significantly from both normal and diabetic control groups.
Germinated wheat induced the most favorable effect in reducing LDL-
cholesterol than the diabetic control group.

4. Discussion

We found that food intake did not change in diabetic and normal
controls. Final body weights of diabetic rats were decreased, except for
the group fed dried wheat as compared to their initial weights. This
may result from impaired utilization of nutrients. The reduction in body
weight of diabetic rats agrees with the findings of [47,74,75]. The liver,
kidney, heart, and testes hypertrophied in most diabetic groups com-
pared to normal control, and this was more evident in the kidney re-
lative weights. Similar findings have been reported in several studies
[76–78] which support the present data. This may be attributed to the
polydipsia. Our data showed normalized kidney and liver relative
weights of all experimental groups compared to the diabetic control
group. Substituting soy protein for animal protein in diabetic patients
diets was shown to be effective in reversing or slowing the progression
of established kidney disease. This results in less hyperfiltration and
glomerular hypertension and, therefore, resultant protection from dia-
betic nephropathy [79]. This may explain the noticed improvement in
the kidney relative weights of animals fed germinated soybean, since
thier serum glucose level was normalized. Limited evidence suggests
that drybeans-induced protection may also have renal protective effects
[80]. More investigation of this area is required.

Although measuring the antioxidant content would have been in-
formative of the level at which ameliorative effects are achieved, we
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confirm that feeding the whole food reduced the diabetic hypergly-
caemia in our study to variable levels and in a diet-dependent manner.
The dietary intervention used in this study improved serum glucose of
diabetic rats being more evident in germinated soybean and wheat,
heat-processed soybean and dried wheat groups. The normalization of
serum glucose level observed in diabetic rats fed germinated soybean
diet is consistent with the findings of [81–84]. In this study, a germi-
nated soybean diet is more effective than boiled soybean in amelior-
ating serum glucose levels of diabetic rats. Whole wheat-based diets
improved hyperglycaemia in the present study. This effect may be re-
lated to the wide range of nutrients and phytochemicals in the whole
grain that may work synergistically to optimize animal health [85], and
improve insulin sensitivity [86].

lipid peroxidation is a free radical-related process that in biologic
systems may occure under enzymatic control, or non-enzymatically.
This latter form is associated mostly with cellular damage as a result of
oxidative stress [87]. The primary targets for attack by oxygen free
radicals are the polyunsaturated fatty acids (PUFAs) of membrane
phospholipids. However, attack of LDL-PUFAs should be also con-
sidered [33]. The reaction then proceeds through 3 stages as depicted in
Slater [88].

The enzymes lipoxygenase, cyclooxygenase and peroxidase promote
the controlled peroxidation of fatty acids to generate hydroperoxides

and endoperoxides. Hydroperoxides degrade to various secondary
products including hydroxy-fatty acids, epoxides and scission products
such as aldehydes, including malondialdehydes, ketons, and lactones,
many of which are toxic [89]. Other products are alkenals and hydroxy
alkenals such as 4-hydroxynonenal [90] and hydrocarbon-expressing
genes as pentane [91]. As well as 8-isoprostaglandin F2α [92]. The
consequences of the peroxidation of membrane lipids include loss of
PUFAs, decreased lipid fluidity, alterations in membrane permeability
and membrane-associated enzymes, ion transport, substance release
from the subcellular compartment and the generation of cytotoxic
metabolites of lipid hydroperoxides [93].

MDA is a widely used marker of lipid peroxidation [94]. Kędziora-
kornatowska et al. [95] reported that MDA content was significantly
elevated in erythroctyes of type II diabetic patients versus the control
group. In addition, lipid peroxidation data presented by TBA reactive
substrates (TBARS) in plasma were found to be elevated by 80% in the
early stages of diabetes in human, with time-dependent progressive
increases [96].

The present data revealed alloxan-induced marked oxidative im-
pact. The changes observed in the parameters measured in the liver are
in accordance with other studies [47,96–98]. In our study, the observed
increment in hepatic MDA was normalized in dried wheat fed rats, and
partially improved by heat-processed soybean, germinated broadbean
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Fig. 2. Effect of experimental diets on: A) fasting serum glu-
cose; B) hepatic MDA levels (mean ± SEM).
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and dried wheat. The reported effects might be due to the reduced
hyperglycaemia-induced oxidative stress in such groups. Astuti [99]
found that tempeh (a fermented soy product) was able to inhibit lipid
peroxidation, suggested to be through the direct antioxidant effect of
isoflavonoid in tempeh and through iron binding capability of iso-
flavonoids into chelate complexes, which then inhibit iron catalyzing
effect in lipid peroxidation.

Nutritional status may infleunce tissue GSH levels. This could be a
possible cause of the reduced GSH in some groups in our study as the
experimental diets were difficient in the amino acid cysteine, the rate
limiting amino acid for GSH synthesis. The present data also showed
that hepatic GSH was restored by wheat flour-based diets. Similar im-
proving effects on blood and tissue redox status were obtained after
feeding bioactive polyphenolic compounds from winery wastes to
broilers [100], also the antioxidative capacity was improved by feeding
byproducts from olive mill wastwater to chickens [101], or to piglets
[102].

Results of activities of antioxidant enzymes in the course of DM are
equivocal and seem to depend on the duration and the control of dia-
betes [103]. In the present study, the inhibition of hepatic CAT activity
in all diabetic rats versus healthy control could be attributed to hy-
perglycaemia-induced oxidative stress. Several studies support our data

and demonstrate that alloxan-induced reduction in antioxidant en-
zymes activites during the course of type I DM in the liver, pancreas and
testes [97,103,104].

Increased eSOD activity in diabetic control rats have been shown by
this study and confirms others’ findings in animals in vivo [105] and in
human [106]. The increased diabetic control eSOD activity reported in
our study might be a manifestation of an adaptive response. The effect
of tested diets on eSOD level was variable. As well, might be related to
the increased absorption of zinc as reported by [96,107]. Zbronska et al.
[108] reported a close correlation between eSOD activity and its co-
factors, both Cu and Zn. Riddoch et al. [109] reported that germination
increases ascorbic acid content of seeds, and eventually may reduce
oxidative stress-mediated eSOD increment in erythrocytes of diabetic
animals. Sundaram et al. [96] suggested that the inactivation of eSOD
by glycosylation may be a dominant factor in the loss of eSOD activity
among diabetic patients due to the absence of protein synthesizing
machinery in the erythrocytes.

The present study demonstrated no difference in plasma −SH
groups between healthy and diabetic controls. This goes in accordance
with Ceriello et al. [110] in his study on diabetic patients, and con-
filcted with [111] who demonstrated unaltered −SH level in STZ-dia-
betic rats, which could be attributed to the difference in the assay
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method. Another possible cause of the diminshed −SH groups in our
study is the oxidized methionine levels that are likely to increase fur-
ther with diabetes [22].

Plasma α-T level was significantly higher in diabetic control versus
healthy control groups. The dietary intervention reduced the increased
levels compared to the diabetic control. Our results agree with
[111,112] and contradict with [110,113]. The discripancies among
reports are likely to rely on the experimental conditions such as dura-
tion and stage of diabetes.

The significant elevation of plasma α-T reported in our diabetic
control rats is consistent with the findings of [74,114,105]. The di-
minshed plasma α-T levels in most experimental rats could be due to
improved lipid pattern, evidenced in our data, Fig. 5. In addition to the
increased consumption of α-T in reducing the elevated oxidative stress
as evidenced by reduced hepatic MDA marker in such groups.

Önning et al. [115] studied the effect of oatmilk, soymilk, and cow’s
milk on plasma lipid, glucose, insulin and antioxidant status of 24
healthy men and women. Consumption of (0.75–1 l/day of oatmilk and
soymilk for 4 weeks each) resulted in decreased total and plasma LDL-
cholesterol with no effect on HDL-cholesterol. Also a higher glucose
value was observed for women but lower for men consuming soymilk.
Insulin values tended to increase when the subjects consumed soymilk
compared to oat milk. However, no effect of soymilk on serum anti-
oxidant status was observed.

In the present study, feeding whole wheat-based diets improved the
deteriorated oxidative status of AD rats. This effect was manifested by
marked decrease in hepatic MDA accompanied by an increase in he-
patic GSH content, plasma α-T and eSOD levels. Such effect could be
attributed to a reduction in hyperglycaemia-induced oxidative stress
and/or the efficient antioxdative action of total carotenoids and toco-
pherol that exist in wheat grain and in the germ oil [116]. Others'
findings support our suggestion [117,97]. Whole wheat diets induced
an increase in hepatic GSH content, which may enhance the GSH/GSSG
ratio, decrease hepatic lipid peroxidation and improve serum glucose
regulation.

The available studies indicate that soy isoflavones have antioxidant
effects in vitro [79], as well as in vivo [118]. Those studies suggest that
soy isoflavones are transported in LDL and act like vitamin E to inhibit
in vivo oxidation. In this study, the antioxidative properties of soy iso-
flavones were apparent only in the group fed heat-processed soybean
diet, since hepatic MDA was significantly decreased accompanied by
alterations in the antioxidant measures. This is inconsistent with the
results of [41], suggesting that the in vitro antioxidative effects of soy
isoflavones are somewhat unclear.

Our findings reveals that diabetes induced the expected changes in
the lipid profile while soybeans and wheat lowered TAGs and tended to
lower total cholesterol. Germination enhanced the effect of soybeans on
TAGs and in the case of soy and wheat, enhanced the effect on total
cholesterol, Fig. 5. Although the effectiveness of whole wheat flour in
digestive fermentation and lipid metabolism has not been established,
rats fed the whole wheat flour diets had the fecal excretion of the total
steroids markedly enhanced [119].

Several studies, as well as the present one, have shown that chronic
sever DM in rats [120,121] and in human [122] results in hyperlipi-
demia [123]. Our data shows that the elevated plasma total cholesterol
was significantly decreased only in germinated soybean, germinated
wheat or dried wheat fed groups. Similarly, plasma TAGs levels were
significantly lowered even below the normal control level in groups fed
soybean or whole wheat diets. The exact mechanism of the hypocho-
lesterolemic effect of soy protein remains elusive and is almost certain
to be multifactorial. Soybean protein has no cholesterol, it has the effect
of increasing fecal bile acid excretion and altering bile acid synthesis
rates, one of the primary mechanisms responsible for the regulation of
cholesterol homeostasis, hepatic cholesterol secretion is also increased
[124].

In our study, the observed effect of wheat on serum lipids is

consistent with the findings of other authors [119,125] who attributed
this effect to the fiber and protein content of wheat.

Our results revealed no difference in UA between healthy and dia-
betic controls. Our findings agrees with [111] on STZ-diabetic rats and
in diabetic patients [126]. Several studies have shown an association
between hyperuricaemia and diabetes and suggested that UA increases
insulin reistance [82,127]. Our data showed that the tested diets-in-
duced reduction in UA levels, which could be traced to decreased
synthesis of UA due to the diminshed intake of purine nucleotides, or to
the marked improvement in blood glucose by most of the experimental
diets.

The present data also showed that a germinated broadbean diet
induced partial improvement in the elevated hepatic MDA content of
diabetic rats, associated with insignificant alterations in the other an-
tioxidants measured. However, a heat-processed broadbean diet
brought about significant decrease in UA and α-T levels. Unlike soy-
bean, broadbean is poor in phytochemicals and its fat content averages
only 1% by weight, with unsaturated fatty acids predominating [128].
Thus, the mildly ameliorative effects on the oxidative status of diabetic
rats may be related to the various components present in the broadbean
such as fibers, saponins and phytosterols.

5. Limitations

We were limited by the available resources of conducting a histo-
pathological analysis of the oxidative stress markers in the studied
tissues, of measuring the average water intake by animals and of
measuring glucose tolerance, insulin tolerance and the exact lean and
fat mass composition before and after serving the experimental diets.
Including an insulin-treated control group would have addressed the
glycemic effects in general, but would not have helped tracing such
curative effect to soy proteins or to phytochemicals. The same applies to
the other experimental diets we used in our study model. We could not
determine glycosylated hemoglobin HbA1c, a diabetes marker, for fi-
nancial concerns. Our extended current research will take such valuable
comments into account.

6. Significance and conclusion

This study is of considerable implication. Consumption of soybean
and whole wheat beneficially affect the antioxidative status and lipid
pattern of AD rats. Based on such findings, we recommend that diabetic
patients, beside controlling their hyperglycaemia with medications,
may include whole foods containing naturally occurring phytochem-
icals to ameliorate their oxidative status.
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