
Review Article
Neurotoxicants Are in the Air: Convergence of Human, Animal,
and In Vitro Studies on the Effects of Air Pollution on the Brain

Lucio G. Costa,1,2 Toby B. Cole,1,3 Jacki Coburn,1 Yu-Chi Chang,1

Khoi Dao,1 and Pamela Roque1

1 Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt, Suite No. 100,
Seattle, WA 98105, USA

2Department of Neuroscience, University of Parma, Via Volturno 39, 43100 Parma, Italy
3 Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA

Correspondence should be addressed to Lucio G. Costa; lgcosta@u.washington.edu

Received 6 November 2013; Revised 23 December 2013; Accepted 24 December 2013; Published 12 January 2014

Academic Editor: Ambuja Bale

Copyright © 2014 Lucio G. Costa et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In addition to increasedmorbidity andmortality caused by respiratory and cardiovascular diseases, air pollutionmay also negatively
affect the brain and contribute to central nervous system diseases. Air pollution is a mixture comprised of several components,
of which ultrafine particulate matter (UFPM; <100 nm) is of much concern, as these particles can enter the circulation and
distribute to most organs, including the brain. A major constituent of ambient UFPM is represented by traffic-related air pollution,
mostly ascribed to diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure
to air pollution may lead to neurotoxicity. In addition to a variety of behavioral abnormalities, two prominent effects caused
by air pollution are oxidative stress and neuroinflammation, which are seen in both humans and animals and are confirmed
by in vitro studies. Among factors which can affect neurotoxic outcomes, age is considered the most relevant. Human and
animal studies suggest that air pollution (and DE) may cause developmental neurotoxicity and may contribute to the etiology
of neurodevelopmental disorders, including autistic spectrum disorders. In addition, air pollution exposure has been associated
with increased expression of markers of neurodegenerative disease pathologies.

1. Introduction

Air pollution is a mixture comprised of several components,
including ambient particulate matter (PM), gases, organic
compounds, and metals. The association between air pol-
lution and morbidity and mortality caused by respiratory
and cardiovascular diseases is well established [1–3]. Among
air pollution components, PM is believed to be the most
widespread threat and has been heavily implicated in disease
[2, 4, 5]. PM is broadly characterized by aerodynamic diame-
ter (e.g., PM

10
and PM

2.5
, equivalent to <10 𝜇m and 2.5 𝜇m

in diameter, respectively; [2]). Ultrafine particulate matter
(UFPM; <100 nm) is of much concern, as these particles
can more easily enter the circulation and distribute to
various organs, including the brain [6, 7]. Of most relevance
is also the fact that UFPM can gain access to the brain
directly through the nasal olfactory mucosa, reaching first

the olfactory bulb [7–11]. In vitro studies have shown that
PM is cytotoxic and that toxicity is size-dependent, with the
smaller UFPM being better able to enter the cells and exert
toxic effects [12–15].

The populations of many countries (e.g., China, India,
Middle East, and Central America) are commonly exposed
for extended periods to relatively high levels (>100 𝜇g/m3)
of PM [2], and such concentrations can be easily reached
near trafficked roads and significantly exceeded in certain
occupational settings [16]. Oxidative stress and inflammation
are the two cardinal processes by which air pollution is
believed to exert its peripheral toxicity [2, 17, 18]. PMhas been
shown to affect lung, cardiovascular, and nervous system
functions by mechanisms that involve oxidative stress [19,
20], and oxidative damage has been shown to be a primary
mechanism of PM toxicity [4, 19, 21]. For example, alter-
ations in expression of some oxidative stress-related genes
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and other markers of oxidative stress have been shown in
rodents following DE exposures [20, 22–25].The same seems
to be true with regard to the nervous system, as markers of
oxidative stress and neuroinflammation are increased as a
result of exposure to air pollution [7, 26].

Traffic-related air pollution is a major contributor to
global air pollution, and diesel exhaust (DE) is its most
important component [27]. DE contains more than 40 toxic
air pollutants and is a major constituent of ambient PM,
particularly of UFPM, and DE exposure is often utilized as
a measure of traffic-related air pollution.

This commentary is intended to briefly summarize the
main findings to date on the effects of air pollution (and
more specifically of traffic-related air pollution) on the central
nervous system, by analyzing and comparing findings from
human epidemiological studies, controlled animal studies,
and in vitro experiments. Particular attention is devoted to
age as a potential susceptibility factor, as air pollution may
play an etiological role in neurodevelopmental and neurode-
generative disorders.There appears to be a significant conver-
gence of findings between humans and animals, pointing to
similar alterations in the central nervous system (CNS) and
to common mechanisms involving increased oxidative stress
and neuroinflammation. Limited in vitro studies support
these in vivo findings and should be expanded, to better
define underlying mechanisms. A number of additional
issues that warrant further investigations (e.g., role of gender,
genetic susceptibility) are also discussed.

2. Neurotoxic Effects of Air Pollution
in Humans

In recent years, evidence has been slowly accumulating
suggesting that air pollution may negatively affect the CNS
and contribute to CNS diseases [7, 26, 28–30]. Human epi-
demiological studies have shown that elevated air pollution
is associated with decreased cognitive function in children,
adults, and the elderly [29, 31–37]. Olfactory dysfunction,
auditory deficits, depressive symptoms, and other adverse
neuropsychological effects have also been reported [32, 35, 38,
39]. Few studies have examined neurotoxic effects following
controlled exposure of humans to DE; for example, acute
exposure to 300 𝜇g/m3 DE has been shown to cause airway
inflammation and to induce EEG changes [27, 40].

Young as well as aging individuals appear to be par-
ticularly susceptible to air pollution-induced neurotoxic-
ity [31–34, 36, 37, 41–43]. In case of pre- or postnatal
exposures, this might cause or contribute to developmental
disabilities and behavioral abnormalities, while during aging
such exposures may contribute to neurodegenerative dis-
eases. Indeed, increased incidences of neurodegenerative dis-
ease pathologies, namely, increased beta-amyloid 42, hyper-
phosphorylated tau, and increased alpha-synuclein, have
been found [41, 43–45], suggesting that air pollutionmay con-
tribute to the etiopathogenesis of neurodegenerative diseases.
Primary mechanisms of air pollution neurotoxicity appear
to be related to oxidative stress and neuroinflammation,
which are also involved in the etiopathology of various neuro-
degenerative diseases [46–49].

In addition to a series of animal studies (discussed
below), human studies are also suggestive of developmental
neurotoxicity of air pollution. Studies inMexicoCity revealed
elevated levels of neuroinflammatory markers in the brains
of children exposed to high levels of air pollution [31, 43],
as well as cognitive deficits [32]. In a recent comparison of
children (average age 12 years) exposed to either high or low
air pollution in various Mexican locations, the former were
found to have higher levels of proinflammatory markers in
the cerebrospinal fluid and in serum [50].

Newman et al. [51] reported hyperactivity in 7-year-old
children associated with early life exposure to traffic related
air pollution. Two studies by Volk et al. [52, 53] found that
residential proximity to freeways and gestational and early life
exposure to traffic-related air pollution were associated with
autism (OR = 1.86; 95% CI 1.04–3.45). This was confirmed
by another recent study in which perinatal DE exposure
was significantly associated with autism spectrum disorders
(ASD), particularly in boys [54]. The latter findings are
particularly of interest, as there is increasing evidence indi-
cating that children with ASD have higher levels of oxidative
stress [55–57], as well as increased neuroinflammation and
systemic inflammation [58–60]. As noted earlier, these are
the typical effects found in individuals exposed to severe air
pollution. The etiology of ASD is unknown, though ASD
have a hereditary component [61, 62]. A number of candidate
susceptibility genes for ASD have been identified, but no
single anomaly appears to predominate, though the total frac-
tion of ASD attributable to genetic inheritance may be about
30–40% [62]. Thus, environmental factors are increasingly
suspected as playing a pivotal role in the etiology of ASD,
most likely when affecting susceptible individuals [62–64].
Using mouse models of ASD to study the neurotoxicology
of gene-environment interactions may be a promising novel
avenue to investigate a potential role of air pollution in the
etiology of ASD [65].

In summary, the available evidence in humans, albeit
limited, is highly suggestive that exposure to high levels
of air pollution can negatively affect the CNS and perhaps
contribute to neurodevelopmental and/or neurodegenera-
tive diseases. Furthermore, as indicated, markers of oxida-
tive stress, neuroinflammation, and neurodegeneration are
increased in postmortem human brain samples and in other
accessible tissues, similarly to what is observed in animals.

3. Neurotoxic Effects of Air Pollution in
Animals and In Vitro Studies

Animal observations and controlled studies confirm and
expand the observations in humans, and limited in vitro
evidence is suggestive of potential mechanisms. For example,
in a postmortem study in Mexico City, similar neuropatho-
logical lesions in the prefrontal cortex were observed in both
children and dogs [31]. Dogs exposed to Mexico City air
pollution presented evidence of chronic inflammation, neu-
rodegeneration, and DNA damage in various brain regions
[28, 66]. In mice exposed to concentrated PM, neuroinflam-
mation was seen in the brain, as evidenced by increased
levels of various cytokines and of NF-𝜅B [67]. The latter
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result was also found in ApoE−/− mice exposed to UFPM,
together with increases inmitogen-activated kinase pathways
and of GFAP (glial fibrillary acidic protein) [68]. Further
studies in ApoE−/− mice, which are known to be more prone
to oxidative damage, have shown that subchronic exposure
to concentrated ambient particles causes degeneration of
dopaminergic neurons in the substantia nigra, as a result of
oxidative stress [69]. Increases in proinflammatory cytokines
(e.g., IL-1𝛽, IL-6) have been found in the brains of mice
exposed to traffic in a highway tunnel [70].

Several animal studies have involved controlled expo-
sures to DE. Exposure of adult mice to DE has been reported
to alter locomotor activity, spatial learning and memory, and
novel object recognition ability [71–73]. Nasal instillation of
nanoparticle-rich DE alters emotional behavior and learning
capability in rats [74]. Biochemical and molecular studies
have evidenced that some prominent effects of DE exposure
on the CNS are oxidative stress and neuroinflammation
[14, 19, 75]. Prolonged exposure of rats to DE was found
to increase several proinflammatory cytokines in different
regions of the brain, including the striatum [76]. A short-
term exposure of rats to high levels of DE found similar
induction of proinflammatory cytokines and other enzymes
in brain regions and in lung [23]. Neuroinflammation may
result from systemic inflammation which may affect the CNS
through circulating cytokines or by direct entry of UFPM
into the brain and activation of microglia [26]. Markers of
neuroinflammation have been found to be increased upon
long-term air pollution exposure in young adults at autopsy
[43] and in rodents following DE exposure [16, 45, 76].

An in vitro study showed that DE particles can activate
microglia, and microglia-derived oxidant species caused the
demise of dopaminergic neurons [12].Thus, in vitro evidence
supports the in vivo findings of a role of microglia activation,
oxidative stress, and neuroinflammation in DE neurotoxicity.
DE particles have also been shown to cause oxidative stress
and to increase inflammatory cytokines in brain capillaries
in vitro, suggesting that DE particle may directly affect
the blood-brain barrier [22]. Another recent in vitro study,
in mouse hippocampal slices, found that DE nanoparticles
altered glutamatergic neurotransmission and expression of
NMDA receptors in the CA1 region [77], which might have
relevance to the behavioral impact reported above.

There is also initial evidence that exposure to DE may
cause developmental neurotoxicity in experimental animals
[78]. In utero exposure to high levels of DE (1.0mg/m3)
caused alterations in motor activity, alterations in motor
activity, motor coordination, and impulsive behavior in male
mice, with concomitant alterations in dopamine and sero-
tonin neurochemistry [79–81]. In another study, early post-
natal exposure of mice to concentrated ambient PM has been
reported to cause subtle behavioral changes (enhanced bias
towards immediate rewards) without alteration in locomotor
activity [82], while depression-like responses were found
in mice exposed prenatally to urban air nanoparticles [83].
Additional studies showed that prenatal DE exposures of
mice caused altered locomotor activity and spatial learn-
ing and memory, changes in gene expression (including

X-chromosome inactivation factor), changes in neuronal
differentiation, neuro-inflammation, and oxidative damage
[71, 72, 80, 83–87]. Of interest is that the effects of prenatal
exposure to DE on gene expression in the olfactory bulb
were nullified by rearing the mouse pups with environmental
enrichment [87], suggesting the possibility of therapeutic
behavioral interventions in heavily exposed children. Pre-
natal DE exposure predisposes offspring to weight gain and
to insulin resistance and induces neuroinflammation [88].
A recent study found that prenatal and early life exposure
of mice to DE is associated with the presence of a number
of behaviors similar to those in humans with ASD. These
included higher levels of locomotor activity, elevated levels
of self-grooming, and increased rearings [89].

In summary, examination of animals exposed to air
pollution ambiently or in controlled experiments reveals
the same pattern of neurotoxic effects (increased markers
of oxidative stress and of neuroinflammation, age-related
susceptibility) as in humans, suggesting that animal studies
would be useful predictors of human outcomes. In vitro
studies, albeit very limited so far, should be increased, as
they should allow better definition of the exact mechanism(s)
underlying the observed CNS damage.

4. Questions and Research Needs

Air pollution ranks among the top ten leading risk factors
for mortality, possibly responsible for over 3 million deaths
each year [7].While respiratory and cardiovascularmorbidity
and mortality have been long seen as a primary consequence
of high air pollution exposure, evidence emerging in the
past decade suggests that the CNS may also be a signifi-
cant target. As discussed in this commentary and in other
recent reviews [7, 30, 39], human epidemiological studies
and animal experiments are suggesting similar patterns of
CNS damage, involving oxidative stress and neuroinflam-
matory processes. As these alterations are believed to be
involved in the etiopathologies of neurodevelopmental and
neurodegenerative diseases, it becomes apparent that the
contribution of air pollution to CNS disorders may be of
great significance. The convergence of findings in humans
and animals is of much importance, as it will allow rapid
testing and verification of hypotheses, which can also be
corroborated by in vitro approaches. A number of issues
should be considered, most of which have only been partially
addressed.

4.1. Mechanisms of UFPMNeurotoxicity: Beyond the Olfactory
Bulb. It is well established that PM may enter the brain
and affect the olfactory bulb and either travel to “more
remote” regions or allow the damage to be transmitted to such
regions [8–11]. For example, olfaction problems have been
reported in individuals exposed to heavy air pollution [38].
Olfactory dysfunction is also an early, important symptom
of neurodegenerative diseases, particularly of Parkinson’s
disease [90–93], in which damage to the olfactory bulb actu-
ally precedes neuropathology in the motor areas, such as
substantia nigra and striatum [94]. There is the need to
better understand the events and mechanisms that lead to
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an involvement of the distal brain regions in the neurotoxic
effects of air pollution. In addition to dopaminergic areas,
which have been shown to be affected in certain studies (e.g.,
[69]), cholinergic and glutamatergic areas, important for
cognitive behaviors and involved in other neurodegenerative
disorders, may be affected by air pollution and should be
further investigated. In addition, novel paradigms of neu-
rotoxic damage may also be explored. For example, adult
neurogenesis is believed to be essential for cognitive processes
[95, 96] and has been shown to be negatively affected by
neuroinflammation [96, 97]. Whether air pollution has any
effect on adult neurogenesis remains to be investigated.

4.2. Peripheral versus Direct Central Effects. While air pollu-
tion components may exert their deleterious effects directly
on the CNS, the possibility and the extent of a peripheral
contribution to the central effects should be further explored.
High levels of circulating proinflammatory cytokines may
negatively affect the CNS [26, 50], and the blood-brain
barrier may represent an important site for air pollution
neurotoxicity that has been little studied so far.

4.3. The Role of Gender in Susceptibility to Air Pollution
Neurotoxicity. While age represents an important factor of
susceptibility in air pollution-induced neurotoxicity, two
additional factors, gender and genetic background, should
also be considered [98, 99]. With regard to gender, we
had recently proposed that the differential expression of
the enzyme paraoxonase 2 (PON2) in brain between males
and females may be responsible for a number of gender
differences in neurotoxicity [100]. PON2 is a mitochondrial
enzyme, capable of scavenging reactive oxygen species (ROS),
thereby protecting cells from oxidative stress-induced toxi-
city [100, 101]. In all tissues, brain regions, CNS cell types,
and in both mice and humans, PON2, which has also anti-
inflammatory properties, is expressed at higher levels in
females [100, 102]. These findings prompted us to test the
hypothesis thatmalemicemay bemore susceptible to air pol-
lution neurotoxicity than female animals. Preliminary find-
ings, shown in Table 1, appear to support this hypothesis, as,
upon exposure of mice to DE, a marker of lipid peroxidation
(malondialdehyde) and a proinflammatory cytokine (tumor
necrosis factor-alpha) were increased in the hippocampus
and to a greater extent in male animals. As air pollution may
be involved in the etiopathogenesis of neurodevelopmental
and neurodegenerative diseases whose incidence is usually
higher in males (e.g., [103]), gender differences in the effects
of air pollution deserve further investigations.

4.4. Genetic Susceptibility to Air Pollution Neurotoxicity. As
in several other fields, gene-environment interactions should
be investigated, as genetic polymorphisms may modulate
susceptibility to air pollution neurotoxicity. Given the promi-
nent role of oxidative stress, genetically based differences in
antioxidant enzymesmay thus predispose certain individuals
to significant air pollution neurotoxicity. Glutathione (GSH)
is one of the most abundant cellular thiols and a major
player in cellular defense against ROS, as it nonenzymatically

Table 1: Gender differences in the effects of diesel exhaust.

FA DE
MDA (nmol/g)

M 4.7 ± 0.2 13.3 ± 0.3∗∗

F 2.2 ± 0.1# 4.2 ± 0.2∗#

TNF-𝛼 (pg/mL)
M 1.4 ± 0.4 9.8 ± 1.9∗∗

F 0.7 ± 0.1 1.7 ± 0.2∗#

Male and female mice were exposed for 6 h to diesel exhaust (DE, 250–
300𝜇g/m3) or filtered air (FA), and levels of malondialdehyde (MDA) and
of tumor necrosis factor-alpha (TNF-𝛼) were measured in the hippocampus,
as markers of oxidative stress (lipid peroxidation) and neuroinflammation,
respectively. Results indicate the mean (±SE) with 𝑛 = 3. DE versus FA:
∗
𝑃 < 0.05; ∗∗𝑃 < 0.01. M versus F: #

𝑃 < 0.05 (two-way ANOVA
followed by Bonferroni test for multiple comparisons) (from [104]; Costa
et al., unpublished results).

scavenges both singlet oxygen and hydroxyl radicals and
is used by glutathione peroxidases, glutathione transferases,
and peroxiredoxin-6 to limit the levels of certain reactive
aldehydes and peroxides within the cell. When ROS pro-
duction exceeds the antioxidant defense capacity of the cell,
oxidative stress ensues, leading to damage of DNA, proteins,
and membrane lipids. The first and rate-limiting step in
the synthesis of GSH is carried out by glutamate-cysteine
ligase which consists of a catalytic subunit (GCLC) and
a modifier, or regulatory, subunit (GCLM) [105]. GCLC
alone provides catalytic activity; however, in the absence of
GCLM, the ability of GCLC to synthesize GSH is drastically
reduced [106]. A relatively common C588T polymorphism
has been discovered in the 5-flanking region of the human
GCLM gene, with individuals carrying the T allele having
lower promoter activity in a luciferase reporter gene assay
in response to oxidants and significantly lower plasma GSH
levels [107]. Individuals with GCLM polymorphisms, or
with other mutations leading to decreased GSH levels [106],
would thus be expected to display an enhanced sensitivity
to the adverse effects of environmental chemicals that elicit
oxidative stress. Gclm null mice (Gclm−/−) have very low
GSH levels in all tissues including the brain [108] but
may upregulate alternative antioxidant pathways, whileGclm
heterozygous mice (Gclm+/−) have only moderate reductions
in GSH and may more closely resemble the human GCLM
polymorphism. A preliminary testing of the hypothesis is
shown in Table 2. Male mice exposed to diesel exhaust
displayed the expected increase in markers of oxidative stress
and neuroinflammation; of interest is that the effects were
more pronounced in Gclm−/− and in Gclm+/− mice (Table 2).
These results substantiate previous findings of enhanced lung
inflammation in Gclm+/− mice compared to wild-type mice,
upon exposure to DE [24]. Given the abundance of genetic
polymorphisms of enzymes involved in oxidative stress [106,
109], this avenue of investigation warrants further research.

5. Conclusion

While considering potential sources of compounds that
may contribute to the etiology of neurodevelopmental and
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Table 2: Genetic polymorphisms and the effects of diesel exhaust.

Gclm FA DE

MDA (nmol/g)
+/+ 5.7 ± 0.2 21.2 ± 0.3∗∗

−/− 5.2 ± 0.3 35.4 ± 0.3∗∗,#

+/− 9.7 ± 1.0 45.0 ± 0.7∗∗,#

IL-1𝛽 (pg/mL)
+/+ 12.7 ± 1.6 31.1 ± 6.1∗∗

−/− 7.2 ± 0.3 42.6 ± 2.4∗∗

+/− 18.6 ± 0.7 78.5 ± 4.3∗∗,#

Male mice were exposed for 6 h to diesel exhaust (DE, 250–300𝜇g/m3) or
filtered air (FA), and levels of malondialdehyde (MDA) and of interleukin
1-beta (IL-1𝛽) were measured in the olfactory bulb, as markers of oxidative
stress (lipid peroxidation) and neuroinflammation, respectively. Results are
the mean (±SE) with 𝑛 = 3. DE versus FA: ∗∗𝑃 < 0.01; Gclm+/+ versus
Gclm−/− or Gclm+/−: #𝑃 < 0.05 (two-way ANOVA followed by Bonferroni
test for multiple comparisons) (Costa et al., unpublished results).

neurodegenerative diseases, diet has often been considered
as a primary vehicle of exposure. Indeed, many known
neurotoxicants and developmental neurotoxicants are food
contaminants. Yet, the air we breathe seems a logical poten-
tial source of chemicals which may exert neurotoxicity,
though attention has been limited for several decades only
to effects on the respiratory system and more recently on
the cardiovascular system. Evidence has been accumulating
during the past decade providing strong suggestions that
exposure to high levels of high pollution, very common in
many cities all around the world, is associated with damage
to the CNS. Human and animal studies have evidenced
a series of common adverse effects of air pollution (PM
in particular), with oxidative stress and neuroinflammation
emerging as the hallmark effects. A variety of behavioral
alterations has also been reported, together with changes in
some neurotransmitter systems. These and other aspects of
air pollution neurotoxicity need to be further investigated.
Particularly troublesome is the suggestion that air pollution
may contribute to the etiopathology of neurodevelopmental
and neurodegenerative diseases (e.g., autism or dementia)
whose incidence is increasing in the global populations.
Needless to say that, in addition to further biomedical
research to augment our understanding of the effects and
mechanisms of air pollution on the CNS, measures should be
taken to curtail emissions and exposures.
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toxicology of ultrafine particles,” Journal of Aerosol Medicine,
vol. 17, no. 2, pp. 140–152, 2004.

[14] T.-T.Win-Shwe andH. Fujimaki, “Nanoparticles andNeurotox-
icity,” International Journal of Molecular Sciences, vol. 12, no. 9,
pp. 6267–6280, 2011.

[15] P. Gillespie, J. Tajuba, M. Lippmann, L.-C. Chen, and B.
Veronesi, “Particulate matter neurotoxicity in culture is size-
dependent,” NeuroToxicology, vol. 36, pp. 112–117, 2013.

[16] S. Levesque, T. Taetzsch, M. E. Lull et al., “Diesel exhaust acti-
vates and primes microglia: air pollution, neuroinflammation,
and regulation of dopaminergic neurotoxicity,” Environmental
Health Perspectives, vol. 119, no. 8, pp. 1149–1155, 2011.

[17] M. Lodovici and E. Bigagli, “Oxidative stress and air pollution
exposure,” Journal of Toxicology, vol. 2011, Article ID 487074, 9
pages, 2011.

[18] J. O. Anderson, J. G. Thundiyil, and A. Stolbach, “Clearing the
air: a review of the effects of particulate matter air pollution on
human health,” Journal of Medical Toxicology, vol. 8, no. 2, pp.
166–175, 2012.

[19] S. M. J. MohanKumar, A. Campbell, M. Block, and B. Veronesi,
“Particulate matter, oxidative stress and neurotoxicity,” Neuro-
toxicology, vol. 29, no. 3, pp. 479–488, 2008.



6 BioMed Research International

[20] C. S. Weldy, H.-W. Wilkerson, T. V. Larson, J. A. Stewart,
and T. J. Kavanagh, “Diesel particulate exposed macrophages
alter endothelial cell expression of eNOS, iNOS, MCP1, and
glutathione synthesis genes,” Toxicology in Vitro, vol. 25, no. 8,
pp. 2064–2073, 2011.

[21] N. Li, C. Sioutas, A. Cho et al., “Ultrafine particulate pollutants
induce oxidative stress and mitochondrial damage,” Environ-
mental Health Perspectives, vol. 111, no. 4, pp. 455–460, 2003.

[22] A. M. S. Hartz, B. Bauer, M. L. Block, J.-S. Hong, and D.
S. Miller, “Diesel exhaust particles induce oxidative stress,
proinflammatory signaling, and P-glycoprotein up-regulation
at the blood-brain barrier,” The FASEB Journal, vol. 22, no. 8,
pp. 2723–2733, 2008.

[23] D. van Berlo, C. Albrecht, A. M. Knaapen et al., “Comparative
evaluation of the effects of short-term inhalation exposure
to diesel engine exhaust on rat lung and brain,” Archives of
Toxicology, vol. 84, no. 7, pp. 553–562, 2010.

[24] C. S. Weldy, C. C. White, H.-W. Wilkerson et al., “Heterozygos-
ity in the glutathione synthesis gene Gclm increases sensitivity
to diesel exhaust particulate induced lung inflammation in
mice,” Inhalation Toxicology, vol. 23, no. 12, pp. 724–735, 2011.

[25] F. Yin, A. Lawal, J. Ricks et al., “Diesel exhaust induces
systemic lipid peroxidation and development of dysfunctional
pro-oxidant and pro-inflammatory high-density lipoprotein,”
Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, pp.
1153–1161, 2013.

[26] M. L. Block and L. Calderón-Garcidueñas, “Air pollution:
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