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Abstract

Advanced prosthetic foot designs often incorporate mechanisms that adapt to terrain

changes in real-time to improve mobility. Early identification of terrain (e.g., cross-slopes) is

critical to appropriate adaptation. This study suggests that a simple classifier based on linear

discriminant analysis can accurately predict a cross-slope encountered (0˚, -15˚, 15˚) using

measurements from the residual limb, primarily from the prosthesis itself. The classifier was

trained and tested offline using motion capture and in-pylon sensor data collected during

walking trials in mid-swing and early stance. Residual limb kinematics, especially measure-

ments from the foot, shank and ankle, successfully predicted the cross-slope terrain with

high accuracy (99%). Although accuracy decreased when predictions were made for test

data instead of the training data, the accuracy was still relatively high for one input signal set

(>89%) and moderate for three others (>71%). This suggests that classifiers can be

designed and generalized to be effective for new conditions and/or subjects. While mea-

surements of shank acceleration and angular velocity from only in-pylon sensors were insuf-

ficient to accurately predict the cross-slope terrain, the addition of foot and ankle kinematics

from motion capture data allowed accurate terrain prediction. Inversion angular velocity and

foot vertical velocity were particularly useful. As in-pylon sensor data and shank kinematics

from motion capture appeared interchangeable, combining foot and ankle kinematics from

prosthesis-mounted sensors with shank kinematics from in-pylon sensors may provide

enough information to accurately predict the terrain.

Introduction

Uneven terrain environments are commonly encountered in activities of daily living. Cross-

slopes are one such terrain prevalent while walking in both man-made and natural environ-

ments. Despite accessibility standards requiring that cross-slopes not exceed 5% [1], surveys

have shown that approximately 25% of sidewalks in US cities do not meet those standards [2].
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Cross-slopes are also prevalent in natural terrain, and backcountry trails often have cross-

slopes up to 70% [3]. When walking on a cross-slope, healthy subjects adapt to terrain changes

by modulating their ankle joint angles and moments to conform their foot to the slope, maxi-

mize their base of support and control their center of pressure (COP) trajectory [4, 5].

Lower-limb amputees rely on their prosthetic foot to restore mobility, and thus it is impor-

tant that the prosthetic foot provide the functions of the anatomical ankle-foot to allow natural

navigation in challenging environments. Most commercially-available prosthetic feet have a

passive stiffness profile that does not adjust foot-floor interactions in response to uneven or

unexpected terrain. However, recent research has focused on developing semi-active or active

prosthetic feet capable of altering their dynamic response based on terrain. Semi-active feet

adjust prosthesis properties during gait, such as the neutral angle (e.g., [6, 7]) or stiffness (e.g.,

[8]), while active feet have electric or hydraulic actuators that control the ankle joint during

gait (e.g., [9–11]). Pairing these devices with feedback control and/or terrain prediction algo-

rithms would create a prosthesis that better emulates the anatomical ankle-foot.

Various control algorithms have been developed for semi-active and active prostheses.

Task-specific controllers have been explored for locomotion, (i.e., level-walking, stair-climb-

ing, incline and decline walking) as well as sitting and standing, with coordination and switch-

ing between gait-phase-specific controllers often performed by finite state machines (for

review, see [12]). Previous studies have successfully integrated pattern-recognition algorithms

into control schemes to determine locomotion mode (e.g., walking on level-ground, stairs or

slopes [13–15]). However, methods of identifying a cross-slope so that the dynamic response

of the prosthetic foot can be adapted to the side-to-side terrain variation have been largely

unexplored.

Efforts to create accurate locomotion mode prediction algorithms have included explora-

tion of different pattern-recognition algorithms and input signal selection. In many cases, lin-

ear discriminant analysis (LDA) provides comparable accuracy with less computational

expense than other techniques [16–18]. Various input signal combinations have been explored

including myoelectric, mechanical, ground reaction force, and computer vision (e.g., [13, 14,

16, 19–21]. While algorithms that use a combination of myoelectric and mechanical signals

have been shown to provide more accurate locomotion mode detection and transition between

modes than myoelectric or mechanical signals alone [13–15], measuring in-socket myoelectric

signals presents added complications, including patient comfort, motion artifact, and chal-

lenges for long-term application outside of a laboratory environment [15, 22]. In contrast,

semi-active and active devices are already equipped with mechanical sensors used for actuator

control and additional position encoders and inertial measurement devices would be relatively

simple to add with minimal impact on foot performance or patient comfort.

The goal of this study was to determine kinematic and kinetic signals that could be used by

an LDA classifier to accurately identify the cross-slope terrain encountered without the aid of

myoelectric signals. To compare the usefulness of different input signals, classifiers were devel-

oped using various combinations of data including only motion capture data, only measure-

ments from sensors embedded in the pylon, and both motion capture data and in-pylon

sensor measurements. Individual input signals were ranked based on the effectiveness of the

signal to improve classifier accuracy. Greater classification accuracy was expected when classi-

fiers were evaluated using a randomly-excluded portion of the training data rather than a sepa-

rate set of test data. However, input signals selected based on classifier accuracy evaluated

using the training data were not expected to vary greatly from those selected based on evalua-

tion with a separate set of test data. Since in-pylon sensor and motion capture data were antici-

pated to be of comparable quality, similar input signal selection was expected using the

portable in-pylon sensor data instead of analogous motion capture data.

Classifier design to predict amputees walking on cross-slope
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Materials and methods

LDA classifiers were trained on previously-collected experimental data measuring the bio-

mechanical response of amputees to a step on cross-sloped terrain with their clinically pre-

scribed ankle-foot prosthesis. Since classification accuracy can degrade when a new subject

uses a pattern recognition algorithm trained on a different set of subject data [23], input signal

selection choice was compared using classifier accuracy evaluated with a randomly-excluded

portion of the training data (i.e., leave-one-out cross-validation, LOOCV) and also evaluated

with two test datasets. The Training Data were collected from subjects walking with their clini-

cally prescribed ankle-foot prosthesis when they could see the cross-slope. Test Set 1 was col-

lected from a subject walking with his clinically prescribed ankle-foot prosthesis when he

could not see the cross-slope. Since the classifier will eventually be paired with a new prototype

ankle-foot prosthesis that uses its prediction to adapt to terrain encountered [24], Test Set 2

was collected while two subjects walked with the new prototype prosthesis with adaptation dis-

abled when they could see the cross-slopes. Classifiers trained using data from only in-pylon

sensors were compared with those trained using motion capture data to investigate the effects

of using portable sensor data as a step toward implementation outside the laboratory.

Experimental data collection

Experimental data were previously collected at the Department of Veterans Affairs Center for

Limb Loss and Mobility in a protocol approved by the Department of Veterans Affairs internal

review board. After obtaining written documentation of informed consent, three male, trau-

matic unilateral transtibial amputees (50±15 years old, 83.3±7.7 kg, 1.80±0.03 m, 27±19 years

since amputation, 2 left/1 right) walked with their clinically prescribed, passive energy-stor-

age-and-return prosthesis across five force plates (Advanced Mechanical Technology, Inc.,

Watertown, MA) on a 10-m walkway where the middle force plate was rotated to provide a 0˚,

+15˚ or -15˚ cross-slope [25]. When set at +15˚ the cross-slope caused ankle inversion and

when set at -15˚ it caused ankle eversion. Data were collected from all three subjects when they

could see the middle force plate configuration (S3 Dataset: Training Data). Data were also col-

lected from one of the subjects when he was blinded to the middle force plate configuration by

obscuring it from view with an opaque, elastic material (S1 Dataset: Test Set 1). The three

cross-slope configurations were tested in a random order with a single acclimation trial then 4

to 6 trials in a block, where subjects took one step on the cross-slope in a trial. Three-dimen-

sional (3D) marker and ground reaction force data were recorded at 120 Hz and 1200 Hz,

respectively, using a 12-camera motion capture system (Vicon Nexus, Vicon Motion Systems,

Oxford, UK). In addition to the Vicon Plug-in-Gait marker set, markers were placed bilaterally

on the medial knee epicondyle, medial malleolus, tibial tuberosity, fibular head, and first and

fifth metatarsal heads. Clusters of four markers were also placed bilaterally on the upper arms

and thighs. Trials with at least five knee flexion-extension movements were collected to find

the knee functional joint axes [26] (Visual 3D, C-Motion, Inc., Germantown, MD). Marker

and GRF data were filtered using a 4th-order, low-pass Butterworth filter with cutoff frequen-

cies of 6 and 20 Hz, respectively.

Joint angles, moments and powers as well as shank and foot segment velocities, angular

velocities and accelerations were calculated in Visual 3D using standard inverse dynamics with

a model scaled to the subject’s height and mass. Data were time-normalized to the gait cycle.

GRFs and joint moments were also normalized to the subject’s body weight. Residual ankle

joint angles were normalized to the ankle angles during swing when the prosthesis was in its

unloaded configuration to minimize bias due to variations in alignment. Ankle angular veloc-

ity and acceleration were calculated as the first and second time derivatives of the ankle angle.

Classifier design to predict amputees walking on cross-slope
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Shank acceleration and angular velocity were also collected at 120 Hz from a sensor package

custom-built at the Department of Veterans Affairs Center for Limb Loss and Mobility. The

sensor package was located inside the pylon and included a tri-axial accelerometer and bi-axial

rate gyroscope along with batteries, a microcontroller, and an SD memory card [27]. Raw data

from the accelerometer and gyroscope were used. Acceleration and angular velocity collected

by the in-pylon sensors were with respect to a shank reference frame while those calculated

with Visual3D were with respect to the fixed laboratory reference frame.

Two subjects also completed the protocol wearing a prototype ankle-foot prosthesis with

variable coronal-plane stiffness [24] when they could see the middle force plate configuration

(S2 Dataset: Test Set 2). The three cross-slope configurations were tested in a random order

with a single acclimation trial then 4 to 5 trials in a block, where subjects took one step on the

cross-slope in a trial. For this study, the prosthesis coronal-plane stiffness was set to a single

stiffness level. Thus, the prototype ankle-foot prosthesis acted much like the subjects’ clini-

cally-prescribed energy-storage-and-return prosthetic foot.

Classifier design

An LDA classifier was designed to determine if the subject was stepping on a cross-slope or

level-ground as one component of the control scheme for a semi-active prosthesis (Fig 1).

Classifiers with various combinations of input signals were trained and evaluated using

LOOCV (MATLAB, The MathWorks, Inc., Natick, MA) with measurements from three sub-

jects. Performance was also evaluated using two test datasets with slight modifications to the

experimental data collection setup to explore how input signal selection and classifier predic-

tive ability might change in these different conditions. Test Set 1, where the subject could not

see the cross-slope, explored the effects of when the cross-slope is unexpected and possible

anticipatory modifications are therefore absent. Test Set 2, where subjects could see the cross-

slopes and walked with a prototype semi-active prosthesis set to a single stiffness level, was

included to explore the effects of the prototype prosthetic foot, which even with adaptation dis-

abled, has a slightly different underlying stiffness profile and ankle center of rotation than the

prescribed prostheses subjects used in the Training Data.

Various combinations of input signals from the residual limb in mid-swing, including kine-

matics and kinetics from both motion capture and in-pylon sensors, were assessed to deter-

mine which signals provided the most accurate prediction of the cross-slope terrain (S1

Table). Data were exported from Visual3D at the original sampling rate and examined in win-

dows of 150 ms that overlapped and were incremented forward every 8.33 ms. In each win-

dow, mean, standard deviation, maximum and minimum values were calculated for joint

kinematics, joint moments, joint powers and segment kinematics (MATLAB, The Math-

Works, Inc., Natick, MA). Mean and standard deviation values were also calculated for ground

reaction force and center of pressure data. These signal characteristics are conducive to real-

time calculations and have been useful in previous locomotion-mode classifiers [13, 20] and

intent recognition [14, 15]. Values from the various signals were combined into a single vector

for the window, which consisted of 124 values in the full dataset and 24 values in the in-pylon-

sensor-only dataset, and then examined by the classifier. Windows of data were categorized as

mid-swing and used for classification if at least half the data were collected during mid-swing

(windows beginning 192 to 250 ms before heel strike) and less than half of the data were col-

lected after residual limb heel-strike (windows ending 75 ms after heel strike) (Fig 2).

Since the classifier can leverage information provided by combinations of input signals in

unforeseen ways, input signals selected using two different selection methods (sequential for-

ward selection (SFS) and sequential backward selection (SBS)) were compared [14]. Classifier

Classifier design to predict amputees walking on cross-slope
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Fig 1. Control scheme diagram. The LDA classifier will identify the cross-slope encountered using measured kinematics and kinetics (�x). A mid-level

controller will use this information to provide a desired stiffness (kd) to the lower-level controller that will modify the stiffness profile (k) of the prototype

variable-stiffness prosthetic foot.

https://doi.org/10.1371/journal.pone.0192950.g001

Fig 2. Overlapping 150-ms windows of data (W1, W2, etc.) were categorized into regions. Mid-swing windows had

at least half of the data collected during mid-swing and less than half of the data collected after residual limb heel-

strike.

https://doi.org/10.1371/journal.pone.0192950.g002

Classifier design to predict amputees walking on cross-slope
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performance was evaluated with confusion matrices. Input signals were ranked by their effect

on overall classifier accuracy, defined as the number of observations for which terrain was pre-

dicted correctly divided by the total number of observations in the dataset. SFS evaluated clas-

sifiers based on each signal alone then selected the signal that produced the most accurate

mid-swing classifier. This process was repeated by adding each of the remaining signals, train-

ing and evaluating classifiers to determine which signal produced the most accurate classifier

when combined with those already chosen, and selecting that signal until all input signals were

added. SBS started by using all but one of the signals in the classifiers evaluated, sequentially

removing each of the signals and choosing to remove the one that led to the least accurate clas-

sifier. This process was repeated until only one signal was used in the classifier evaluated.

Thus, two different rankings of input signal importance to classifier accuracy were obtained.

Results

Input signal rankings

Input signals had different contributions to classifier accuracy when selected using SBS instead

of SFS and when classifiers were evaluated using different datasets (Tables 1–3). Rankings of

Table 1. Rankings of input signals found using sequential forward selection (SFS) and sequential backward selec-

tion (SBS) when only in-pylon sensor data were used. The two algorithms selected signals in the same order except

when Test Set 2 was used to evaluate classifier accuracy.

Input Signal Error

SFS SBS SFS SBS

LOOCV 1 ML Acc 0.47

2 Cor AngVel 0.37

3 InfSup Acc 0.32

4 AP Acc 0.26

5 Sag AngVel 0.24

6 Tran AngVel 0.22

Test Set 1 1 InfSup Acc 0.51

2 AP Acc 0.44

3 Sag AngVel 0.36

4 Tran AngVel 0.42

5 ML Acc 0.49

6 Cor AngVel 0.64

Test Set 2 1 Cor AngVel 0.47

2 ML Acc 0.46

3 InfSup Acc AP Acc 0.47

4 AP Acc Tran AngVel 0.47 0.44

5 Sag AngVel 0.49 0.45

6 Tran AngVel InfSup Acc 0.52

LOOCV, classifiers were evaluated using leave-one-out cross-validation with the training data from three subjects

walking with their clinically prescribed ankle-foot prosthesis when they could see the configuration of the cross-

slope; Test Set 1, classifiers were evaluated using data from a subject walking with his clinically prescribed ankle-foot

prosthesis when he could not see the configuration of the cross-slope; Test Set 2, classifiers were evaluated using data

from two subjects walking with the prototype ankle-foot prosthesis when they could see the configuration of the

cross-slope; Definitions: AngVel, residual limb shank angular velocity; Acc, residual limb shank acceleration; Cor,

coronal plane; Tran, transverse plane; Sag, sagittal plane; AP, anteroposterior direction; InfSup, inferior-superior

direction; ML, mediolateral direction.

https://doi.org/10.1371/journal.pone.0192950.t001
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the input signals were generally more similar between SBS and SFS when a given dataset was

used for evaluation than between different evaluation datasets, although the rankings were

more varied when a larger number of potential input signals were analyzed (Tables 1 and 2).

When evaluated using LOOCV, the rank of the input signals required to reach 95% accuracy

was the same when in-pylon sensor data was substituted with the shank acceleration and angu-

lar velocity calculated from motion capture data (Table 3). The number of additional signals

required to reach 99% accuracy were similar with and without the in-pylon sensor data for

SBS, although the additional signals were not the same.

Classifier accuracy

Using only in-pylon sensor data, classifier accuracy when evaluated using LOOCV ranged

from 63% to 78% and prediction accuracy for individual terrains was between 59% and 87%

(Table 4 and S2 Table). Classifier and prediction accuracy using IPS and evaluated using

LOOCV generally increased as more signals were added. Accuracy degraded when evaluated

using the test datasets (Table 4).

The effect of adding input signals to the classifier differed when accuracy was evaluated

using LOOCV and when other test data was used. For LOOCV, accuracy increased to 100%

and was maintained when additional input signals were added (Fig 3A). SFS did not require as

many input signals as SBS to reach 100% accuracy. When evaluated using test data, there was a

peak in classifier accuracy, after which using additional input signals decreased the accuracy

(Fig 3B). More input signals were required to accurately predict the cross-slope encountered

Table 2. Rankings of input signals found using sequential forward selection (SFS) and sequential backward selection (SBS) when classifiers were trained on the

expanded set of input signals from three subjects walking with their clinically prescribed ankle-foot prosthesis when they could see the configuration of the cross-

slope and evaluated using data from two different test sets.

SFS SBS

Test Set 1 Test Set 2 Test Set 1 Test Set 2

1 Ankle Inversion ω Foot Vert Velocity Ankle Inversion α Shank Vert Velocity

2 Ankle Flexion α Vert GRF Ankle Flexion α Foot ML AngVel

3 Ankle Inversion α ML GRF Foot AP Velocity Foot Vert Acc

4 Foot Vert AngVel IPS Cor AngVel Shank AP Velocity Ankle Inversion

5 Ankle Inversion Power Ankle Inversion Power Shank Vert Velocity Foot ML Acc

6 Vert COP Shank AP Velocity IPS InfSup Acc IPS Cor AngVel

7 Vert GRF Foot Vert Acc Ankle Inversion ω ML COP

8 ML GRF IPS Tran AngVel IPS Cor AngVel IPS AP Acc

9 Ankle Flexion Power Foot ML Acc Ankle Flexion Foot AP AngVel

10 AP GRF Ankle Inversion ω Foot ML Acc IPS ML Acc

11 AP COP IPS Sag AngVel Foot Vert AngVel Foot Vert Velocity

12 Shank ML Velocity Foot ML AngVel Foot Vert Velocity Foot AP Velocity

Shading Legend

Signal among top 12: Both selection methods, both test sets for one method Both selection methods, one test set Both test sets, one selection method

Test Set 1, classifiers evaluated using data from a subject walking with his clinically prescribed ankle-foot prosthesis when he could not see the configuration of the

cross-slope; Test Set 2, classifiers evaluated using data from two subjects walking with the prototype ankle-foot prosthesis when they could see the configuration of the

cross-slope; Definitions: ω, angular velocity; α, angular acceleration; GRF, ground reaction force; COP, center of pressure; ML, mediolateral direction; AP,

anteroposterior direction; Vert, vertical direction; InfSup, inferior-superior direction; AngVel, angular velocity; Acc, acceleration; IPS, measurement made by in-pylon

sensors; Cor, coronal plane; Tran, transverse plane; Sag, sagittal plane. Input signals above the single solid lines are required for classifier accuracy to be greater than

95%.

https://doi.org/10.1371/journal.pone.0192950.t002
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in Test Set 2 than Test Set 1 (Fig 3B). However, similar levels of accuracy could be achieved.

For both test datasets, accuracy was not as high as that found using LOOCV.

Using the full set of trial input signals, classifier accuracy when evaluated using LOOCV

could be greater than 99% (Fig 3; Table 5). However, when these classifiers were evaluated

with Test Sets 1 and 2, classifier accuracy degraded (Table 5; Fig 4). In all but one case, classifi-

cation accuracy of at least one of the individual terrains was 90% or higher when the classifier

was evaluated using Test Set 1 or 2 (S3 Table). For the classifiers with the least amount of input

signals that reached greater than 99% accuracy measured using LOOCV, those with input sig-

nals chosen using SFS had slightly better accuracy when evaluated using Test Set 1 or 2 than

those with input signals chosen using SBS (Table 5). However, the opposite was true for the

most accurate classifiers found using overall accuracy measured using LOOCV (i.e., the classi-

fier that reached 100% measured accuracy with the least amount of input signals, n = 12 for

SFS and n = 15 for SBS), Test Set 1 (n = 6 for SFS, n = 9 for SBS) and Test Set 2 (n = 17 for SFS,

n = 16 for SBS) (Fig 4B). When measured with a different dataset than the one used to choose

input signals, classifier accuracy did not necessarily respond in the same manner as the num-

ber of input signals increased and was non-monotonic when not evaluated with LOOCV (Fig

4A). Error was lowest when accuracy was measured using the dataset for which input signals

were picked with SFS or when evaluated using LOOCV. When input signals included in-pylon

sensor data and were chosen using LOOCV, error was lower when measured using Test Set 2

than that measured using Test Set 1 (Fig 4B; Table 5).

Discussion

We explored terrain prediction in a novel application, a cross-slope exhibiting uneven terrain

in the mediolateral direction, to determine if a relatively simple feature set and classifier could

Table 3. Rankings of the top ten input signals found using sequential forward selection (SFS) and sequential backward selection (SBS) when in-pylon sensor data

was (IPS) and was not (MC) included for classifiers trained on the full set of trial input signals from three subjects walking with their clinically prescribed ankle-

foot prosthesis when they could see the configuration of the cross-slope and evaluated using leave-one-out cross-validation (LOOCV).

SFS SBS

In-Pylon Sensor + Motion Capture

Data

Only Motion Capture Data In-Pylon Sensor + Motion Capture Data Only Motion Capture Data

1 Ankle Inversion α Ankle Inversion α Ankle Inversion ω Ankle Inversion ω
2 Shank Vert Velocity Shank Vert Velocity Foot Vert Acc Foot Vert Acc

3 Ankle Flexion Ankle Flexion Foot ML AngVel Foot ML AngVel

4 IPS AP Acc Ankle Flexion α Foot AP AngVel Foot AP AngVel

5 Foot ML Velocity Shank Vert AngVel� Shank AP Velocity Shank AP Velocity

6 Foot Vert Velocity Shank Vert Acc� Ankle Flexion Foot ML Acc

7 Ankle Inversion Ankle Inversion ω ML COP Shank Vert AngVel�

8 IPS Tran AngVel Shank ML Velocity Foot Vert AngVel ML COP

9 Ankle Inversion ω Shank ML Acc� Foot ML Acc AP COP

10 Ankle Inversion Moment Foot Vert Acc Foot AP Velocity Foot AP Velocity

Shading Legend

Signal among top 12: Both datasets, both selection

methods

Both datasets, both selection methods for one

dataset

Both datasets, one selection

method

Definitions: ω, angular velocity; α, angular acceleration; COP, center of pressure; ML, mediolateral direction; AP, anteroposterior direction; Vert, vertical direction;

AngVel, angular velocity; Acc, acceleration; Tran, transverse plane. Single and double solid lines indicate the input signals required for the classifier accuracy to be

greater than 95% and 99%, respectively.

� indicates an input signal calculated using motion capture data that was substituted for an analogous signal measured using in-pylon sensors.

https://doi.org/10.1371/journal.pone.0192950.t003
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accurately predict the cross-slope terrain when subjects could and could not see (and adjust

to) the surface prior to stepping on it. LDA classifiers were trained and their accuracy was eval-

uated with various combinations of kinematic and kinetic signals measured during mid-swing

as transtibial amputees traversed level ground and cross-slopes. While in-pylon sensor data

alone was insufficient to accurately predict the type of cross-slope encountered, including

additional input signals, especially foot and ankle kinematics, led to classifiers with greater

than 90% accuracy. Foot-mounted sensors have been used to measure prosthetic ankle angle

[12] and foot kinematics can be measured using an accelerometer and gyroscope, similar to

the pylon-mounted sensors used in the experiment. If sensors are mounted on the prosthetic

foot in addition to the pylon, the present results suggest a simple, real-time classifier can be

used to predict cross-slope terrains for lower-limb amputees.

As expected, the classifier needed similar input signals to achieve high accuracy regardless

of whether in-pylon sensor data or motion capture data supplied the acceleration and angular

velocity of the residual shank. This may be due in part to the high importance of some signals

for which only motion capture data were available, such as ankle inversion angular velocity.

However, similar input signal priority with and without in-pylon sensor data is consistent with

previous work, which has shown that measurements of leg kinematics from body-worn sen-

sors are comparable to those gathered using motion capture [28] and that classifiers based on

accelerometer and motion capture data can determine the cause of a fall with equal accuracy

[29]. When accuracy was evaluated using LOOCV, the same input signals were selected for

classifiers that had 95% overall accuracy. In addition, the number of signals added to reach

99% accuracy was similar, although not the same group of signals. For SFS, this difference

stems from selection of an in-pylon sensor signal but not the associated motion capture signal.

Similarly, for SBS, when removing signals, classifier accuracy was not quite the same using

motion capture values compared to that when using in-pylon sensor measurements, so signals

Table 4. Overall accuracy (All) and range of accuracy for individual cross-slope terrain (Ind.) for classifiers with 2, 3, 4, 5 and 6 input signals that exhibited the high-

est overall accuracy identifying the cross-slope terrain when only information from the in-pylon sensors was used.

Input Signals Accuracy

LOOCV

Mid-Swing

Test Set 1

Mid-Swing

Test Set 2

Mid-Swing

IPS ML Acc IPS Cor AngVel All 0.63 0.33 0.54

Ind. 0.59–0.67 0.06–0.49 0.28–0.73

IPS InfSup Acc

IPS ML Acc

IPS Cor AngVel All 0.68 0.37 0.53

Ind. 0.67–0.71 0.23–0.54 0.30–0.88

IPS AP Acc

IPS InfSup Acc

IPS ML Acc

IPS Cor AngVel All 0.74 0.36 0.53

Ind. 0.69–0.79 0.21–0.43 0.12–0.74

IPS AP Acc

IPS InfSup Acc

IPS ML Acc

IPS Cor AngVel

IPS Sag AngVel

All 0.76 0.43 0.51

Ind. 0.73–0.81 0.30–0.56 0.20–0.77

IPS AP Acc

IPS InfSup Acc

IPS ML Acc

IPS Cor AngVel

IPS Tran AngVel

IPS Sag AngVel

All 0.78 0.36 0.48

Ind. 0.71–0.87 0.26–0.52 0.36–0.61

LOOCV, classifier accuracy evaluated using leave-one-out cross-validation with the training data from three subjects walking with their clinically prescribed ankle-foot

prosthesis when they could see the configuration of the cross-slope; Test Set 1, classifier accuracy evaluated using data from a subject walking with his clinically

prescribed ankle-foot prosthesis when he could not see the configuration of the cross-slope; Test Set 2, classifier accuracy evaluated using data from two subjects walking

with the prototype ankle-foot prosthesis when they could see the configuration of the cross-slope; Definitions: AngVel, residual limb shank angular velocity; Acc,

residual limb shank acceleration; Cor, coronal plane; Tran, transverse plane; Sag, sagittal plane; AP, anteroposterior direction; InfSup, inferior-superior direction; ML,

mediolateral direction.

https://doi.org/10.1371/journal.pone.0192950.t004
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were removed in a different order. Interestingly, of the 15 signals selected by SBS (9) and SFS

(6) to reach 99% accuracy with in-pylon sensor data available, only 1 in-pylon sensor measure-

ment was selected while 4 of the 18 signals selected to reach 99% accuracy were motion capture

data substitutions for the in-pylon sensor measurements. This may be a result of the difference

in reference frame between the motion-capture-measured shank acceleration and angular

velocity, which were measured in a global frame, while the in-pylon-sensor-measured values

were measured in a shank reference frame. Considering the similarity in performance and

input signal priority for classifiers using in-pylon or motion capture data, well-tuned prosthe-

sis-mounted sensor data can likely be substituted for motion-capture data for prediction of

cross-slope terrain.

Examination across all three test datasets and the two training methods revealed that all of

the potential input signals except for ankle flexion moment were added to form the best classi-

fier at least once. Foot-floor interaction (i.e., COPs and GRFs), moment and power signals

were not as important to classifier accuracy as ankle angle, angular velocity and angular accel-

eration or segment velocity, acceleration and angular velocity. Inversion angular velocity and

acceleration are more critical than flexion angular velocity or acceleration, but flexion angle is

used more often than inversion angle. Inversion angular velocity and acceleration are impor-

tant in predicting cross-slope terrain as they indicate the change in angle caused by the cross-

slope and the rate at which that change is occurring. A cross-slope induces larger changes in

inversion angle than in flexion angle during stance, but there are adaptations in both angles.

Fig 3. Input signal optimization led to at least 90% classifier accuracy regardless of evaluation dataset. Classifiers were trained on the full set of trial input

signals from three subjects walking with their clinically prescribed ankle-foot prosthesis when they could see the configuration of the cross-slope. Input signals were

added to the classifiers using sequential forward selection (SFS) and sequential backward selection (SBS) based on accuracy classifying the evaluation dataset. (A)

Classifiers were evaluated using data from the training set via leave-one-out cross-validation with (IPS) and without (MC) in-pylon sensor data. (B) Classifiers were

also evaluated using data from a subject walking with his clinically prescribed ankle-foot prosthesis when he could not see the configuration of the cross-slope (Test

Set 1) or from two subjects walking with the prototype ankle-foot prosthesis when they could see the configuration of the cross-slope (Test Set 2) with in-pylon

sensor data.

https://doi.org/10.1371/journal.pone.0192950.g003
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Foot and shank velocity are both important for classifier accuracy but foot acceleration and

angular velocity are more often used than those of the shank. Changes in foot acceleration

and, to a lesser extent, angular velocity caused by the cross-slope are more distinctive than

those of the shank and thus may provide a wider difference between the terrain types that is

more readily recognized by the classifier.

As expected, evaluation using LOOCV with the training dataset led to higher accuracy mea-

sures than evaluation using one of the test datasets, when subjects could not anticipate the

cross-slope terrain (Test Set 1) or walked with the prototype prosthesis (Test Set 2). However,

contrary to expectations, the input signals selected based on accuracy results when classifiers

were evaluated with LOOCV were only moderately similar to those selected based on accuracy

results when classifiers were evaluated with test data. Only one input signal, inversion angular

velocity, was used in five of the six classifiers and one other, foot vertical velocity, in four. Nine

more input signals were used in three classifiers. Accuracy when evaluated with the same test

set as that used to select the input signals was comparable to that found in literature for loco-

motion mode classifier accuracy during steady state locomotion (e.g., [13, 16, 20]). When eval-

uated using a different test set than the one used to select input signals, accuracy was

comparable to locomotion mode classifier accuracy during transitions between modes [15].

Table 5. Overall accuracy (All) and range of accuracy for individual cross-slope terrain (Ind.) for the classifier with the fewest input signals that correctly identified

at least 99% of the cross-slope terrain using sequential forward selection (SFS) and sequential backward selection (SBS).

Input Signals Accuracy

LOOCV

Mid-Swing

Test Set 1

Mid-Swing

Test Set 2

Mid-Swing

SFS (IPS) 1 Ankle Inversion α
2 Shank Vert Velocity

3 Ankle Flexion

4 IPS AP Acceleration

5 Foot ML Velocity

6 Foot Vert Velocity

All 0.99 0.64 0.87

Ind. 0.98–1.00 0.41–0.90 0.84–0.94

SFS (MC) 1 Ankle Inversion α
2 Shank Vert Velocity

3 Ankle Flexion

4 Ankle Flexion α
5 Shank Vert AngVel�

6 Shank Vert Acc�

7 Ankle Inversion ω
8 Shank ML Velocity

9 Shank ML Acc�

All 0.99 0.88 0.83

Ind. 0.99–1.00 0.74–1.00 0.54–1.00

SBS (IPS) 1 Ankle Inversion ω
2 Foot Vert Acc

3 Foot ML AngVel

4 Foot AP AngVel

5 Shank AP Velocity

6 Ankle Flexion

7 ML COP

8 Foot Vert AngVel

9 Foot ML Acc

All 0.99 0.62 0.76

Ind. 0.98–1.00 0.19–1.00 0.63–1.00

SBS (MC) 1 Ankle Inversion ω
2 Foot Vert Acc

3 Foot ML AngVel

4 Foot AP AngVel

5 Shank AP Velocity

6 Foot ML Acc

7 Shank Vert AngVel�

8 ML COP

9 AP COP

All 0.99 0.69 0.46

Ind. 0.99–1.00 0.35–1.00 0.23–0.83

LOOCV, classifier accuracy evaluated using leave-one-out cross-validation with the training data from three subjects walking with their clinically prescribed ankle-foot

prosthesis when they could see the configuration of the cross-slope; Test Set 1, classifier accuracy evaluated using data from a subject walking with his clinically

prescribed ankle-foot prosthesis when he could not see the configuration of the cross-slope; Test Set 2, classifier accuracy evaluated using data from two subjects walking

with the prototype ankle-foot prosthesis when they could see the configuration of the cross-slope; IPS, in-pylon sensor data used for shank angular velocity and

acceleration measurements; MC, motion capture data used for shank angular velocity and acceleration measurements;

� indicates an input signal calculated using motion capture data was used for an analogous signal measured using in-pylon sensors; Definitions: ω, angular velocity; α,

angular acceleration; COP, center of pressure; ML, mediolateral direction; AP, anteroposterior direction; Vert, vertical direction; AngVel, angular velocity; Acc,

acceleration.

https://doi.org/10.1371/journal.pone.0192950.t005
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Fig 4. Classifier accuracy varies when evaluated using different datasets but can be optimized for versatility. All classifiers were trained using data from three

subjects walking with their clinically prescribed ankle-foot prosthesis when they could see the configuration of the cross-slope. All test and training datasets included

in-pylon sensor data. (A) A series of classifiers constructed using sequential forward selection (SFS) or sequential backward selection (SBS) to add input signals to the

classifiers (Pick) based on overall classifier accuracy determined using leave-one-out cross-validation with the training dataset (LOOCV, left), data from a subject

walking with his clinically prescribed ankle-foot prosthesis when he could not see the configuration of the cross-slope (Test Set 1, middle) and data from two subjects

walking with the prototype ankle-foot prosthesis when they could see the configuration of the cross-slope (Test Set 2, right) were evaluated (Measure) using LOOCV

(blue), Test Set 1 (red) and Test Set 2 (purple). The classifier accuracy shown with solid lines was also used to determine the order in which input signals were added.

(B) Overall classifier error for the most accurate classifiers found using SFS and SBS to pick input signals based on overall accuracy determined using LOOCV, Test Set

1 and Test Set 2. Error was measured by evaluating all six classifiers using data from Test Set 1, data from Test Set 2 and LOOCV.

https://doi.org/10.1371/journal.pone.0192950.g004
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When evaluated using the test datasets, including additional input signals did not always

improve accuracy. This is likely due to overfitting of the data. If the number of training sam-

ples is limited, classifier error tends to reach a minimum and then increase as more input sig-

nals are added [30, 31]. With a fixed set of training data, the classifier can be trained to

perfectly discriminate among cross-slopes in the training set, but such a classifier will not

generalize well to new datasets. Evaluating accuracy on other datasets is one way to ensure

that the classifier can be generalized to new subjects or new conditions [32]. Choosing input

signals based on the accuracy measurements when evaluated with Test Set 1, when the sub-

jects could not anticipate the cross-slope terrain, produced the classifier that was most accu-

rate across all of the test datasets. For this classifier, the worst error was less than 11%, which

is toward the upper range of some of the steady state errors found for locomotion mode clas-

sifiers in literature (e.g., [13, 15, 16]). While many locomotion mode classifiers are trained

specifically for individual subjects or unblinded conditions, the ability of the cross-slope clas-

sifier to reach similar accuracy when trained and evaluated on data from different subjects

and conditions (e.g., visible vs. obscured cross-slope, clinically prescribed vs. prototype

ankle-foot prosthesis) suggests that it may be easily implemented whether the amputee can

anticipate the cross-slope terrain or not. Consider the real-world example of walking on a

lumpy grass lawn at night with a controller trained in daylight. The person cannot see the

terrain at night, but they know it might be uneven. Our results show the algorithm could

work under these conditions. Other conditions (e.g., clinically prescribed vs. prototype

ankle-foot prosthesis), suggest the algorithm could also work when switching to a different

prosthesis.

Different input signal selection methods were used primarily to gauge variation in signals

selected and the impact of different input signal groups on classifier accuracy. While previous

work classifying a walking task in transfemoral amputees found that SBS and SFS selected sim-

ilar input signals (mostly surface electromyography measurements) and thus produced similar

classifier accuracy [14], other work has shown that the performance of feature selection algo-

rithms can change with different training datasets or applications [33]. When only in-pylon

sensor data were used, there was little difference in signal selection or classifier accuracy.

When the full set of input signals were used, SBS typically required more signals to achieve

similar classifier accuracy as SFS and up to one-third of the signals selected were chosen by

both algorithms. Increasing the number of possible input signals from just in-pylon sensor

data to the full set increased variation in signal selection. The small subset of signals selected

by both SBS and SFS strongly influence classifier accuracy as they were selected in both cases

despite different decision-making algorithms. Though similar accuracy can be achieved with

different groups of input signals, using the set of input signals identified by SFS would require

fewer sensors.

While a set of useful input signals were identified for predicting a cross-slope, this study has

some potential limitations. Although a set of input signals useful for predicting the cross-slope

with the prototype ankle-foot prosthesis (Test Set 2) was found, the prototype prosthesis was

not allowed to adapt to the cross-slope in the dataset that was tested. Thus, one potential limi-

tation is that patterns will shift and input signal contribution to classifier accuracy may change

when the prototype prosthesis can adapt. However, signals were chosen based on the mid-

swing classifier, which was trained and evaluated using windows of data from mid-swing up to

75 ms after heel-strike. In a real-time control scheme, the classifier will continuously examine

windows of data to determine the cross-slope then update prosthesis configuration for the step

using a majority voting scheme that considers cross-slope determinations from a set of the

most recent data windows, similar to previous approaches (e.g., [14, 15, 18]). The number of

windows included in the voting scheme will be determined experimentally, but the cross-slope
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determination will be made by 75 ms after heel strike and set for the duration of the step. Once

the cross-slope is determined, the semi-active prototype prosthesis will adjust stiffness accord-

ingly. While a small processing delay for cross-slope determination may exist depending on

the exact hardware implementation, the simplicity of the LDA classifier combined with contin-

uous classification based on a voting scheme, careful hardware selection, and optimization of

code for efficiency should render any delay imperceptible to the amputee [18]. Previous work

with prosthesis locomotion mode switching (e.g., level-ground, stairs or slopes) has shown

that classifiers, both similar to and more complex than those presented here, designed offline

can be successfully implemented in real-time and exhibit accuracy that is correlated, if not sim-

ilar, to offline accuracy (e.g., [14, 34]). As the prototype prosthesis adaptation will not occur

until after heel-strike plus a short lag period and acts the same during mid-swing whether or

not adaptation is enabled, the patterns for the mid-swing classifier are unlikely to change sig-

nificantly enough to affect which input signals are most useful for classifier accuracy. These

results are a first step toward determining classifier structure, which may need adjustment

after implementation with the semi-active device when the effects of adaptation and misclassi-

fication on classifier performance in subsequent steps can be examined. Another potential lim-

itation is that input signals were selected based on data from a specific set of subjects and may

not be as effective with new subjects. Using test data from the original subjects in conditions

modified from those of the training data broadened the set of input signals identified as useful

and mitigates the risk of excluding input signals critical to classifier accuracy. Since these LDA

classifiers are relatively quick to train (less than five minutes), classifier performance on a new

subject could be improved by adding a few trials from the new subject to the training set and

retraining before full implementation. This approach has successfully improved locomotion

mode classification with a minimal amount of additional training data collected from the new

subject [23].

Future work will seek to assess the classifier performance in an experimental case study

examining the ability of the classifiers to predict cross-slopes encountered in real-time and

using prosthesis-mounted sensors for all measurements instead of motion capture. The classi-

fiers will also be coupled with the prototype variable-stiffness prosthesis and used to select a

stiffness profile designed to allow the foot to conform to the cross-slope. When implemented

with the prototype variable-stiffness prosthesis, the classifiers will likely classify a range of

slopes smaller and larger than the 15˚ slopes on which it was trained as inverting or everting

surfaces. Since the prototype prosthesis adjusts stiffness in response to a detected cross-slope,

it will adjust the stiffness based on the type of slope detected and conform to the actual surface.

Thus, the actual resolution of the prosthesis will be finer than 15˚. Future work should investi-

gate the range of cross-slopes classified as flat, inverting, and everting as well as amputee

responses to adaptation, the functional consequences of a misclassification, and if the prosthe-

sis adaptation should be tuned to smaller variations in cross-slopes. Future work should also

explore other classifier types, such as support vector machines, and other training algorithms

to improve classifier performance and generalizability to new subjects. Finally, the extension

of the classifier to predict other walking conditions where coronal-plane adaptation may be

beneficial, such as turning, should be investigated.

In summary, this work has shown measurements of residual limb kinematics can be

used by an LDA classifier to successfully predict a cross-slope with high accuracy. While in-

pylon sensors alone are insufficient, addition of foot and ankle kinematic sensors on the

prosthetic foot may provide enough additional information to accurately predict cross-slope

terrain.
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