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Abstract: Alström syndrome (ALMS) is an ultrarare disease with an estimated prevalence lower than
1 in 1,000,000. It is associated with disease-causing mutations in the Alström syndrome 1 (ALMS1)
gene, which codifies for a structural protein of the basal body and centrosomes. The symptomatology
involves nystagmus, type 2 diabetes mellitus (T2D), obesity, dilated cardiomyopathy (DCM), neu-
rodegenerative disorders and multiorgan fibrosis. We refined the clinical and genetic diagnosis data
of 12 patients from 11 families, all of them from Spain. We also studied the allelic frequency of the dif-
ferent variants present in this cohort and performed a haplotype analysis for the most prevalent allele.
The genetic analysis revealed 2 novel homozygous variants located in the exon 8, p.(Glu929Ter) and
p.(His1808GlufsTer20) in 2 unrelated patients. These 2 novel variants were classified as pathogenic
after an in silico experiment (computer analysis). On the other hand, 2 alleles were detected at a high
frequency in our cohort: p.(Tyr1714Ter) (25%) and p.(Ser3872TyrfsTer19) (16.7%). The segregation
analysis showed that the pathogenic variant p.(Tyr1714Ter) in 3 families is linked to a rare missense
polymorphism, p.(Asn1787Asp). In conclusion, 2 novel pathological mutations have been discovered
in homozygosis, as well as a probable founder effect in 3 unrelated families.

Keywords: ciliopathies; Alström syndrome; metabolic disease; novel mutations; founder effect

1. Introduction

Alström Syndrome (ALMS; OMIM #203800) is an ultrarare recessive disorder, with an
estimated prevalence lower than 1 in 1,000,000 in European-descent populations. As in the
case of other rare syndromes, consanguineous and/or geographically isolated populations
have higher frequency values [1–3]. About 1000 cases have been described worldwide for
this pathology, of which 13 have been diagnosed in Spain [4–7].

ALMS is a pleiotropic and multisystemic disorder characterized by a high inter- and
intrafamilial variability, regarding the phenotype displayed, the age of onset and the sever-
ity of symptoms [4,5]. The cardinal features include childhood obesity, insulin resistance,
cone-rod retinal dystrophy, sensorineural hearing loss, type 2 diabetes mellitus (T2D),
hypertriglyceridemia and dilated cardiomyopathy (DCM) [8]. Other secondary features
include seizures, hyporeflexia or multiorgan fibrosis that develops from adolescence on-
wards. This latter is very variable and can affect the liver, kidneys, lungs and gonads [8].
The first clinical feature, visual dysfunction (photophobia and nystagmus), usually de-
velops between a few weeks after birth and the first year of life [5]. The remaining signs
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evolve slowly during childhood and adolescence, although the most severe features can be
detected before the first decade [4].

The clinical diagnosis of ALMS is based on the presence of primary and secondary
features, considering the age of onset throughout the development [9].

ALMS is a monogenic disorder caused by pathogenic variants in the ALMS1 gene
(MIM #606844), which represents an unusual phenomenon among ciliopathies, normally
described with high genetic heterogeneity. ALMS1 is located on chromosome 2 (region
2p13.1) and consists of 224 kilobases (kb) containing 23 coding exons [10,11]. Several
splicing isoforms have been reported, which could produce different protein isoforms with
specific functions [10,12–14].

To date, over 298 pathogenic variants have been involved in ALMS development, of
which 96% are nonsense or frameshift changes (insertions and deletions) that could origi-
nate truncated, nonfunctional proteins [4,15]. Most of the deleterious variants are clustered
in exons 8 (6.1 kb), 10 (1.9 kb) and 16 (1.2 kb), which are considered mutational hotspots as
they comprise 85–97% of the total mutational load for ALMS1 in the different cohorts [4,15].
Hence, the direct sequencing of these 3 exons represents the standard strategy when ALMS
is suspected. However, the progressive implementation of high-throughput sequencing (HTS)
techniques, such as whole-exome sequencing (WES) and targeted gene panels, is replacing
the classical approach to ALMS molecular diagnosis [16–18].

The vast majority of changes in ALMS1 have been described once, most cases world-
wide are compound heterozygotes, and several groups of patients have shown a founder
effect, like the Acadian, English or Turkish population [1,3,19]. The knowledge of the mu-
tational load in this gene could be interesting for understanding the genotype-phenotype
correlation and the molecular basis of this disorder.

2. Materials and Methods
2.1. Cohort Presentation

This study included 12 patients from 11 unrelated families clinically diagnosed with
ALMS (Patients 4 and 5 are siblings). Here, we reported the genetic characterization of
5 males and 7 females (Table 1) of Caucasian ethnicity.

The clinical history for 11 of the 12 patients was obtained through collaboration with
medical doctors and the National Association of Alström syndrome Spain. The main
clinical characteristics are described in Table 2.

Most of the families were molecularly described elsewhere [4], and, as part of the Span-
ish ciliopathy cohort, they have been studied clinically and molecularly by our group [6,7].
Families GBB-28 and UG-26225 have been described for the first time in this study, and
their molecular characterization was deposited in ClinVar.

2.2. DNA Extraction and Sanger Sequencing

DNA was extracted from peripheral blood from participants (Patients 1, 3, 6, 7 and
8) and available family members. We used the Flexigene DNA kit 250 (Qiagen, Hilden,
Germany), following the manufacturer’s protocol.

After DNA extraction, we analyzed the exonic DNA of ALMS1. We amplified the
DNA by polymerase chain reaction (PCR) in an MJ MiniTM Gradient Thermal Cycler
(Bio-Rad, Hercules, CA, USA) with the primers described by Collin et al. [10] (Table S2).
PCR reactions were performed using 100 ng of genomic DNA, 1 µL at 10 µM of each primer
and 12.5 µL Supreme NZYTaq II 2x Green Master Mix (Nzytech, Lisbon, Portugal) in a final
volume of 25 µL per sample. The amplification program applied to samples was as follows:
initial denaturing at 95 ◦C for 5 min, followed by 35 cycles of 94 ◦C for 30 s, 52–66 ◦C for
30 s, and 72 ◦C for 30 s and a final extension step at 72 ◦C for 10 min [6]. Then, the PCR
products were resolved and stained on a 2% agarose gel with 0.05% ethidium bromide.
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Table 1. Summary of the genotype of patients, their author reference, and the family and patient codes. The reference sequence for ALMS1 (ENST00000613296.5/ ENSP00000482968.1)
was used.

Allele 1 Allele 2

Patient Family Reference ALMS1 Pathogenic
Variant 1 c.DNA Exon ALMS1 Pathogenic

Variant 1 Protein
ALMS1 Pathogenic

Variant 2 c.DNA Exon ALMS1 Pathogenic
Variant 2 Protein Genotype Status

1 GBB-28 This study c.2785G>T 8 p.(Glu929Ter) c.2785G>T 8 p.(Glu929Ter) Homozygous
2 RP-1232 [7] c.4249del 8 p.(Arg1417GlyfsTer55) c.4249del 8 p.(Arg1417GlyfsTer55) Homozygous
3 RP-1087 [6] c.5142T>G 8 p.(Tyr1714Ter) c.1844C>G 8 p.(Ser615Ter) Heterozygous
4 GAS-37 Allele 1 [6]; Allele 2 [4] c.5142T>G 8 p.(Tyr1714Ter) c.4271T>G 8 p.(Leu1424Ter) Heterozygous
5 GAS-37 Allele 1 [6]; Allele 2 [4] c.5142T>G 8 p.(Tyr1714Ter) c.4271T>G 8 p.(Leu1424Ter) Heterozygous
6 GBB-46 Allele 1 [6]; Allele 2 [4] c.5142T>G 8 p.(Tyr1714Ter) c.5142T>G 8 p.(Tyr1714Ter) Homozygous
7 GBB-44 Allele 1 [6]; Allele 2 [4] c.5142T>G 8 p.(Tyr1714Ter) c.11615_11616del 17 p.(Ser3872TyrfsTer19) Heterozygous
8 UG-26225 This study c.5420_5423del 8 p.(His1808GlufsTer20) c.5420_5423del 8 p.(His1808GlufsTer20) Homozygous
9 RP-2186 [4] c.7568_7569del 9 p.(His2523ArgfsTer11) c.4474G>T 8 p.(Glu1492Ter) Heterozygous
10 RP-793 [19] c.10787_10788del 16 p.(Val3596GlufsTer4) c.10787_10788del 16 p.(Val3596GlufsTer4) Homozygous
11 GBB-45 [4] c.11615_11616del 17 p.(Ser3872TyrfsTer19) c.11615_11616del 17 p.(Ser3872TyrfsTer19) Homozygous
12 RP-2177 Allele1 [4]; Allele 2 [20] c.11615_11616del 17 p.(Ser3872TyrfsTer19) c.805C>T 5 p.(Arg269Ter) Heterozygous

Table 2. Phenotype summary based on the diagnostic criteria for Alström syndrome according to Marshall et al. (2007) [9] for 11 of the 12 cases. The clinical history of patient GBB-45 was
not available. x: presence of symptom. -: absence of symptom.

Patient Family Sex Age (Years)

Vision (History of
Nystagmus in

Infancy/Childhood, Legal
Blindness, Cone and Rod

Dystrophy by ERG)

Obesity and/or
Insulin Resistance

and/or T2D

History of
DCM/CHF Hearing Loss Hepatic

Dysfunction Renal Failure Short Stature
Males: Hypogonadism;

Females: Irregular Menses
and/or Hyperandrogenism

Thyroid Disorders Predicted Protein Change

1 GBB-28 F 13 x x x - - - - - - p.(Glu929Ter)/p.(Glu929Ter)
2 RP-1232 F 27 x x - x - x - x x p.(Arg1417GlyfsTer55)/p.(Arg1417GlyfsTer55)
3 RP-1087 F 42 x x - x x x x x - p.(Tyr1714Ter)/p.(Ser615Ter)
4 GAS-37 F 21 x x x x x - x x x p.(Tyr1714Ter)/p.(Leu1424Ter)
5 GAS-37 M 26 x x - x x - x x x p.(Tyr1714Ter)/p.(Leu1424Ter)
6 GBB-46 M 23 x x - x x - x - x p.(Tyr1714Ter)/p.(Tyr1714Ter)
7 GBB-44 M 18 x x x x x - - - - p.(Tyr1714Ter)/p.(Ser3872TyrfsTer19)

8 UG-
26225 M 3 x x x - - - - - x p.(His1808GlufsTer20)/p.(His1808GlufsTer20)

9 RP-2186 M 9 x x x - - - - - - p.(His2523ArgfsTer11)/p.(Glu1492Ter)
10 RP-793 F 11 x x - x x - x - x p.(Val3596GlufsTer4)/p.(Val3596GlufsTer4)
12 RP-2177 F 49 x - x x - - - - - p.(Ser3872TyrfsTer19)/p.(Arg269Ter)

ERG: Electroretinogram; T2D: Type 2 Diabetes Mellitus; DCM: Dilated Cardiomyopathy; CHF: Congestive Heart Failure.
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After that, 4.5 µL of each PCR was purified using ExoSAP (Thermo-Fisher, Waltham,
CA, USA) in a final volume of 6 µL, incubating the reaction for 15 min at 37 ◦C and
15 min at 80 ◦C. The products were sequenced directly using the BigDye®Terminator v1.3
Cycle Sequencing Kit (Life Technologies, Foster City, CA, USA) in a 10 µL reaction. The
program was as follows: initial denaturing at 98 ◦C for 3 min, followed by 25 cycles of
96 ◦C for 10 s, 50 ◦C for 5 s and 60 ◦C for 4 min. The sequencing products were precipitated
and dried using MgCl2, ethanol at 4 ◦C and Microfuge 18®(Beckman-Coulter™, Krefeld,
Germany) [6]. The final product was resolved in an ABI PRISM 3130 (Life Technologies,
Foster City, CA, USA) genetic analyzer.

Finally, all sequences were visualized with the BioEdit 7.2, and the reference sequences
ENST00000613296.6/ENSP00000482968.1 were used for the nucleotide and amino acid
numbering of pathogenic variants.

2.3. Relative Allele Frequency Calculation

The calculation of the relative allele frequency (P) was performed using the number
of alleles with a specific change (i) divided by the total number of alleles in our cohort
(N = 24). Then, the result was multiplied by 100 to obtain a percentage.

P = i/N * 100

2.4. In Silico Analysis of Variants

To predict the mutational effect, the novel pathogenic ALMS1 variants were analyzed
with the following most used software: PolyPhen2 (p. (Glu929Ter) mutation was excluded
from this analysis because the software does not analyze STOP mutations, considering
them to always be pathogenic) [21], SIFT [22], MutPred-LOF [23] and PROVEAN [24]. The
score provided by these software were used to classify the variants following the American
College of Medical Genetics and Genomics (ACMG) guidelines [25].

3. Results
3.1. Patients Characteristics

All of the 12 patients, (5 males and 7 females) from the 11 families have a positive
molecular diagnosis that is biallelic according to a recessive model.

In all cases, we established 2 pathogenic variants. Families carrying the same variant
did not have any kindred relationship between them and came from different Spanish
locations across the country.

We detected 11 different pathogenic variants (Table 1), 6 patients from the families,
GBB-45, GBB-46, RP-793, RP-1232, GBB-28 and UG-26225, being homozygous. Regarding
pathogenic variants, 1 is located in exon 5 [20], 7 are located in exon 8 [4,6,7], 1 in exon
9 [4], 1 in exon 16 [19] and 1 in exon 17 [4] of the ALMS1 gene, and all of them lead
to a stop codon. The variant p.(Tyr1714Ter) in exon 8 has a high frequency in our pool
of patients, at 25%, appearing 6 times in 5 patients (1 homozygous and 4 compound
heterozygous). The pathogenic variant p.(Ser3872TyrfsTer19) has been detected 4 times
in 3 patients (1 homozygous and 2 compound heterozygous), rising to a 16.7% frequency.
Most of the variants detected as being pathogenic were not shown in the gnomAD and
ClinVar databases (Table S1), as no population information was available.

Some of the mutations have been uploaded into the LOVD database from the REWBA
project by the labs where the molecular analysis was performed. For the data that was
found, the pathogenic variant p.(Tyr1714Ter) has been described 5 times [4,15], including 3
of our samples. The pathogenic variants p.(Ser3872TyrfsTer19) and p.(Val3596GlufsTer4)
have been described 3 times [4,9], a heterozygous sample for p.(Ser3872TyrfsTer19) that
has been reported is 1 of our patients.

All patients included in this study present cone-rod dystrophy and/or nystagmus.
Obesity (BMI > 95%), overweight (BMI > 85%), insulin resistance or T2D were present in
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91% of the cases. DCM was found in 6 of 11 patients (54.5%). Hearing loss was reported in
8 of 11 patients (73%) (Table 2).

The second group of symptoms with a low incidence was reported too: hepatic
dysfunction (55%), renal failure (18%), short stature (45%), thyroid disorders (55%) and
hypogonadism/irregular menses (36%) (Table 2).

3.2. Novel ALMS1 pathogenic variants
3.2.1. Patient 1 (Family GBB-28)

Patient 1 is a young girl (11 years old) from consanguineous parents. The main
symptoms of this patient are nystagmus, photophobia, and rod and cone dystrophy with
decreased visual acuity; morbid obesity, DCM and bronchospasm. No further Alström
spectrum symptoms have been reported to date (Table 2).

A novel homozygous amino acid change on exon 8, c.2785G>T leading to p.(Glu929Ter),
was detected by Sanger sequencing in this patient (Figure 1A). The in silico prediction of
pathogenicity through different bioinformatic tools resulted in deleterious variant scores
in MutPred-LOF (0.432), SIFT (0) and PROVEAN (−3.376). According to the ACMG, this
variant should be classified as pathogenic (PVS1, very strong evidence of pathogenicity)
(Table 3).
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Figure 1. Pedigree chart and electropherogram for the patients carrying novel mutations. (A) Pedigree chart for family GBB-
28, carrier of mutation c.2785C>T; p.(Glu929Ter) and electropherogram of the proband sequence compared to the control.
(B) Pedigree chart for family UG-26225, carrier of mutation c.5420_5423del; p.(His1808GlufsTer20) and electropherogram of
the proband sequence compared to the control.
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Table 3. Scores obtaining from the in silico analysis of pathogenicity for the 2 novel mutations p.(Glu929Ter) and
p.(His1808GlufsTer20) and their classification according to American College of Medical Genetics and Genomics (ACMG)
guidelines. The 4 programs used for this analysis were: PolyPhen2, MultiPred-LOF, SIFT and PROVEAN.

Patient Family
ALMS1

Pathogenic
Variant c.DNA

Exon
ALMS1

Pathogenic Variant
Protein

PolyPhen2 MutPred-LOF SIFT PROVEAN ACMG

1 GBB-28 c.2785G>T 8 p.(Glu929Ter) - 0.432 0 −3.376 Pathogenic
8 UG-26225 c.5420_5423del 8 p.(His1808GlufsTer20) 0.852 0.422 0,05 −2.720 Pathogenic

3.2.2. Patient 8 (Family UG-26225)

Patient 8 is a young boy (3 years old) from consanguineous parents. The main
symptoms of this patient are horizontal nystagmus within a few months of birth, DCM
of birth, obesity and hypothyroidism. He has a normal size and sexual development
according to his age (Table 2).

A novel homozygous amino acid change on exon 8 of ALMS1, c.5420_5423del leading
to p.(His1808GlufsTer20), was detected by Sanger sequencing in this patient (Figure 1B). In
this case, the in silico analysis shows deleterious scores in PolyPhen2 (0.852), MutPred-LOF
(0.422), SIFT (0.05) and PROVEAN (−2.720). Following the criteria of ACMG, this variant
should also be classified as pathogenic (PVS1, very strong evidence of pathogenicity)
(Table 3).

3.3. Relative Allele Frequencies

We detected 2 specific alleles with a high frequency in ALMS1: p.(Tyr1714Ter) and
p.(Ser3872TyrfsTer19), with only 1 family for each of these pathogenic variants being
homozygous. The relative frequencies of these alleles in the cohort were 0.25 (25%) and
0.167 (16.7%), respectively (Figure 2).
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3.4. Segregation Study

In patients carrying the p.(Tyr1714Ter) pathogenic variant, we detected a single nu-
cleotide polymorphism (SNP) with a low frequency (0.017) in the European population.
This SNP, p.(Asn1787Asp) (c.5359A>G; rs45608038), is located at exon 8 of ALMS1 (Table 4).
Thus, we evaluated whether the allele p.(Asn1787Asp) segregated with the pathogenic
variant p.(Tyr1714Ter) in 3 families, and we concluded that it was linked to the latter
(Figure 3).
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Table 4. Haplogroup classification of Alström patients with the pathogenic variant p.(Tyr1714Ter). Analyzed SNP, predicted
protein change, exon in which they are found, genotype of the study individuals and shared common allele.

Predicted Protein Change SNPs Exon GBB-44 RP-1087 GBB-46 Common Allele

p.(Phe730=) rs7598901 8 T/T T/T T/T T
p.(Gly1415Val) rs6546837 8 G/G C/G G/G G
p.(Ile1876Val) rs6546838 8 A/A G/A A/A A

p.(Ser2112Arg) rs6724782 8 T/T A/T T/T T
p.(Arg2285Leu) rs6546839 8 G/G C/G G/G G
p.(Arg2827Ser) rs2056486 10 G/G G/G G/G G
p.(Asn2857Ser) rs10193972 10 A/A G/A A/A A

p.(Asn1787Asp) - rs45608038 8 A/G A/G G/G G
p.(Tyr1714Ter) * rs772136379 8 T/G T/G G/G G

*: causal mutation. -: rare variant linked to causal mutation.
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Figure 3. Single nucleotide polymorphism (SNP) segregation study in 3 families. (A) The mother´s
genotype from family GBB-44, carrier of p.(Asn1787Asp) and p.(Tyr1714Ter) in heterozygosis. (B)
The father´s genotype from the RP-1087 family, carrier of p.(Asn1787Asp) and p.(Tyr1714Ter) in
heterozygosis. (C) The genotype of the GBB-46 proband with p.(Asn1787Asp) and p.(Tyr1714Ter) in
homozygosis. *: p.(Asn1787Asp) (c.5359A>G; rs45608038).

3.5. Haplogroup Classification

To complete the analysis and determine if this was a common allele, we included
the SNPs described by Scheinfeldt [26] to classify the haplogroup of these patients. The
3 patients carrying p.(Tyr1714Ter) show the ancestral haplotype described for ALMS1
(Table 4).

4. Discussion

Alström Syndrome is a complex disease that affects multiple organs and induces a
metabolic disorder. Its huge heterogenic interpatient symptomatology and its low incidence
in population worldwide makes it very difficult to perform any phenotype–genotype
correlation.
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In our cohort, we analyzed 12 patients from 11 families with ALMS pathogenic variants.
Most of them have been previously clinically and molecularly characterized [4,6,7,19], but
patient 1 (GBB-28) and patient 8 (UG-26225) have been described in this study for the first time.
These 2 patients are carriers for novel ALMS1 pathogenic variants in homozygosity. The
analysis of the open reading frame (ORF) sequence showed the generation of a premature
stop codon, resulting in a truncated protein in both cases. For patient 1 (GBB-28), the
amino acid change affects the glutamate located in position 929 generating a stop codon
(TAA). Regarding patient 8 (UG-26225), the microdeletion of 4 pb (CACA) changes the
histidine in position 1808 to glutamate and generates a frameshift mutation that leads to a
stop codon (TGA), 20 amino acids downstream. Until now, approximately 298 pathogenic
or likely pathogenic variants have been described in ALMS1. A great percentage of cases
harbour private mutations. Here, we are expanding this mutational spectrum with 2 novel
ALMS1 mutations.

Moreover, 2 highly prevalent pathogenic variants were detected within our cohort.
Both pathogenic variants, p.(Ser3872TyrfsTer19) and p.(Tyr1714Ter), located in exons 17
and 8, respectively, generate a premature stop codon resulting in a truncated protein. In
this point 1 of these pathogenic variants, p.(Tyr1714Ter), cosegregates with a low-frequency
SNP, p.(Asn1787Asp) (c.5359A>G; rs45608038), in the 3 analyzed families (Figure 2), which
allows us to establish a potential common origin of this allele in these Spanish patients.
Furthermore, based on the haplogroups described for ALMS1, this haplotype is grouped
with the ancestral [26], which has been detected in the south of Europe (France, Spain and
Portugal) and has a high presence in the African continent. This fact could be explained as
an introduction of this ALMSallele in the Iberian Peninsula from the African continent.

In this study, no genotype–phenotype correlation for the pathogenic variants
p.(Tyr1714Ter) and p.(Ser3872TyrfsTer19) was detected. Even in siblings with the
same genotype (p.(Tyr1714Ter)/p.(Leu1424Ter); patients 4 and 5, family GAS-37), the
phenotype was not the same. In this case, patient 4 reported DCM, but his brother
did not.

Due to the complexity of ALMS, the effect of only one gene does not seem to be enough
to completely explain the heterogeneous symptoms seen in these patients. The prevalence
of symptoms like DCM, hepatic dysfunction or hearing loss could be conditioned by
other agents like common mutational load or epigenetic regulation, whose study would
be interesting.

ALMS is a very rare disease that shares clinical features with other ciliopathic syn-
dromes, so a clinical diagnosis is quite difficult in some cases due to this phenotypic overlap,
highlighting the Bardet–Biedl syndrome (in presenting a multiorgan pathology) and Usher
syndrome (in combining retinitis pigmentosa with hearing loss). The difficulty in achieving
a diagnosis and the lack of a global point of view leads to the fact that some patients are
still underdiagnosed and seek medical attendance when the symptoms are exacerbated.
Given that the sample size is one of the main barriers to establishing a genotype–phenotype
correlation in rare diseases, it would be interesting to establish an international registry
of patients that reflects the causal mutations of each patient accompanied by their stan-
dardized symptoms. In this respect, an international effort is underway to enrol these
patients into national and international associations that provide updated information to
patients and put them in touch with clinicians and investigations [27] that facilitate future
observational studies and clinical trials.

5. Conclusions

In all, we described 2 novel ALMS pathogenic variants in the exon 8 of the ALMS1
gene that leads to a truncated protein. These 2 variants were reported in homozygosity
in nonrelated patients, which showed an Alström syndrome clinical spectrum according
to age. Furthermore, we detected 2 prevalent ALMS1 pathogenic variants, p.(Tyr1714Ter)
and p.(Ser3872TyrfsTer19), in our Spanish cohort. The pathogenic variant p.(Tyr1714Ter)
cosegregates with a benign missense variant, p.(Asn1787Asp). Finally, 3 families with
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the p.(Tyr1714Ter) pathogenic variant shared the ancestral haplotype for ALMS1 that is
predominant in the African continent, which could have arisen by a founder effect.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
425/12/2/282/s1, Table S1. Pathogenic variants register in gnomAD and clinVar from the total
alleles in our cohort. Table S2. Oligonucleotides for genomic amplification and sequencing of ALMS1
described in Collin et al., 2002.
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