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ABSTRACT Coronaviruses (CoVs) initiate replication by translation of the positive-
sense RNA genome into the replicase polyproteins connecting 16 nonstructural pro-
tein domains (nsp1-16), which are subsequently processed by viral proteases to yield
mature nsp. For the betacoronavirus murine hepatitis virus (MHV), total inhibition of
translation or proteolytic processing of replicase polyproteins results in rapid cessa-
tion of RNA synthesis. The nsp5-3CLpro (Mpro) processes nsps7-16, which assemble
into functional replication-transcription complexes (RTCs), including the enzymatic
nsp12-RdRp and nsp14-exoribonuclease (ExoN)/N7-methyltransferase. The nsp14-ExoN
activity mediates RNA-dependent RNA proofreading, high-fidelity RNA synthesis, and
replication. To date, the solved partial RTC structures, biochemistry, and models use or
assume completely processed, mature nsp. Here, we demonstrate that in MHV, engi-
neered deletion of the cleavage sites between nsp13-14 and nsp14-15 allowed recov-
ery of replication-competent virus. Compared to wild-type (WT) MHV, the nsp13-14
and nsp14-15 cleavage deletion mutants demonstrated delayed replication kinetics,
impaired genome production, altered abundance and patterns of recombination, and
impaired competitive fitness. Further, the nsp13-14 and nsp14-15 mutant viruses dem-
onstrated mutation frequencies that were significantly higher than with the WT. The
results demonstrate that cleavage of nsp13-14 or nsp14-15 is not required for MHV vi-
ability and that functions of the RTC/nsp14-ExoN are impaired when assembled with
noncleaved intermediates. These data will inform future genetic, structural, biochemi-
cal, and modeling studies of coronavirus RTCs and nsp 13, 14, and 15 and may reveal
new approaches for inhibition or attenuation of CoV infection.

IMPORTANCE Coronavirus replication requires proteolytic maturation of the nonstruc-
tural replicase proteins to form the replication-transcription complex. Coronavirus repli-
cation-transcription complex models assume mature subunits; however, mechanisms of
coronavirus maturation and replicase complex formation have yet to be defined. Here,
we show that for the coronavirus murine hepatitis virus, cleavage between the nonstruc-
tural replicase proteins nsp13-14 and nsp14-15 is not required for replication but does al-
ter RNA synthesis and recombination. These results shed new light on the requirements
for coronavirus maturation and replication-transcription complex assembly, and they may
reveal novel therapeutic targets and strategies for attenuation.
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Positive-strand RNA viruses initiate replication by host-mediated translation of ge-
nome 1RNA into protein. A limitation of this strategy is the lack of protein diversity

that can be translated from a single mRNA. Positive-strand RNA viruses have evolved
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around this limitation by coding for polyproteins and/or ribosomal frameshifting to
maximize the genetic potential of a single RNA molecule (1–6). However, this requires
the use of viral or host proteases to process the polyproteins into the mature proteins
(7). Inhibition of polyprotein processing is often lethal to viral replication, and as such,
viral proteases are targets for therapeutic intervention (8–11).

Coronaviruses (CoVs) have the largest-known RNA genomes, ranging from 27 to
32 kb. The first two-thirds of the genome code for 16 nonstructural proteins, nsps1-16,
while the 39 end of the genome codes for structural and accessory proteins (12, 13).
Two open reading frames at the 59 end of the genome (ORF1a and ORF1ab) drive
expression of the nonstructural proteins as two co-amino-terminal polyproteins, pp1a
and pp1ab. ORF1a translation results in nsp1-10 expression, and a ribosomal frameshift
in nsp12 results in ORF1ab, consisting of nsp1-16 (Fig. 1A) (2–6). Proteolytic processing
of the 16 nonstructural proteins is mediated by two or three virus-encoded protein-
ases, depending on the CoV subgenera and species. These include one or two papain-
like proteases (PLpro) in nsp3 and one 3C-like protease in nsp5 (Mpro), henceforth
referred to as nsp5 (7). The nsp5 processes the pp1a and pp1ab polyproteins from
nsp4-16 (Fig. 1A). Coronavirus cleavage site motifs consist of 10 amino acids desig-
nated P5-P1/P19-P59, where polyprotein subunits are cleaved between the P1/P19 resi-
dues (Fig. 1B). While the 11 nsp5 P5-P59 cleavage motifs are unique between each sub-
unit, the P1 cleavage residue is a conserved Gln at every known CoV nsp5 cleavage site
(Fig. 1B), with the single exception in HCoV-HKU1 between nsp13-14, which encodes a
His residue (14–22). All biochemical and virological experiments indicate that deletion
of the P1 Gln prevents nsp5-driven cleavage (23–25).

CoV RNA synthesis is mediated by the replication-transcription complex (RTC)
involving nsps7-16. nsps7-10 are nonenzymatic cofactors that bind and facilitate the
enzymatic activities of nsps12-16 (26–37). nsp12 contains RNA-dependent RNA poly-
merase and nucleotidyltransferase activities responsible for genome replication and
subgenomic production, which are facilitated through binding of nsps 7 and 8 (29, 32,
38–42). nsp14 is also a multidomain protein linking a 39-59 exoribonuclease, which reg-
ulates replication fidelity, recombination, and immune evasion, and an N-7 methyl-
transferase that is required for genome capping and immune evasion. The nsp14 ExoN
activity is either enhanced by or requires interaction with the nonenzymatic nsp10 (35,
37, 43–57). Genome capping also involves the activity of the nsp16 2'-O-methyltrans-
ferase, bound to nsp10 (34, 58). The adjacent nsp13 helicase/nucleoside triphospha-
tase (59–62) and nsp15 uridylate-specific endoribonuclease (63, 64) also function dur-
ing replication, and their contributions to the RTC and replication are active areas of
investigation. All current models of the coronavirus RTC present proteins as mature, pro-
teolytically processed forms of nsps7-16. While some studies have investigated the require-
ment for cleavage between nsps7-12 (23, 24), there are currently no reports on the
requirements for cleavage between the enzymatic components of the RTC (nsps12-16).
Thus, there are significant gaps in information and understanding for coronavirus RTC
processing and assembly.

In this study, we determined that the P1-Gln at the nsp13-14 and nsp14-15 cleav-
age sites are dispensable for recovery and replication in MHV. The resulting viruses
were impaired for replication kinetics and had significant fitness disadvantages com-
pared to the wild type (WT). Both mutants had increased mutational frequencies and
had altered recombination profiles compared to WT. These data suggest that the MHV
RTC can function in alternative conformations, either by incorporation of uncleaved
nsp components or through minimal incorporations of cleaved components. A greater
understanding of CoV RTC assembly may reveal novel methods for attenuation and
therapeutic targets.

RESULTS
Recovery of mutant viruses. To determine the processing requirements for pp1ab

nsps12-16 in the betacoronavirus murine hepatitis virus (MHV), we used reverse genetics to

Cleavage Requirements of MHV Replicase Proteins Journal of Virology

August 2022 Volume 96 Issue 16 10.1128/jvi.00841-22 2

https://journals.asm.org/journal/jvi
https://doi.org/10.1128/jvi.00841-22


generate in-frame deletions of the nsp5 cleavage site P1-Gln at each subunit interface:
nsp12 DQ929, nsp13 DQ600, nsp14 DQ521, and nsp15 DQ375. We recovered nsp13 DQ600
(nsp13-14) and nsp14 DQ521 (nsp14-15) viruses, both of which produced a mixed-plaque
phenotype compared to WT MHV that consisted of small- and medium-sized plaques. We
did not recover any other mutant, nor was the DQ600/DQ521 double mutant (nsp13-14-15)
recovered. We then generated low-passage stocks of nsp13-14 and nsp14-15 and used the
P2 progeny for all experiments presented. The deletions of nsp13-14 nucleotides (18,158-
CAG-18,160) and nsp14-15 nucleotides (19,721-CAA-19,723) were confirmed by Sanger
sequencing, and after a single round of infection, the resulting P3 progeny maintained the
intended deletions during and following infections (Fig. 1C).

FIG 1 Coronavirus nsp5 cleavage motifs and recovery of nsp13 and nsp14 cleavage mutants. (A) Schematic of
MHV genome organization, nonstructural protein expression, and cleavage sites for nsp3 and nsp5 proteases
(created with BioRender). (B, left) Alignment of MHV, SARS-CoV, and SARS-CoV-2 nsp5 cleavage motifs for
nsps6-16. (Right) Graphical alignment of MHV nsp5 cleavage motifs for nsps6-16; letter size corresponds to
sequence conservation. (C) Sanger sequencing traces from DBT-9 cells infected with WT, nsp13-14, or nsp14-15
P2 and P3 stocks. Viral cDNA derived from infected monolayers were Sanger sequenced.
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Replication kinetics of mutant viruses. We first evaluated the impact of the P1-
Gln deletions on MHV replication kinetics. Murine astrocytoma DBT-9 cells were
infected at a multiplicity of infection (MOI) of 0.01 PFU/cell, and infected cell superna-
tant samples were collected over 24 h (Fig. 2). Mutant virus replication kinetics were
compared to that of both WT MHV and to the well-characterized nsp14 exoribonu-
clease-inactivating mutant D98A/E91A [ExoN(-)] (45, 47, 48, 53, 65, 66). Infection with
the nsp13-14 mutant resulted in a 3 to 10 h delay to exponential phase of replication,
while the nsp14-15 virus replication was delayed 1 to 4 h (Fig. 2A). To determine the
impact of the P1-Gln deletions on genome production, we performed parallel infec-
tions that were harvested at 8 h post infection (hpi) and 16 hpi over three independent
experiments. At each time point, the infected monolayers were harvested directly in
1 mL TRIzol reagent for RNA extraction. Monolayer-associated genomes were quantified
by 1-step reverse transcription-quantitative PCR (RT-qPCR) with TaqMan probes and pri-
mers detecting nsp2 RNA (Fig. 2B). All of the nsp13-14, nsp14-15, and ExoN(-) mutant
viruses had reduced RNA production at both time points, consistent with the reductions
in titer.

Competitive fitness of mutant viruses.We next evaluated nsp13-14 and nsp14-15
fitness using a coinfection passage competitive fitness assay (66). nsp13-14, nsp14-15,
and ExoN(-) viruses were coinfected with WT MHV encoding a genetic barcode of
seven silent mutations in the nsp2 coding domain. The infected cell supernatants were

FIG 2 nsp13 and nsp14 cleavage mutants have delayed replication kinetics. (A) DBT-9 cells were
infected with MHV WT, nsp13-14, nsp14-15, or ExoN(-) P2 viruses at an MOI of 0.01 PFU/cell.
Supernatant samples were collected at the indicated times, and virus titer was determined by plaque
assay. Data are means 6 standard deviations from three independent experiments. *, P , 0.05. All
other comparisons were not significant as determined by a one-way ANOVA with Dunnett’s multiple-
comparison test. (B) DBT-9 cells were infected with the indicated viruses at an MOI of 0.01 PFU/cell.
Monolayers were harvested in TRIzol at 8 or 16 h post infection. RNA was purified, and total genomes
were quantified by RT-qPCR. Graphed are the individual means from three independent experiments, 6
the standard error of the mean (SEM). ***, P , 0.001; ****, P , 0.0001; ns, not significant (determined
by one-way ANOVA with Dunnett’s multiple-comparison test).
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then harvested at 16 h, titers were determined, and supernatants were passaged three
additional times. Each passage supernatant was harvested, and RNA was extracted
with TRIzol reagent. Primers detecting either the barcoded (WT infection) or nonbar-
coded (WT control, mutant competitor) nsp2 cDNA were used in RT-qPCR reactions.
The ratio of nonbarcoded to barcoded cDNA was plotted over passage number. All
mutant competitor cDNAs were less abundant than WT by passage 2, with a continued
downward trend through passage 4 (Fig. 3A). Only nsp13-14 lineage 2 was present
during the entire course of the experiment: nsp13-14 lineage 1 was undetectable by
passage 3, and lineage 3 was undetectable by passage 4. Similarly, ExoN(-) lineage 2
was not detectable past passage 3. This suggests that these lineages were outcom-
peted by WT past the limit of detection for this assay. For each viral lineage, linear
regression of the plotted ratios over passage was used to determine the relative fitness
for each mutant compared to WT (Fig. 3B). Both cleavage mutants and ExoN(-) had sig-
nificant reductions in fitness relative to WT. These data support the replication kinetics
observations and demonstrate that though viable, the P1-Gln deletions conferred sig-
nificant fitness costs.

Mutation frequencies in mutant viruses. We previously reported that genetic
alteration of the nsp14 exonuclease active site and at the interface of nsp10 and nsp14
reduces the replication fidelity of MHV and severe acute respiratory syndrome corona-
virus (SARS-CoV) (44, 45, 47, 48). These studies as well as structure and biochemistry
results have led to models that nsp14 and its activity is a central regulator of coronavirus

FIG 3 nsp13 and nsp14 cleavage mutants are less fit compared to WT. DBT-9 cells were coinfected
with a barcoded (BC) WT MHV and nonbarcoded WT, nsp13-14, nsp14-15, or ExoN(-) at a combined
MOI of 0.1 PFU/cell. The resulting supernatants were passaged 3 times. (A) The relative quantities of
barcoded and nonbarcoded cDNAs were plotted over passage for the three independent lineages of
each competition. (B) Linear regression from panel A was used to determine relative fitness for each
nonbarcoded virus. Individual data (n = 3) are graphed (means 6 SEM). ***, P , 0.001; ****,
P , 0.0001 (determined by one-way ANOVA with Dunnett’s multiple-comparison test).
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replication fidelity. To determine how the nsp13 and nsp14 P1-Gln deletions affect the
replication fidelity of MHV, we analyzed RNA from infected cells 8 h and 16 h post
infection by short-read Illumina RNA-sequencing (RNA-seq), and we determined the
mutational frequency for each virus at both time points by using the CoVariant pipe-
line (Fig. 4 and 5) (67). The sequencing depth for all viruses was greater at 16 h than
at 8 h (Fig. 4), concomitant with increased genome replication (Fig. 2B). At 8 hpi,
there were no statistical differences in the mutational frequencies between WT or
any mutant (Fig. 5A). In contrast, the mutation frequency for WT significantly
decreased at 16 hpi, but it did not change for the mutants. At 16 hpi, all three
mutants had significantly higher mutation frequencies than WT. Because we previ-
ously reported that loss of ExoN activity in SARS-CoV resulted in proportionally more
transitions than transversions (44), we next asked whether the mutants produced a
specific mutational profile during infection by categorizing the sequenced variants as
transitions or transversions (Fig. 5B and C; Table 1). Neither cleavage mutant had sta-
tistical differences in total transition or transversion frequencies at 8 hpi, while both
mutants had significantly higher total transversion frequencies at 16 hpi. ExoN(-) had
significantly higher transversion frequencies at both time points and a significantly
higher transition frequency at 16 hpi. The individual transition and transversion fre-
quencies are detailed in Table 1, which reveals the unique mutational profile for each
cleavage mutant and ExoN(-).

Analysis of nsp13-14 and nsp14-15 recombination. We previously reported that
nsp14 enzymatic activity is required for efficient recombination (53). To determine if
the nsp13 and nsp14 P1-Gln deletions affect recombination patterns, we analyzed the
same RNA-seq data from 8-h and 16-h infected cell monolayers with the RecombiVIR
analysis pipeline to quantify and identify all recombination junctions that resulted in de-
fective viral genomes (DVGs) and subgenomic RNAs (sgmRNAs). nsp13-14 had a reduced
recombination junction frequency (JFreq; the total number of junction nucleotides per
106 mapped nucleotides) at both time points, while nsp14-15 had no statistical differen-
ces in JFreq at either time point (Fig. 6A). We next delineated the total number of DVGs
and sgmRNA junctions for all viruses at both time points. Both mutants had similar pro-
portions of both total DVGs and sgmRNA junctions at 8 hpi compared to WT, while
nsp13-14 had a significantly larger proportion of DVGs at 16 hpi compared to WT, with a
concomitant smaller proportion of sgmRNA junctions (Fig. 6B). We further quantified the
canonical sgmRNAs for all viruses at each time point (Fig. 6C and D). At 8 hpi, both
viruses had changes in sgmRNA 6: nsp13-14 had significantly less, and nsp14-15 had sig-
nificantly more. However, these changes were not enough to account for a significant
change to the total sgmRNA junction type, as shown in Fig. 6B. At 16 hpi, nsp13-14 had
significantly fewer junctions for every type of sgmRNA, accounting for the overall change
in sgmRNA junctions. nsp14-15 also had changes in sgmRNA junction production; how-
ever, some sgmRNA junctions were slightly lower (sgmRNAs 2, 3, and 4) than WT, while
sgmRNA 6 was higher than WT. Additionally, we analyzed the recombination patterns for
ExoN(-) at both time points, which had more significant changes in DVG and sgmRNA
recombination patterns than either nsp13-14 or nsp14-15 (Fig. 6A to D), and these pat-
terns were consistent with a previous report (53).

DISCUSSION

Here, we show that MHV particles can replicate in the absence of P1 Glns between
nsp13-14 and nsp14-15. Several structures have been solved for coronavirus replicase pro-
teins. These include structures for the following: nsp12 RdRp and nsp13 Hel alone and in
complex with nsp7 and nsp8 (30, 42, 68–75); nsp14 in complex with nsp10 (37, 55–57);
nsp16 also in complex with nsp10 (34, 76–79); hexameric nsp15 (80–85); and nsp9 (31, 86,
87). Despite this catalog of structural data, there are no reported solved structures for a
complete RTC incorporating nsps7-16 or incorporating more than two enzymatic proteins
(nsps 12 and 13). Additionally, there are no reported structures for the pp1a, pp1ab, or
processing-intermediate polyproteins. Atomistic models of coronavirus RTCs are beginning
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FIG 4 RNA-seq coverage maps and variant locations. DBT-9-infected monolayer RNAs from experiments shown in Fig. 2B were
analyzed by RNA-seq for MHV WT (A), nsp13-14 (B), nsp14-15 (C), or ExoN(-) (D) at 8 h and 16 h post infection. Connected
lines denote the depth of coverage, corresponding to the left y axis, and individual symbols denote the frequencies for the
individual variants, corresponding to the right y axis, as they relate to the genomic positions. Shown are representative results
from one of three independent experiments with similar outcomes.
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to be reported based on available structural data for the various components (88).
However, these models only provide possible snapshots for the complete RTC. Additionally,
all coronavirus RTC models assume complete maturation of the subunit proteins. Our data
challenge this assumption and suggest that the MHV RTC can adopt alternate conforma-
tions that either assemble with uncleaved nsp14 intermediates or assemble a minimal com-
ponent complex that precludes uncleaved subunits, albeit with significant fitness costs (Fig.
3) and impairments to RNA synthesis (Fig. 2B).

FIG 5 nsp13 and nsp14 cleavage mutants have increased mutation frequencies at late time points
during infection. DBT-9-infected monolayer RNAs from experiments shown in Fig. 2B were analyzed
by RNA-seq for the indicated viruses, and variant calling was performed on the resulting sequences.
Frequencies of mutations (A), transitions (B), and transversions (C) were determined as the ratio of
mutations per 1 million mapped nucleotides. Graphed are the individual values (n = 3 independent
experiments) 6 SEM. ***, P , 0.001; ****, P , 0.0001; ns, not significant (determined by one-way
ANOVA with Dunnett’s multiple-comparison test).
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Our RNA-seq experiments revealed that mutation frequency decreases during WT
infection. Current models of CoV replication fidelity are based on experiments involving
a single time point of infection (44, 45, 47), suggesting that the coronavirus error rate is
fixed. Our data suggest that the error rate of the replicase complex may not be fixed but
instead may change during infection, either by an unknown activation requirement for
nsp14 ExoN or through incorporation of nsp14 and other subunits into the RTC. We
hypothesize that the composition of the WT replicase complex is distinct at early and
late time points during infection. Early replicase complexes could incorporate fewer com-
ponents that only include fully processed subunits, or they could include processing
intermediates that are cleaved in situ. Biochemical experiments indicate that de novo
RNA synthesis initiation only requires nsps 7, 8, and 12 (29). While these findings have
not been translated to viral experiments, they do suggest that a minimal component
complex could form during nsp5 processing, allowing genome replication to start.

Unlike WT MHV, the mutation frequencies for nsp13-14, nsp14-15, and ExoN(-) did
not decrease over time. Both nsp13-14 and nsp14-15 mutants have intact ExoN DE-E-D
motifs, which suggests that the higher mutation frequencies observed with the cleav-
age mutants were driven by a different mechanism than ExoN(-). This hypothesis is
supported by the observed unique mutational profiles of transitions and transversions
(Fig. 5B and C; Table 1) and recombination patterns (Fig. 6). Several different mecha-
nisms could explain this observation. The enzymatic activity of the uncleaved nsp14
polyproteins may be sterically hindered by the bulky additions of nsp13 and nsp15,
altering or preventing nsp14 incorporation into the RTC. The complex could also suffer
from a lack of or misincorporation of the uncleaved nsp13 and nsp15 polyproteins as
well, altering the normal functions of both enzymes. Uncleaved nsp13-14 could also
impact the interaction of nsp10 with nsp14, as nsp10 interacts with the N-terminal
ExoN domain of nsp14 (35–37, 55–57) and stimulates ExoN activity (35, 48).

TABLE 1Mutation frequency by mutation type

Type of
mutation Change

Time
post infection

Mutation frequencya

WT nsp13-14 nsp14-15 ExoN(-)

Mean SEM Mean SEM P value Mean SEM P value Mean SEM P value
Transitions A to G 8 h 1.391 0.390 0.000 0.000 ns 6.175 0.430 **** 8.961 0.371 ****

16 h 0.000 0.000 0.812 0.311 ns 5.507 0.221 **** 14.364 0.356 ****
G to A 8 h 13.308 1.452 1.766 1.766 ** 18.660 1.342 ns 35.267 2.482 ****

16 h 0.953 0.953 3.831 0.165 * 10.891 0.345 **** 31.442 0.461 ****
C to U 8 h 43.997 21.945 59.688 22.205 ns 2.718 1.385 ns 32.218 26.398 ns

16 h 1.055 1.006 8.546 0.180 ns 0.000 0.000 ns 15.848 9.675 ns
U to C 8 h 6.143 0.550 1.374 1.374 ns 2.921 0.215 ns 20.380 5.134 *

16 h 0.304 0.055 0.687 0.006 ns 0.018 0.018 ns 26.261 0.185 ****

Transversions A to U 8 h 16.453 0.466 0.000 0.000 * 5.592 5.592 ns 12.094 2.566 ns
16 h 3.705 0.146 3.835 0.112 ns 10.853 0.268 **** 11.105 0.376 ****

U to A 8 h 15.249 0.488 38.802 3.732 **** 19.198 0.663 ns 18.555 0.839 ns
16 h 0.145 0.023 35.085 0.773 **** 12.373 0.287 **** 19.460 1.595 ****

A to C 8 h 0.218 0.188 1.668 1.668 ns 0.245 0.245 ns 39.146 0.501 ****
16 h 0.000 0.000 5.228 0.185 **** 0.131 0.121 ns 17.567 0.336 ****

C to A 8 h 1.947 1.205 3.273 2.572 ns 0.000 0.000 ns 4.531 2.029 ns
16 h 2.752 0.358 3.082 0.657 ns 3.922 0.519 ns 6.542 0.491 **

C to G 8 h 0.000 0.000 0.000 0.000 ns 0.000 0.000 ns 0.364 0.364 ns
16 h 0.000 0.000 0.000 0.000 ns 0.000 0.000 ns 0.990 0.127 ****

G to C 8 h 0.000 0.000 0.000 0.000 ns 0.000 0.000 ns 0.478 0.048 ****
16 h 0.000 0.000 0.000 0.000 ns 0.000 0.000 ns 1.515 0.324 ***

G to U 8 h 23.712 0.911 3.631 3.631 ** 22.511 3.296 ns 16.307 4.087 ns
16 h 1.398 0.239 12.768 0.320 **** 16.739 1.107 **** 14.153 0.724 ****

U to G 8 h 0.044 0.044 16.941 1.942 **** 2.600 0.516 ns 0.780 0.780 ns
16 h 0.384 0.116 13.189 0.149 **** 2.093 0.363 ns 2.800 0.958 *

aDBT-9-infected monolayer RNAs from experiments shown in Fig. 2B were analyzed by RNA-seq for the indicated viruses, and variant calling was performed on the resulting
sequences. The mean mutation frequency (the ratio of mutations per 1 million mapped nucleotides) (n = 3 independent experiments) for each type of mutation is
presented,6 SEM. *, P, 0.05; **, P, 0.01; ***, P, 0.001; ****, P, 0.0001; ns, not significant (determined by one-way ANOVA with Dunnett’s multiple-comparisons test).
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FIG 6 nsp13 and nsp14 cleavage mutants have altered DVG and subgenomic populations. DBT-9-infected monolayer RNAs from experiments shown in Fig. 2B
were analyzed by RNA-seq for the indicated viruses, and sequences were aligned to the MHV WT genome using ViReMa. (A) The junction frequency (Jfreq) was
calculated as the ratio of detected junctions per 1 million mapped nucleotides. Graphed are the individual values (n = 3 independent experiments) 6 SEM. *,
P , 0.05; ***, P , 0.001; ns, not significant (determined by one-way ANOVA with Dunnett’s multiple-comparison test). (B) Junction frequencies were calculated
for defective viral genomes (DVGs) (solid bars) and total subgenomic RNAs (striped bars) and plotted as percentages of total mapped junctions. Graphed are the
mean values (n = 3 independent experiments) 6 SEM. ***, P , 0.001; ****, P , 0.0001; ns, not significant (determined by one-way ANOVA with Dunnett’s
multiple-comparison test). (C and D) Individual sgmRNA junction frequencies from panel B are shown for the 8-h (C) and 16-h (D) time points. Graphed are the
individual values (n = 3 independent experiments) 6 SEM. *, P , 0.05; **, P , 0.01; ***, P , 0.001; ****, P , 0.0001; all other comparisons were not significant
as determined by one-way ANOVA with Dunnett’s multiple-comparison test.
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While several studies have reported on nsp5 processing and subunit specificity, lit-
tle is known about the mechanism, timing, and order of pp1a and pp1ab cleavage.
Recent biochemical work reported by Krichel et al. proposed a processing order for
SARS-CoV nsp7-10 cleavage; however, it is unclear if these data reflect maturation in
the broader context of pp1a and pp1ab structure and processing (89). As such, there is
currently no model for coronavirus maturation or assembly of the RTC. It is currently
unclear how or if the cleavage disruption of nsp13-14 and nsp14-15 would impact the
nsp5 processing of other nsps. Without a mechanistic understanding of pp1a and
pp1ab cleavage and the order or kinetic rates of the individual cleavage events, this
answer is difficult to predict. nsp5 may process the large polyproteins in a linear cleav-
age order or through processing intermediates, liberating chunks of nsps at a time
(90–98). Tertiary and quaternary structures of any resultant processing intermediates
may allow nsp5 access to previously inaccessible cleavage motifs. It is also possible
that processing intermediates have roles in replication as well, as has been demon-
strated for infectious bovine viral diarrhea virus (99) and hypothesized for MHV (23).
Disruption of any of the cleavages may prevent further intermediate processing or
downstream cleavages or result in alternative cleavage orders (100), causing a stoichio-
metric imbalance with the processed subunits. The recent structures of SARS-CoV-2
nsp5 in various cleavage states with and without peptidyl substrates are promising
advances in understanding the mechanisms of maturation (101).

Testing of cleavage requirements in MHV pp1a nsps7-12 has shown that all cleav-
age events are required for virus viability except between nsp9 and nsp10 (23). For the
distantly related coronavirus infectious bronchitis virus, cleavage between nsp10 and
nsp12 was shown to be dispensable for replication (24). Our results presented here
suggest that nsp12-13 and nsp15-16 processing must occur and that at least one
nsp14 cleavage (N-terminal or C-terminal) must occur to produce viable MHV particles.
These results can form the basis for future genetic, structural, and biochemical experi-
ments investigating the mechanisms of coronavirus replicase protein maturation.
Ultimately, a greater understanding of coronavirus polyprotein maturation and RTC
composition may reveal new targets for therapeutic intervention of current and future
coronavirus threats to human health.

MATERIALS ANDMETHODS
Cell culture. Delayed brain tumor, murine astrocytoma clone 9 (DBT-9) (102) and baby hamster kid-

ney cells stably expressing the MHV receptor (BHK-R) (103) were maintained at 37°C in Dulbecco’s modi-
fied Eagle’s medium containing 4.5 g/liter D-glucose and L-glutamine (DMEM; Gibco) supplemented with
10% FetalClone II serum (FCS; HyClone), 100 U/mL penicillin and streptomycin (Gibco), 10 mM HEPES
buffer (Corning), and 0.25 mg/mL amphotericin B (Corning). BHK-R cells were also supplemented with
0.8 mg/mL G418 sulfate (Corning). Cells were routinely washed with Dulbecco’s phosphate-buffered sa-
line without calcium chloride or magnesium chloride (PBS 2/2). Cells were detached during passage
and expansion with 0.05% trypsin-EDTA (Gibco).

Mutagenesis and recovery of viruses. Murine hepatitis virus strain A549 (MHV; GenBank accession
number AY910861.1) infectious clones were used as templates for mutagenesis and infection experiments.
Site-directed mutagenesis by “round-the-horn” PCR (104) was used to generate in-frame deletions. MHV
infectious clone F fragment (103) was used as a template to remove nucleotides 16,358-CAA-16,360 (nsp12
DQ929, nsp12-13), 18,158-CAG-18,160 (nsp13 DQ600, nsp13-14), 19,721-CAA-19,723 (nsp14 DQ521, nsp14-15),
and 20,843-CAG-20,845 (nsp15 DQ375, nsp15-16) using the following primers: MHV12/13F (59-AGCGTGGTG
CCTGC), MHV12/13R (59-CAGCACTGCACTTCTTAAATACATGTTCT), MHV13/14F (59-TGTACTACAAATTTGTTTAA
GGATTGTAGCA), MHV13/14R (59-TAATCGTGGATTGTTAATCTTATCCAACG), MHV14/15F (59-AGTTTAGAAAATGT
AGTGTATAATTTGGTCAATGC), MHV14/15R (59-GAGCCTAGTAAAAGTATTCCAAAGGTTATAAAAATC), MHV15/
16F (59-GCTGCTGCTGACTGGAAAC), and MHV15/16R (59-CAAACGAGGATAGAAAGTCATGACCTTC). All primers
were 59-phosphorylated with T4 polynucleotide kinase using an ATP-containing reaction buffer (NEB), and
PCRs used Q5 polymerase (NEB). Template backbone DNA was digested with DpnI (NEB), and amplified DNA
was separated by electrophoresis and extracted from agarose (Promega). Ligated DNA was transformed into
Top10 competent Escherichia coli cells (Thermo) and amplified in liquid culture, and sequences were con-
firmed by Sanger sequencing. Assembly and recovery of recombinant MHV have been described previously
(103). Electroporated cells were monitored for cytopathic effect (CPE), and cell flasks were frozen at 280°C
when �70% of the monolayer was involved in CPE. Cells were thawed, debris was pelleted, and virus-contain-
ing supernatants were aliquoted and stored at280°C (passage 0). Full-genome sequences of the viral mutants
were confirmed by Sanger sequencing. Infected cell monolayers were collected in TRIzol (Ambion), and viral
RNA was extracted by chloroform extraction and isopropanol precipitation. Viral cDNA was generated with
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SuperScript IV reverse transcriptase (Thermo) using random hexamers and oligo(dTs). Three- to 4-kb amplicons
were generated via PCR using EasyA polymerase (Agilent) and Sanger sequenced.

Replication and time point experiments. DBT-9 cells were seeded at 6E5 cells in 6-well plates �16 h
before infection. Cells were infected at an MOI of 0.01 PFU/cell and incubated at 37°C for 1 h. Cells were
washed twice in PBS containing calcium chloride or magnesium chloride (PBS 1/1), and 3 mL of DMEM
was added to each well. At indicated time points, 500 mL of supernatant was collected, and 500 mL of
37°C DMEM was replaced. Supernatant samples were stored at 280°C, and virus titers were determined
by plaque assay.

The 8-h and 16-h time course experiments were performed as described above with the following
exceptions. Cells for 8-h and 16-h time points were plated in individual wells of a 6-well plate. After inoc-
ulation and washing, cells were replaced with 1.5 mL DMEM, and at the indicated time points the entire
supernatant was collected, and the monolayer was collected in 1 mL TRIzol. Both supernatant and
monolayer samples were stored at 280°C. Supernatant samples were used to determine viral titers and
genome quantity (described below), and monolayer samples were used to determine genome quantity
and RNA-seq (described below).

Plaque assays and RT-qPCR. Plaque assays were performed in 6-well plates seeded with 6E5 DBT-9
cells. Serial dilutions were plated in duplicate and overlaid with 1% agar in DMEM. Titers were scored at
�16 h postinfection. Genome quantification was determined by one-step RT-qPCR for supernatant and
monolayer-derived RNAs extracted with TRIzol and purified by chloroform and isopropanol precipita-
tion. Viral RNA was detected on a StepOnePlus real-time PCR system (Applied Biosystems) by TaqMan
Fast Virus 1-Step Master Mix chemistry (Applied Biosystems) using a 59 6-carboxyfluorescein (FAM) and
39 black hole quencher 1 (BHQ-1)-labeled probe (59-ATCGCAGGTGTCACCAC) and forward (59-TGCGGTT
TTATCACGCAGTT) and reverse (59-GGCAACCCACCCACGAA) primers corresponding to nsp2. RNA copy
numbers were determine using an nsp2 RNA standard derived from the MHV A fragment.

Competitive fitness experiments. The MHV competitive fitness experiment was previously
described in detail (66). Briefly, 1E5 DBT-9 cells were coinfected with the indicated virus and a barcoded
(BC) WT MVH reference virus containing seven silent mutations in nsp2 (1301-CAGCAGT-1307) at a total
MOI of 0.1 PFU/cell (0.05 MOI for each virus) in three independent lineages. The resulting virus was pas-
saged three additional times, each at a constant MOI of 0.1 PFU/cell. Viral RNA from each passage super-
natant was extracted in TRIzol and purified with a KingFisher II (ThermoFisher Scientific) according to
the manufacturer’s protocol. RNA corresponding to the barcoded WT reference and test viruses was
determined by one-step RT-qPCR using SYBR green. BC WT reference RNA was detected with forward
(59-CTATGCTGTATACGGACAGCAGT) and reverse (59-GGTGTCACCACAACAATCCAC) primers, and test vi-
rus RNA was detected with forward (59-CTATGCTGTATACGGATTCGTCC-39) reverse (59-GGTGTCACCACAA
CAATCCAC) primers using a Power SYBR green RNA-to-Ct 1-step kit (Applied Biosystems) on a
StepOnePlus real-time PCR system (Applied Biosystems). The log-transformed cycle threshold (CT) ratio
of test versus reference was plotted over passage, and relative fitness was determined by comparing the
slopes of linear regression.

Short-read Illumina RNA-sequencing of viral RNA. Short-read Illumina RNA-seq libraries were gen-
erated from .500 ng of RNA for each sample at the Vantage sequencing core for library preparation
(Vanderbilt University Medical Center) and sequenced on the Illumina NovaSeq. Briefly, after quality con-
trol, polyadenylated RNA was selected during library preparation. Isolated RNA was heat fragmented,
RT-PCR amplified with equivalent number of cycles, and size selected, and libraries were prepared
for 2 � 150 nucleotide paired-end sequencing (Illumina). Vantage performed base-calling and read
demultiplexing.

Illumina RNA-seq processing and alignment. For recombination analysis, the RecombiVIR pipeline
was used (53). The first module of RecombiVIR trims and aligns raw FASTQ files to a viral genome for
each sample by using a standard Bash shell script. Similarly, the CoVariant pipeline was used for variant
analysis and the first module trims and aligns raw FASTQ files to the viral genome for each specified
sample using a standard Bash shell script. To summarize, raw reads were processed by first removing
the Illumina TruSeq adapter using Trimmomatic (105). Reads shorter than 36 bp were removed, and
low-quality bases (Q score of ,30) were trimmed from read ends. The raw FASTQ files were aligned to
the MHV-A59 genome (AY910861.1) by using the Python3 script ViReMa (Viral Recombination Mapper,
version 0.21) (106) and the command line parameters. For variant analysis, the sequence alignment map
(SAM) file was processed using the samtools suite (107), and alignment statistics output was generated
by samtools idxstats to an output text file. Nucleotide depth at each position was calculated from the
SAM files using BBMap (Bushnell) pileup.sh.

Recombination junction analysis. Following alignment, recombination junctions were filtered,
quantified, and annotated by using RecombiVIR_junction_analysis.py with the following command line
parameters: python RecombiVIR_junction_anlaysis.py sample.txt MHV ../directory experiment_name
- -version 0.21 - -Shannon Entropy ../Shannon_Entropy - -Virus_Accession AY910861.1.

In summary, the recombination Jfreq was calculated by comparing the number of nucleotides in
detected recombination junctions to the total number of mapped nucleotides in a library. Jfreq was
reported as junctions per 106 nucleotides sequenced. Mean Jfreq values were reported.

Identification of sgmRNA and DVG junctions. Forward recombination junctions were classified as
either sgmRNA junctions or DVG junctions, based on the position of their junction sites, and filtered in
module 2 of RecombiVIR (RecombiVIR_junction_analysis.py). Briefly, junction start sites were filtered to
those positioned within 30 nucleotides of the transcriptional regulatory sequence leader (TRS-L) for
each virus. The stop sites were then filtered for those positioned within 30 nucleotides of each respec-
tive sgmRNA TRS. This window is supported by other reports defining the flexibility of the CoV
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transcriptome (108, 109). The Jfreq of each sgmRNA was calculated by dividing the number of nucleotides
in a specific sgmRNA population by the total amount of viral RNA (total mapped nucleotides). This ratio
was multiplied by 106 to scale for the number of nucleotides sequenced. DVG Jfreq was calculated by
dividing the number of nucleotides in DVG junctions by the total amount of viral RNA in a sample (total
mapped nucleotides). The ratio was also multiplied by 106 to scale for number of nucleotides
sequenced. The percentage of sgmRNA and DVG junctions was calculated by comparing the depth of all
filtered sgmRNA or DVG junctions to the sum of all detected forward junctions.

Variant analysis. FASTQ files from RNA-seq experiments were aligned and variants called using the
CoVariant pipeline (67). Briefly, the reads were aligned to the viral genome using bowtie2, and variants
were called using LoFreq to detect low-frequency variants as previously described (67). Variants were anno-
tated, and overall frequencies of mutations and specific mutation types were reported by the CoVariant
module 2.

Statistical analysis. GraphPad Prism, version 9 (La Jolla, CA) was used for all statistical analyses. All
tests and sample sizes are listed in the figure legends. Statistical tests for the competitive fitness experi-
ments were performed on normalized data.

Data availability. FASTQ files for the RNA-seq variant and recombination analyses have been depos-
ited in the National Center for Biotechnology Information Sequence Read Archive (NCBISRA) under the
accession number PRJNA842027. All code used in this study can be accessed at https://github.com/
DenisonLabVU.
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