
ARTICLE

Frontoparietal network activation is associated with
motor recovery in ischemic stroke patients
Emily Olafson 1✉, Georgia Russello2, Keith W. Jamison1, Hesheng Liu3, Danhong Wang3, Joel E. Bruss4,

Aaron D. Boes4 & Amy Kuceyeski 1

Strokes cause lesions that damage brain tissue, disrupt normal brain activity patterns and can

lead to impairments in motor function. Although modulation of cortical activity is central to

stimulation-based rehabilitative therapies, aberrant and adaptive patterns of brain activity

after stroke have not yet been fully characterized. Here, we apply a brain dynamics analysis

approach to study longitudinal brain activity patterns in individuals with ischemic pontine

stroke. We first found 4 commonly occurring brain states largely characterized by high

amplitude activations in the visual, frontoparietal, default mode, and motor networks. Stroke

subjects spent less time in the frontoparietal state compared to controls. For individuals with

dominant-hand CST damage, more time spent in the frontoparietal state from 1 week to 3-6

months post-stroke was associated with better motor recovery over the same time period, an

association which was independent of baseline impairment. Furthermore, the amount of time

spent in brain states was linked empirically to functional connectivity. This work suggests that

when the dominant-hand CST is compromised in stroke, resting state configurations may

include increased activation of the frontoparietal network, which may facilitate compensatory

neural pathways that support recovery of motor function when traditional motor circuits of

the dominant-hemisphere are compromised.
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The ability to perform motor functions after stroke depends
on the coordinated reconfiguration of distinct global brain
activity patterns1. Novel data-driven techniques to char-

acterize whole-brain activity in functional magnetic resonance
imaging (fMRI) scans at single-frame resolutions have illumi-
nated the dynamic nature of brain activity in several brain
disorders2–5, but methods assigning each time point to a discrete
state have not yet been applied to examine altered brain dynamics
in stroke patients. These methods provide information about
brain function complementary to and beyond traditional static
measures of functional connectivity (FC)6, and thus may provide
new insights regarding the process of recovery following stroke.

Prior work characterizing spatiotemporal brain dynamics after
stroke has focused on identifying altered FC states, which reflect
time-varying patterns of FC. Dynamic FC analyses identify
recurrent connectivity patterns using a sliding-window approach,
in which FC is repeatedly calculated over consecutive windowed
segments of the fMRI scan. This approach yields FC networks
that fluctuate over time, with a temporal resolution proportional
to the size of the window; ~30–60 seconds7. In stroke popula-
tions, dynamic FC studies have demonstrated stroke-related dif-
ferences in temporal configurations of motor networks8 and
participation in connectivity states that varies with severity9.

In contrast, analysis at a single relaxation time (TR) resolution
of activation states identified in a data-driven fashion using
k-means clustering of the time series data6 provides a closer look
at the moment-to-moment changes in recurrent brain activity,
with the time spent in each state lasting, on average,
5–10 seconds6. A benefit to analyzing brain activation states over
or alongside connectivity states is that activation patterns can
enable a more refined interpretation of connectivity differences
between groups. FC is traditionally defined as the correlation
between two brain region’s activity over time. FC may be driven
by two distinct features of brain activity: by the individualized
spatial patterns of large-amplitude activations10, and by the
amount of time spent in recurring patterns of activity11,12. In this
paper, we aim to identify group-level patterns of brain activity
after stroke that relate to recovery, and assume that recurring
activity patterns are shared across individuals but are expressed in
different proportions. Understanding the temporal patterns of
activity underlying recovery-relevant FC changes after stroke can
aid in the development of more accurate targets in stimulation
therapies.

Recent work has highlighted the importance of frontoparietal
areas in supporting motor abilities in the chronic phase of
stroke13,14 specifically in patients with poor corticospinal tract
(CST) integrity15. When these descending motor pathways are
significantly damaged, descending white matter tracts from
higher-order motor areas, like regions of the frontoparietal net-
work (FPN), may support motor output. Because of the differ-
ential use of the dominant and non-dominant arm throughout
life, we were interested in determining whether handedness
relative to the lesioned hemisphere would modify the recruitment
of a frontoparietal state to promote motor recovery. Under-
standing this type of subject- and lesion-specific variability in the

post-stroke recovery process is precisely the type of information
needed to develop personalized rehabilitation strategies to
maximally promote recovery.

Here, we propose to first identify and characterize recurring
brain activity patterns, or states, in healthy controls and indivi-
duals with ischemic pontine stroke6. We hypothesized that
individuals with ischemic stroke would display altered dynamic
brain state metrics, e.g. fractional occupancy (FO), dwell time
(DT), and appearance rates (ARs), compared to control subjects,
and, further, that these dynamic state metrics would be asso-
ciated with measures of motor recovery. In an exploratory ana-
lysis, we examined whether time spent in a brain state
characterized by frontoparietal activation would be differentially
recruited for later-stage motor recovery depending on the side of
the lesion relative to the subject’s handedness. Finally, to bridge
dynamic brain state analyses and more classic FC approaches, we
assessed the relationship between the amount of time spent in
different brain states and the FC between several resting-state
networks. This last analysis is particularly important in terms of
linking our current findings to previous studies of how rehabi-
litation techniques, including non-invasive brain stimulation,
modulate the functional connectome and possibly motor
recovery.

Results
Participant characteristics. Differences in the age- and sex-
composition of the stroke and control group were compared with
a two-tailed unpaired t test and Fisher’s exact test, respectively
(Table 1).

Clustering reveals an optimum of four brain states. We first
clustered the data into discrete clusters using the k-means algo-
rithm (Fig. 1). To identify the optimal number of clusters (k), we
observed the change in variance explained with increasing k
(Supplementary Fig. 5a); the difference in variance explained
between k= 4 and k= 5 was <2%. The elbow of the curves were
between 4 and 6 clusters across the cluster quality metrics
(Supplementary Fig. 5c). We chose k= 4 for parsimony, and
replicate k= 5 in the supplemental information section (Sup-
plementary Fig. 11). Silhouette values for k= 4 revealed good
cluster assignment with very few TRs assigned erroneously (i.e.,
having negative Silhouette values) (Supplementary Fig. 5b). In
general, we found that the mutual information shared between
partitions was quite high (0.88–1), suggesting consistent cluster-
ing across independent initializations of k-means (Supplementary
Fig. 5d). The four brain states found with the 268-region Shen
atlas are replicated with 86 and 400 region atlases (Supplementary
Fig. 7). Finally, the states identified by clustering stroke and
control groups separately are similar to the states identified by
clustering all individuals together (Supplementary Fig. 6).
Therefore, we report the full clustering results in the main
text and include the various replications in the Supplemental
Information.

Table 1 Demographic and clinical characteristics of sample.

Group Total No. Age [median] Sex F Sex M FM1 FM1 FM3 FM4 FM5

Stroke 23 34–74 [57] 8 15 54.3 (33.1) 70.3 (28.8) 80.7 (22.7) 87.9 (16.2) 91.8 (11.4)
Control 24 33–65 [52.5] 10 14
Differences* −2.105 (0.041) 0.746 (0.766)

*Differences between groups. For age: unpaired two-tail t test; t statistic (p value), for sex: Fisher’s exact test: odds ratio (p value). Motor scores: FM1 Fugl-Meyer score at 1-week post stroke, FM2 Fugl-
Meyer score at 2 weeks post stroke, FM3 Fugl-Meyer score at 1-month post stroke, FM4 Fugl-Meyer score at 3 months post stroke, FM5 Fugl-Meyer score at 6 months post stroke. Displayed as: mean
(standard deviation).
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The four brain states consist of distinct activation levels across
the various canonical resting-state networks (Fig. 2a, b). State 1
was characterized by high amplitude activation of regions in the
frontoparietal network and low amplitude activations in the
visual I network (FPN+), state 2 by low amplitude activation in
the frontoparietal network and high amplitude in the visual I
network (FPN−) (equal magnitude activations), state 3 by high
amplitude activation of the somatomotor network and low
amplitude activation in the default mode network (MOTOR+),
while state 4 was characterized by low amplitude activation of the
motor network as well as high amplitude activation of the default
mode network (MOTOR−). The correlations between the 268-
region centroids of the FPN+ and FPN− states and the MOTOR+

and MOTOR− states were strong and negative, suggesting that
brain states are likely hierarchically organized into two meta-

states that are each composed of two sub-states containing
opposing activation patterns (Fig. 2c), a finding which has been
previously reported in other work using this technique5.

Stroke-control differences in brain state dynamics. FO, DT, and
AR of each state were calculated for each subject (Fig. 1a, b).
Because the control subjects were younger on average than the
stroke subjects, we assessed the correlation between age and brain
state dynamic parameters in both groups (Supplementary Fig. 9)
and determined that there was no relationship between age and any
parameter for any state for stroke or control subjects. The average
FO, DT, and AR across all available time points (1 week, 2 weeks,
1 month, 3 months, and 6 months) for each of the four states were
compared between stroke and control subjects via unpaired two-
tail t-tests (Fig. 3, see Supplementary Fig. 8 for full session-specific

Fig. 1 Clustering of time series data and quantification of dynamic state metrics. a Time series data from all subjects were concatenated together along
the time dimension. K-means clustering produced 4 distinct brain activation states defined by different locations in regional activation space (image
adapted from ref. 6). Each TR is assigned to one of four brain states based on k-means partitions. b Fractional occupancy, dwell time, appearance rate, and
transition probabilities are calculated separately for each subject and for each state.
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results for each state, and see Supplementary Fig. 10 for the general
pattern of brain dynamics observed in stroke and control subjects).
Significantly lower FO of FPN+ in stroke subjects was observed at
every session from 1 week to 6 months post-stroke (session 1 t-
statistic: −2.18, 95% CI= [−0.0587, −0.0019], session 2 t-statistic:
−3.36, 95% CI= [−0.0458, −0.014], session 3 t-statistic: −2.24,
95% CI= [−0.0435, −0.0023], session 4 t-statistic: −2.14, 95%
CI= [−0.0516, −0.0016], session 5 t-statistic: −2.0725, 95%
CI= [−0.0553, −0.0007], p(FDR) for all five tests < 0.05) (Fig. 3a).
Differences in DT of FPN+ were observed only in the chronic stage
of stroke (6 months post-stroke) (p(FDR)= 0.0315, corrected over
five tests) (Fig. 3c). Stroke subjects had significantly lower time-
averaged FO in FPN+ compared to control subjects ((t-statistic:
−3.7334, 95% CI= [−0.0425, −0.0127], p(FDR)= 0.0021), which
was possibly driven more by the significantly lower DTs in FPN+

observed in stroke subjects (p(FDR)= 0.0105) (Fig. 3b, d). The
frontoparietal network used in this atlas contains nodes in the
dorsolateral prefrontal cortex, posterior parietal cortex, as well as
nodes in the posterior inferior temporal lobe and inferior cere-
bellum. No differences in AR of FPN+ were observed over the
sessions (Fig. 3e, f).

Stroke subjects had significantly reduced transition probabil-
ities from FPN+ and MOTOR− into FPN+ (p(FDR)= 0.023 and
0.020, respectively) (Fig. 4a, b). The lower persistence probability
in stroke for FPN+ seems to be driven by chronic-stage
differences; in the session-specific analysis, individuals with stroke
have a significantly lower persistence probability for FPN+ at the
6-month time point (p(FDR)= 0.030) and there is a trend for
lower persistence probability at 3 months (Fig. 4c).

Frontoparietal activation relates to motor recovery in indivi-
duals with dominant-hand CST damage. We observed a sig-
nificant interaction effect between changes in FPN+ parameters
and dominant-hand CST damage on changes in Fugl−Meyer
scores (CSTD � ΔFOFPNþ

chronic: p(FDR)= 0.0091, CSTD � ΔFOFPNþ
chronic:

p(FDR)= 0.0090), as well as a significant association between
changes in FPN+ parameters and changes in Fugl-Meyer scores for
subjects with dominant-hand CST damage (i.e., marginal effects)
(ΔDTFPNþ

chronic: p(FDR)= 0.0091, ΔFOFPNþ
chronic: p(FDR)= 0.0098), such

that increases in (or smaller decreases in) DTs in these subjects
were associated with greater motor improvements (Fig. 5). We
confirmed the accuracy of our models by verifying that the

residuals were normally distributed (Supplementary Fig. 13). Some
individuals with dominant-hand CST damage show decreases in
FPN+ recruitment over time, but smaller decreases in DTFPNþ

and
FOFPNþ

are associated with better recovery. Including age and sex
in the models does not alter the results (CSTD � ΔFOFPNþ

chronic:
p(FDR)= 0.0166, CSTD � ΔDTFPNþ

chronic: p(FDR)= 0.0301, marginal
ΔFOFPNþ

chronic: p(FDR)= 0.016, ΔDTFPNþ
chronic: p(FDR)= 0.016). The

marginal effect for the DT analysis was replicated in k= 5 (Sup-
plementary Fig. 11) but not the interaction effect, nor either effect
for FO.

Finally, we observe that there was a strong and significant
correlation between baseline FM and ΔDTFPNþ

chronic and ΔFOFPNþ
chronic for

subjects with dominant-hand CST damage (R=−0.83, p= 0.0054,
R=−0.71, p= 0.033, respectively), see (Supplementary Fig. 14a,
b), such that subjects with more baseline impairment had the
greatest increases in ΔDTFPNþ

and ΔFOFPNþ
from baseline to

chronic time points. Therefore, we proceeded with creating the
null model as described in the Methods section to verify that
the observed relationships between ΔFM and ΔDT=FOFPNþ

chronic
were not a byproduct of the correlation with baseline FM.
Indeed, the observed correlation between ΔFM and ΔDTFPNþ

chronic is
significantly greater than the null distribution of correlation
between simulated proportional recovery and ΔDTFPNþ

chronic
(p= 0.0240) (Supplementary Fig. 14c). However, the observed
correlation between ΔFM and ΔFOFPNþ

chronic is not significantly
greater than what is observed in the null distribution (p= 0.50)
(Supplementary Fig. 14d). This suggests that the observed
relationship between ΔFM and ΔDTFPNþ

chronic in subjects with
dominant hemisphere CST damage is not merely due to
baseline correlations and proportional recovery, whereas that
the relationship between ΔFM and ΔFOFPNþ

chronic may be driven by
the degree of impairment at baseline.

FO differences are related to FC differences. Four network pairs
had a high magnitude contra-activation (large-amplitude activity
in opposite directions) in the FPN+ state: visual I (VIS I) and
frontoparietal (FPN), subcortical/cerebellum (SUB) and visual I
(VIS I), motor (MOTOR) and subcortical/cerebellum (SUB), and
motor (MOTOR) and frontoparietal (FPN) (Fig. 6a). Two pairs of
networks had high magnitude co-activation (large-amplitude

Fig. 2 Four brain activity states. a Centroids of each state calculated as the mean of the normalized regional activation over all TRs assigned to that state.
b Radial plots displaying cosine similarity between each cluster and each canonical network; red indicates cosine similarity of the high amplitude
activations, blue indicates cosine similarity of the low amplitude activations. Labels for each state were derived from analyzing the magnitude and type of
overlap of each centroid with the 8 canonical networks. c Region-level correlation of each pair of brain state centroids. DMN default mode network, FPN
frontoparietal network, MED FRONT medial frontal network, VIS III visual association network, VIS II visual network 2, VIS I visual network 1, MOTOR
motor network, SUB subcortical/cerebellum network.
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activity in the same direction) in the FPN+ state: SUB and FPN,
and MOTOR and VIS I (Fig. 6a). For each individual, we cor-
related FOFPNþ

with the FC between each pair of co-activated and
contra-activated networks, expecting two trends. First, for the
highly contra-activated network pairs, we expected a negative
correlation between FOFPNþ

and FC, as more time spent in FPN+

would make the correlation between those networks more
negative. Second, for the highly co-activated network pairs, we
expected a positive correlation between FOFPNþ

and FC as more
time spent in this state would make the correlation between those
networks more positive. We did indeed observe the expected
relationships for all pairs of networks (Fig. 6b), where the
strongest relationships between FC and FO were observed for
those network pairs that had the greatest recruitment in FPN+, as
measured by cosine similarity with the FPN+ centroid (VIS I and
FPN). Further, we see that the correlation between FOFPNþ

and

FC is preserved across and within the groups and is not driven by
across-group differences (Simpson’s paradox). Finally, dynamic
fluctuations in FOFPNþ

track changes in dynamic FC within
frontoparietal areas (Fig. 6c–e), where the average correlation
across subjects between sliding-window FC and FOFPNþ

is 0.29
(p= 0, assessed by permutation).

Discussion
Large-scale brain activity patterns, or states, can be thought of as
group-level temporal building blocks of canonical FC, reflecting
sequences of activity that lie ‘under the hood’ of FC. Mapping the
dynamics of these states offers a fine-grained view into shifts in
the temporal sequences of neural activity after stroke that has not
yet been explored. In the present study, we provide evidence that
spatiotemporal brain dynamics, particularly in a state character-
ized by high-amplitude frontoparietal activity, are altered after
pontine stroke for at least up to 6 months post-infarction. We
further demonstrate that increased DT in this frontoparietal state
is meaningfully related to better improvements in motor function
for individuals with dominant-hand CST damage. Finally, we
show a direct relationship between time spent in brain states and
FC both in controls as well as individuals with stroke.

We observed that stroke subjects spent less time in a brain state
characterized by high amplitude frontoparietal network activa-
tion, particularly in the sub-acute to chronic stages of stroke (3
and 6 months post-stroke). The frontoparietal network, con-
taining nodes in the frontal cortex like the dorsal premotor cortex
and in the parietal cortex like the posterior parietal cortex and
intraparietal sulcus, is thought to act as a top–down influence on
primary motor networks to control motor output16. Commu-
nication between nodes in the frontoparietal network is known to
be important for computations involved in goal-directed move-
ment, such as motor imagery17, prospective action judgements18,
and generating appropriate hand positions to interact with
objects19. Evidence of reduced FC within the frontoparietal net-
work has been observed in subcortical stroke subjects20, as has
reduced effective connectivity of the frontoparietal network on
the motor network21. Our study extends this current knowledge
by demonstrating that the influence of the frontoparietal network
in stroke subjects may be weakened, with reduced time spent in
states with high amplitude frontoparietal activity.

We did not observe changes in the FO, DT, or AR of the
MOTOR+ or MOTOR− states in stroke subjects, as one may
anticipate after damage to the CST. Instead, we observed changes
in the transition probabilities between MOTOR− and FPN+, and
MOTOR− and MOTOR+. These may be more subtle impacts of
CST disruption that change the sequence of states visited at rest.
A lack of differences in the MOTOR states could also arise due to
the fact that the method cannot detect differences in the mag-
nitude of activations. A critical step in the method involves
normalizing each region’s brain activity before clustering. This
step would theoretically remove stroke-related differences in the
magnitude of activation of motor areas that one may expect after
CST damage. As the focus of our paper was to explore stroke-
related changes in the temporal patterns of brain activity, we did
not explore this possibility, but future work should examine
changes in both the magnitude and temporal properties of these
states after stroke.

Recent work has shown that individuals with CST damage
(measured using motor-evoked potentials) have greater resting-
state FC in the frontoparietal network compared to individuals
without CST damage15. We observed that individuals with
dominant-hand CST damage had a positive relationship between
changes in motor recovery and changes in DTs in the FPN+ state
from 1 week to the chronic time period post stroke. Increased

Fig. 3 Group differences in brain state dynamics for FPN+. a, c, e Stroke-
control differences in session-specific fractional occupancy (FO), dwell time
(DT), and appearance rate (AR) in FPN+ over the post-stroke recovery
period. c, d, f Stroke-control differences in average FO, DT, and AR
(averaged over each subject's 2–5 longitudinal sessions). Hashtags (#)
represent p values < 0.05 after multiple comparisons correction within each
parameter (i.e., FO, DT, AR), single asterisks (*) represent significant
uncorrected p values < 0.05. Dwell time shown in units of TRs. n= 24
biologically independent control subjects at each time point; n= 23, 23, 22,
21, 20 biologically independent stroke subjects for time point 1, 2, 3, 4, and
5, respectively. On each box, the central mark indicates the median, and the
bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively.
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Fig. 4 Differences in transition probabilities between stroke and control groups. Transition probabilities include persistence probabilities, i.e. the
probability that a state does not transition out of itself. a Differences in average transition and persistence probabilities (over time) between groups.
b Same data as a, visualized with arrows colored by t-statistic. c Differences in transition probabilities at each follow-up session. T-statistics (stroke-
control) are displayed on the color map; hashtags (#) represent p values < 0.05 after multiple comparisons correction, single asterisks (*) represent
significant uncorrected p values < 0.05. n= 24 biologically independent control subjects at each time point; n= 23, 23, 22, 21, 20 biologically independent
stroke subjects for time point 1, 2, 3, 4, and 5, respectively.

Fig. 5 Results from linear models with N = 21 for each model. Colors indicate the marginal effects plots of change in state metrics within the regression
model. Marginal effects plots of the change in Fugl–Meyer scores versus the change in fractional occupancy (FO) (a) and dwell time (DT) (b) of FPN+ from
baseline to chronic time points. Shaded bars indicate 95% confidence intervals.
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time spent in the frontoparietal network in subjects with domi-
nant hemisphere CST damage may be a form of compensation
related to structural reserve capacity, a concept believed to reflect
increased neural substrate that is neuroprotective against stroke
and can modify outcomes22. This result, from an exploratory
analysis, suggests that frontoparietal activation may be an adap-
tive strategy to support motor recovery which may be more
relevant for subjects with dominant hemisphere CST damage.
This hypothesis requires formal examination in future research.

Finally, we showed that across controls and individuals with
stroke, FO of the FPN+ state and FC between networks that
dominate that state were related. For example, FC between pairs
of networks that were co-activated in the FPN+ state were posi-
tively correlated with FO and FC between pairs of networks that
were contra-activated in the FPN+ state were negatively corre-
lated with FO. Less negative FC between the visual and FPN
network was related to less time spent in FPN+, a state in which
the two networks had large magnitude activations in opposite
directions. Our findings suggest that time spent in certain brain
states may underlie between-group FC differences; a finding
which we also replicated with dynamic, sliding-window analysis.
Knowing how stroke and recovery from stroke are related to time
spent in these states may be helpful in designing non-invasive
stimulation strategies that are based on direct co-activation/
conta-activation of certain regions or networks, not on indirect
modulation of FC between pairs of regions/networks.

Consideration of state metrics like DTs, FO, AR, and transition
probability has the potential to be of great clinical relevance.
Stimulation therapies like transcranial magnetic stimulation
(TMS) activate or inhibit specific brain areas, often in an attempt
to modulate networks whose connectivity has been associated
with better recovery23–25. These stimulation methods may
improve outcomes for those with stroke by permitting the

development personalized treatment protocols. Recent TMS
modeling work has shown that the effect of regional stimulation
on FC depends on the brain state at the time of stimulation26–28.
Determining subject-specific metrics of recurring patterns of
brain activity may prove to have clinical benefit in the timing and
spatial targets of stimulation treatments29.

Furthermore, the discovery of the effect of the dominant
hemisphere in this paper may aid in refining how treatments are
individually tailored. In a recent paper, Hordacre et al.30 propose
a personalized model and suggest targeting alternative motor
networks with tDCS. Based on this paper’s findings, we con-
jecture that this form of stimulation may only be appropriate in
those with damage to the dominant hemisphere CST. Addition-
ally, the direction of neural activity changes underlying FC dif-
ferences across pathological groups compared to control
populations has not yet been fully quantified. We showed that
analyzing FC differences in the context of metrics of brain
dynamics provides a more complete picture as to what activation
patterns are driving observed differences. If the goal of stimula-
tion therapies is to recapitulate functional network connectivity
associated with better outcomes, then understanding how the
activations within those networks give rise to connectivity dif-
ferences may produce more effective targeting strategies.

There are several limitations to the study. First, the use of four
clusters was chosen heuristically, and it is possible that more or
fewer brain states exist in the stroke population. Second, k-
means-based clustering of the time series does preserve the
temporal resolution of brain states (as opposed to static or even
dynamic FC), but with a few caveats. The true activation for a
subject at a given time point is most similar to, but not identical
to, the discrete cluster centroids described in this paper. There is
significant variability in individual activation patterns which may
be obscured by concatenating all subjects together and assigning

Fig. 6 Assessing the relationship between fractional occupancy of FPN+ and functional connectivity within the frontoparietal network. a Pairs of highly
activated networks in FPN+. b Functional connectivity (FC) between co-activated and contra-activated networks in FPN+ is related to fractional occupancy
(FO) of FPN+ (FOFPNþ

) in both stroke and control subjects. Specifically, fewer TRs in a state with strongly contra-activated/co-activated networks results in
smaller magnitude FC between those networks. c Areas with high activation in the FPN+ centroid. d Dynamic, sliding-window fluctuations in FOFPNþ

correlate with dynamic FC between regions highly active in the FPN (areas in c). e Subject-average correlation between dynamic, sliding window FOFPNþ

and FC of regions highly active in FPN+ (black line) and a null distribution of 100 subject-average correlations between dynamic, sliding-window FOFPNþ
and

FC in a set of randomly selected regions (blue histogram).
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each TR to a single, group-level cluster11. However, the goal of
this study is to derive a meaningful group-level characterization
of activity patterns after pontine stroke that may relate to motor
recovery. Future work should address extending clustering results
to individual subjects in order to support tailored treatments.
Additionally, our fMRI sampling rate was 3 seconds which is too
slow to capture faster, possibly relevant, brain dynamics12,31.
Third, the frontoparietal network tends to be lateralized in motor-
related activation; however, the clustering approach here uncov-
ered a state with bilateral frontoparietal network activation.
Therefore, determining whether contralesional or ipsilesional
frontoparietal areas are more involved in recovery in subjects
with dominant CST damage was not possible in this analysis.
Fourth, the small sample size of subjects with dominant-hand
CST damage limits confidence in the findings. Further analyses
should attempt to replicate these findings with larger samples of
subjects, including left-handed subjects with right hemisphere
lesions. Additionally, CST integrity was assessed with the Dice
coefficient and a population atlas which may not be accurate for
all subject’s neuroanatomy. Finally, most of the individuals with
dominant-hand CST damage in the model had left-hemisphere
lesions, so we cannot fully rule out whether the changes are
associated with the left hemisphere or the dominant hemisphere
specifically. Similarly, this method is limited in its ability to dis-
tinguish the separate contribution of the ipsilateral and con-
tralateral sensorimotor areas, which are known to be differentially
activated after stroke32, as it seeks to determine recurring states
present in healthy controls and stroke subjects. As a result, we
expect that our results reflect adaptations/disruptions to “cano-
nical” brain activation states present across stroke and control
populations (and may change after stroke in the proportion or
frequency with which they are expressed). Further work that
investigates more states, possibly states specific to the post-CST
stroke brain, may elucidate the role of contralesional hemisphere
activation, but that is beyond the scope of this study.

Methods
Data description. The data consist of 23 first-episode stroke patients (34–74 years
old; mean age 57 years; 8 female) with isolated pontine infarcts and 24 healthy sex-
matched controls (33–65 years old; mean age 52 years; 10 female). Written
informed consent was obtained from all participants. A subset of the data
(11 stroke subjects and 11 healthy control subjects) used here has been previously
described in ref. 33; the current study includes an additional 12 stroke subjects and
13 control subjects. Of the twenty-three stroke subjects, fourteen had right
brainstem infarcts and nine had left brainstem infarcts (Supplementary Figs. 1a, 2,
3). Patients were scanned between two and five times over a period of 6 months.
Specifically, MRIs were obtained at 7, 14, 30, 90, and 180 days after stroke onset on
a 3T TimTrio Siemens using a 12-channel phase-array head coil. Fugl-Meyer
assessments were performed twice for each subject at each session and averaged
(Supplementary Fig. 1b). The Fugl–Meyer (FM) test includes 33 tasks that assesses
motor function, balance, sensation, and joint function of the upper limbs34. Each
task was rated on a scale of 0–2 (0 indicates the subject was unable to perform the
task, 1 indicates the subject could partially perform the task, and two indicates the
subject was able to perform the task). The total sum of the 33 scores was then
normalized to a score between 0 and 100, where 100 represents the best possible
performance across all 33 tasks. Anatomical images were acquired using a sagittal
MP-RAGE three-dimensional T1-weighed sequence (TR, 1600 ms; TE 2.15 ms; flip
angle, 9∘, 1.0 mm isotropic voxels, FOV 256 × 256). Each MRI session involved
between two and four runs of task-free fMRI at 6 minutes each. Subjects were
instructed to stay awake with their eyes open; no other task instruction was pro-
vided. Images were acquired using the gradient-echo echo-planar pulse sequence
(TR, 3000 ms; TE, 30 ms; flip angle, 90∘, 3 mm isotropic voxels). Anatomical MRI,
lesion masks, and fMRI data were processed as described below and in ref. 35.

Anatomical MRI processing. Preprocessing of the longitudinal anatomical MRIs
included affine registration of each subject’s T1 scans to the baseline T1 scan,
collapsing co-registered files to an average T1, and creation of a skull-stripped
brain mask followed by manual editing and binarization of the hand-edited mask.
The brain mask was then transformed back to each of the follow-up T1s in native
space using the inverse registration acquired from the first step. This was followed
by bias field correction of all the T1 scans, transformation of native-space bias field-
corrected data back to baseline space, and the creation of an average bias field-

corrected scan for each subject. Stroke lesion masks were hand-drawn on these
transformed T1 scans by ADB and JEB. Structural normalization was performed
with the ANTs toolbox36.

Functional MRI processing. Preprocessing of the longitudinal functional MRIs
was performed using the CONN toolbox37, including functional realignment of
volumes to the baseline volume, slice timing correction for alternating acquisition,
segmentation, and normalization, and smoothing with a 4 mm FWHM kernel. This
was followed by a denoising protocol (CompCor)38, which regressed out the cer-
ebrospinal fluid and white matter signal, as well as 24 realignment parameters
(added first-order derivatives and quadratic effects). Temporal band-pass filtering
(0.008–0.09 Hz), despiking, and global signal removal regression were also per-
formed. The first four frames of each BOLD run were removed. Frame censoring
was applied to scans with a framewise displacement threshold of 0.5 mm along
with its preceding scan39. Regional time series were acquired by parcellating the
scans into 268 non-overlapping brain regions using a functional atlas derived from
healthy controls40 and averaging the time course of all voxels within a given region.
Voxels identified as lesioned were excluded from regional time series calculations.
The first 200 volumes from each subject’s fMRI were used for subsequent analyses
to ensure equal contribution of each scan to the brain state clustering (see below for
details). Finally, each of 268 regions was assigned to one of eight functional net-
works, identified by ref. 41 using spectral clustering in healthy subjects (Supple-
mentary Fig. 4) named as follows: medial frontal network, frontoparietal network,
default mode network, subcortical/cerebellum network, motor network, visual I
network, visual II network, and the visual association network. These networks
reflect collections of brain regions whose temporal signals are homogeneous at rest
(i.e., the activity of regions within each network is similar over time) in a healthy
population, and are referred to as canonical networks due to their repeated
observation in resting-state data.

Dynamic brain states and their metrics. Following Cornblath et al., all subjects’
regional fMRI time series were concatenated, producing an n × p matrix where
n= 47 subjects × 200 TRs × 2–5 sessions and p= 268 brain regions). This matrix
was z scored along columns such that each brain region had a mean of 0 and a
standard deviation of 1. K-means clustering was then applied to identify clusters of
brain activation patterns, or states (Fig. 1a). Pearson correlation was used as the
cluster distance metric and clustering was repeated 50 times with different random
initializations before choosing the solution with the best separation of the data
(minimum sum of point-to-centroid distances, summed over all k clusters). To
determine the optimal number of clusters and evaluate the quality of clustering, we
performed several analyses (Supplementary Fig. 5). First, we plotted the variance
explained by clustering (between-cluster variance divided by the sum of between-
cluster and within-cluster variance) for k= 2–12 and identified the curve’s elbow at
k= 4 as a potential optimal number of clusters. We also plotted the distortion
curve, which is the average distance from each point to its centroid and again
determined via elbow criteria an optimal cluster number of 4. We then plotted
silhouette coefficients for k= 4 to assess if there was evidence of misassignment of
any of the points. To further assess the stability of clustering and ensure our
partitions were reliable at k= 4, we repeated the above clustering process 50 times
and compared the adjusted mutual information (AMI) between each of the 50
results. The partition which shared the greatest total AMI with all other partitions
was selected as the final cluster assignment. The centroids of each state (cluster)
were calculated by taking the mean of all TRs assigned to that state in regional
activation space6. Following Cornblath et al., dominant networks in each state were
determined by calculating the cosine similarity between each of eight networks and
each centroid. High and low amplitude network-level activations were assessed
separately by taking the cosine similarity of the positive and negative parts of the
centroid (and zeroing out values with the opposite sign), respectively.

We performed several analyses to assess the robustness of our results under
different conditions. First, we repeated the entire clustering process using two other
brain atlases of varying resolutions: the group average FreeSurfer Desikan-Killany
atlas with additional cerebellum and subcortical regions (86 regions)42 and the
CC400 atlas (400 regions)43. Finally, we performed the clustering after combining
stroke and control data together because we were interested in determining
differences in shared activation states across both groups. However, it may be
possible that stroke and control subjects occupy distinct states that can only be
observed by clustering stroke and control subjects separately. Therefore, we
repeated the clustering on the stroke and control subject data separately to
determine if there were any differences in the resulting states compared to those
obtained with the combined data.

FO, DT, AR, and TPs were calculated separately for each of the five sessions
(1 week, 2 weeks, 1 month, 3 months, and 6 months post baseline or stroke) and
the average FO/DT/AR/TPs for each subject was obtained by taking the mean
across their longitudinal sessions. State dynamics metrics were compared between
groups using unpaired two-tailed t tests and corrected for multiple comparisons
using Benjamini–Hochberg (BH) and a false discovery rate (FDR) of 0.0544.

Assessment of CST integrity. The probabilistic Tang brainstem atlas45 was used
to define left and right binary CST masks in 2 mm MNI space by voxel-wise
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thresholding at 50%. The Dice overlap between the left and right CST masks and
the binarized lesion mask was calculated for each subject and lesions were visua-
lized to verify intersection with the CST (Supplementary Figs. 2 and 3). In one
subject (SUB13), Dice overlap with CSTs were low; however, upon visualization the
lesion appeared to impact CST ventral to the atlas, i.e., in the spinal cord. This was
confirmed by assessing the lesion’s overlap with a spinal cord atlas (Supplementary
Fig. 12) using the Spinal Cord Toolbox46. In total, 21/23 subjects had CST damage
and 10/23 subjects had damage to their dominant-hand CST, but only 9/23 had
motor assessment data at the 3- and/or 6-month time points. Of the nine subjects
with dominant CST damage and motor scores, 7/23 were right-handed and either
had left CST damage superior to decussation or right spinal cord CST damage
inferior to decussation, 1/23 was left-handed with bilateral damage, and 1/23 was
left-handed with right CST damage (Supplementary Table 1).

Relating FPN+ state metrics to chronic motor outcomes. We were interested in
determining whether FPN+ state metrics related to longer-term (chronic) motor
performance outcomes specifically in subjects with dominant hemisphere CST
damage. To assess the interaction effect of hand dominance on the relationship
between the frontoparietal state parameters (FO and DT) over time and FM scores
over time, two linear models were constructed:

ΔFMchronic � CSTD þ ΔDTFPNþ
chronic þ CSTD � ΔDTFPNþ

chronic þ β ð1Þ

ΔFMchronic � CSTD þ ΔFOFPNþ
chronic þ CSTD � ΔFOFPNþ

chronic þ β ð2Þ
where:

ΔFMchronic ¼ FMchronic � FMbaseline ð3Þ

ΔDTFPNþ
chronic ¼ DTFPNþ

chronic � DTFPNþ
baseline ð4Þ

ΔFOFPNþ
chronic ¼ FOFPNþ

chronic � FOFPNþ
baseline ð5Þ

and CSTD is a binary variable indicating whether the subject’s dominant-hand CST
had non-zero Dice overlap with the lesion. FMbaseline was set to the earliest FM
score available for each subject, which was the FM score at 1-week post-stroke for
most of the subjects. For two subjects (SUB22 and SUB23), 1 week FM scores were
not available; the baseline FM scores for these subjects was estimated by their oldest
FM score (2 weeks and 1 month, respectively). FMchronic was set to the most recent
chronic FM score (i.e., at 3 or 6 months after stroke, whichever is later). Only one
subject (SUB6) had a FM score at 3 months post-stroke but not 6 months post
stroke. Two subjects (SUB12 and SUB20) were excluded from the model entirely as
they did not have any FM scores or imaging data in their chronic time per-
iod, beyond 1 month and 2 weeks, respectively. The models were constructed using
only the FPN+ metrics that were found to have significant differences between
stroke and controls at the 3 and 6-month time points. P-values obtained for each
predictor across all models were corrected for multiple comparisons using BH-FDR
and a threshold of 0.05.

Effect of proportional recovery on observed relationships. We were interested
in determining whether relationships observed in the above model were driven by
the correlation (if any) between DT/FO in FPN+ and baseline FM scores in subjects
with dominant-hand CST damage. Because most subjects obtained proportional
recovery or greater, i.e. their final impairment was ≥70% of their initial
impairment47, their 1-week FM scores were strongly correlated with 3- and
6-month FM scores (a phenomenon called the ceiling effect, see ref. 48). Therefore,
it is possible that relationships between ΔFM and ΔFO=DTFPNþ

observed in the
linear model could be driven by an underlying relationship between baseline FM
scores and ΔFO=DTFPNþ

. To explore this possibility, for those FPN+ metrics whose
change had a significant correlation with baseline FM (which were chronic
ΔDTFPNþ

and ΔFOFPNþ
), we performed permutation testing to obtain the null

distribution of correlations between ΔFM and ΔFO=DTFPNþ
, assuming patients

obtain only proportional recovery (PR). FMbaseline, FO=DT
FPNþ
baseline and FO=DTFPNþ

chronic
were fixed to their actual observed values, but FMPR

chronic was randomly generated by
simulating scores according to the proportional recovery rule as in ref. 47. Speci-
fically, each subject’s FM scores (FMPR

chronic) were set to 70% of their initial
impairment (100-FMbaseline) with an noise term ϵ ~N(0, 3):

FMPR
chronic ¼ 0:7 � 100� FMbaseline

� �þ ϵ; ð6Þ
The p-value for the correlation between the observed ΔFM and ΔFO=DTFPNþ

and
was then calculated by calculating the proportion of times the null correlation
exceeded the true correlation (Supplementary Fig. 14c, d). If that p-value is sig-
nificant, then we can be more confident that ΔFO=DTFPNþ

is correlated with the
change in FM above and beyond baseline FM and the expected proportional
recovery.

Comparison of FO and FC. Finally, we wanted to understand how differences in
state dynamics between controls and stroke subjects could translate to differences
in FC between the two groups. We hypothesize that individuals with more TRs

(higher FO) in a brain state with high co-activation of two networks will result in
larger positive FC between those networks, while more TRs (higher FO) in a brain
state with large activations in opposite directions (contra-activation) of two net-
works will result in a more negative FC between those networks (Supplementary
Fig. 15). We tested this hypothesis for our brain state of interest, FPN+, in the
following way. First, we identified the pairs of networks that were highly co-
activated/contra-activated during FPN+, which was defined as having an absolute
value cosine similarity with the centroid of FPN+ of greater than 0.2 (chosen
heuristically as the threshold separating networks active vs. not active during a
given state). We only analyzed the networks with larger magnitude co-activations/
contra-activations since the networks with activity closer to zero in the FPN+ state
are not likely to be influenced by changes in FO of this state. We first calculated the
FC as the Pearson’s correlation between each pair of 268 regions and performed a
Fisher’s r-to-z transformation of the FC weights. We then averaged the FC values
between regions belonging to each pair of networks to produce a network-level FC
(i.e., the average FC within each of 8 predefined networks, including the fronto-
parietal network). We correlated each subject’s FO in the FPN+ state with the FC
between each pair of networks determined to be highly co-activated/contra-acti-
vated in the FPN+ state. In an analysis inspired by ref. 12, we further demonstrated
that temporal fluctuations in FOFPNþ

over segments of the scan are related to sliding-
window FC in nodes of the frontoparietal network. We first identified regions with
high z-score BOLD signal in the FPN+ centroid (>0.4), and, for those regions, cal-
culated their sliding-window FC and FOFPNþ

using the same window and overlap
(window size= 45 seconds, overlap= 3 seconds). We then correlated these two
values over the entire fMRI scan for each individual. To ensure any observed rela-
tionship was not driven by global BOLD fluctuations, we recalculated this correlation
using 100 randomly selected regions’ dynamic FC as a null comparison.

Statistics and reproducibility. We calculated statistics comparing brain dynamic
parameters between stroke and control groups. Where stated, comparisons were
corrected for multiple comparisons to reduce type I error. The clustering was
repeated 50 separate times to ensure the final solution was not in large disagree-
ment with other possible solutions. We replicated the main analyses with k= 5
brain states and found a general agreement between the results obtained with k= 4.
Code for the analyses in this manuscript have been made publicly available.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data are not publicly available due to privacy issues regarding clinical data. Raw data to
generate Figs. 3 and 6e can be found in the file Supplementary Data 1 and 2, respectively.
All other data can be made available upon request to the corresponding authors on the
condition that a formal data sharing agreement is made.

Code availability
The code to replicate this analysis is available on GitHub: https://github.com/
emilyolafson/dynamic-brainstates and Zenodo49.
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