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Abstract

Dynamic processes are inherently important in disease, and identifying disease-related disruptions 

of normal dynamic processes can provide information about individual patients. We have 

previously characterized individuals’ disease states via pathway-based anomalies in expression 

data, and we have identified disease-correlated disruption of predictable dynamic patterns by 

modeling a virtual time series in static data. Here we combine the two approaches, using an 

anomaly detection model and virtual time series to identify anomalous temporal processes in 

specific disease states. We demonstrate that this approach can informatively characterize 

individual patients, suggesting personalized therapeutic approaches.
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1. Introduction

Predictable dynamic processes characterize many biological states, from development to the 

cell cycle to healthy aging. We are interested in using these processes to identify unusual 

disease-related temporal dynamics that may offer potentially actionable information about 

individual patients. The most prevalent data source, although by no means the only possible 

one, for such a project is bulk expression data, which is readily available for a variety of 

dynamic disease states. Transcriptomic profiles need not explicitly include time series; 

instead, we can create virtual time series from static data, so long as age or temporal 

information is available. We apply this approach to both developmental and degenerative 

disorders in which there are normal age-related changes to discover patient-specific temporal 

disruptions of expression that are associated with disease.

This problem is related to anomaly detection,1 a machine learning paradigm in which rare 

anomalous events are detected using only normal (or mostly normal) training samples. 
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Common applications of such methods include fraud, intrusion, or spam detection. In a 

biological context, anomaly detection can be used to characterize specific patients with rare 

or heterogeneous disorders.

However, the dimensions of transcriptomic data sets - typically at least tens of thousands of 

features, representing genes or transcripts, but much smaller numbers of samples - often 

make traditional anomaly detection approaches perform poorly. Furthermore, typically only 

a small fraction of genes provide phenotypic information about the underlying samples. 

Fortunately, gene expression also has a great deal of underlying structure. We can thus use 

known domain information, such as previously-defined sets of functionally related genes, to 

make learning on these data sets possible.

There has been substantial prior work applying anomaly detection to bioinformatics 

problems. Previous efforts relating to expression data have explored identifying 

differentially expressed genes or gene sets.2–5 Only recently have other methods begun to 

explore outliers in the context of characterizing individual samples,6,7 but none of these 

methods considers outlier individuals in a temporal context.

Our group previously introduced Feature Regression and Classification (FRaC),8 a robust 

feature prediction approach for the general anomaly detection problem, and showed that it is 

more robust to irrelevant variables than top competing methods.9 We then used FRaC as a 

component of CSAX,10 a pathway-based method for identifying and interpreting anomalies 

in individual gene expression samples. CSAX addresses the issue that to learn something 

clinically useful about an individual patient, is often not enough to simply know that a given 

sample is anomalous - we also need to know why. Such information might distinguish 

different disease subtypes, provide insight into the mechanisms of disease, or provide 

additional information about a particular patient’s condition.

Several additional methods characterize individual samples via enrichment using molecular 

signatures, including ssGSEA (single sample gene set enrichment analysis),11 GSVA (gene 

set variation analysis),12 PLAGE (pathway level analysis of gene expression),13 and 

combining z-scores.14 However, none of these identifies breakdowns in expected temporal 

dynamics.

For this purpose, we previously developed TEMPO,15 a temporal modeling method for 

characterizing time-related expression dysregulation in disease. TEMPO works by finding 

gene sets where there is a good predictive model of age or time as a function of pathway-

specific gene expression in healthy patients that breaks down consistently in patients with a 

disease or phenotype of interest.

Here we introduce anomaly-TEMPO (aTEMPO), an extension of TEMPO for anomaly 
detection incorporating temporal dysregulation in disease. Using insights from Cousins et 
al.,16 in which we demonstrated that it is possible to perform similarly accurate anomaly 

detection to FRaC while modeling only a small subset of the features, we use aTEMPO to 

model time using expression of limited numbers of functionally related genes. Modeling 

time in this way removes the scaling dependency on the size of the feature space, making 

aTEMPO practical to run on large data sets. This allows for the significant runtime 
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improvements of Cousins et al.16 while retaining CSAX’s ability to interpret anomalies in 

individual patients’ samples. We compare aTEMPO to original TEMPO as well as to 

general-purpose anomaly detection algorithms and to previous anomaly detection methods 

designed for expression data, and we show that in its specific domain, aTEMPO is 

consistently better at anomaly detection than comparator algorithms. We further show how 

aTEMPO uncovers medically relevant insights about individual patient samples that other 

non-temporal methods do not.

2. Methods

2.1. aTEMPO

As in TEMPO,15 for a gene set G, aTEMPO trains a partial least squares regression (PLSR) 

model,17 using the pls package in R, to predict age as a function of the expression of all 

genes in G. Ages for all the control samples C = {S1, S2, … Sj} are predicted in leave-one-

out cross-validation using j separate PLSR models M1, M2, … Mj (Figure 1), identically to 

the procedure used by TEMPO. Ages for test samples D = {Sj+1, … Sk} are predicted using 

MTest, trained on all the control samples.

We obtain a vector of prediction errors for G, the differences between the predicted ages for 

G and the actual ages. We call this vector of prediction errors EG, where EG,s is the 

prediction error for sample s under gene set G. Let μG and σG be the mean and standard 

deviation of the observed prediction errors on the control samples for gene set G, and let 

NG(x) be the probability of seeing an error at least as large as x under the normal 

distribution with mean μG and standard deviation σG. The error likelihood for gene set G and 

sample s is then:

LG, s = − log NG EG, s (1)

Rather than using these error likelihoods to compute a dysregulation score for a gene set, we 

can instead consider it as an anomaly score. Given a collection of gene sets, we will obtain a 

matrix of anomaly scores with one entry for each gene set and test set sample. To obtain a 

single anomaly score for sample s, we simply sum over all gene sets:

As = ∑
i = 1

n
LGi, s (2)

where a larger As indicates a higher likelihood that the sample is anomalous. We note that 

As could be modified by changing which gene sets are included in the summation, perhaps 

by restricting to known disease-associated gene sets, or to only those gene sets with 

significantly predictive models under the criteria used in TEMPO.

2.2. Single Sample aTEMPO

We evaluate aTEMPO’s single sample characterization by constructing a training set of all 

normal samples and a test set of all disease samples. aTEMPO produces an anomaly score 

for each disease sample and gene set, which we use as the single-sample score.
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2.3. Other Methods

We compared aTEMPO to top-performing general anomaly detection methods Local Outlier 

Factor18 and one-class support vector machines,19 as well as gene expression specific 

methods FRaC and CSAX. We use the same implementations of FRaC, LOF, and one-class 

SVMs as described in Noto et al. (2015).10 The CSAX implementation is largely identical as 

well, although minor changes were made to prevent extraneous bagging in instances where 

additional bagging would make no significant difference to the final anomaly scores (results 

not shown).

To further test whether considering gene sets in a temporal context improves accuracy over 

considering only individual genes, we also compared to a version of FRaC that used only the 

anomaly score for the age feature.

We compared aTEMPO’s single sample output to ssGSEA, PLAGE, GSVA, and z-scores 

using the GSVA package in R. However, as all four of these packages produce enrichment 

scores - where both high and low values also indicate an enrichment - scores produced by 

these methods are not directly comparable to aTEMPO scores, where a large value indicates 

an anomaly and a low value does not. In these cases, we compare gene sets with negative 

enrichment scores and gene sets with positive enrichment scores to the corresponding 

aTEMPO scores separately.

Connectivity mapping20 is a technique by which gene expression changes due to a disease or 

phenotype can be matched to drugs that reverse observed expression changes in a set of 

drug-treated cells. To evaluate patient-specific observations derived from aTEMPO, we 

queried the Clue interface21 for drug connectivity using the 150 most up- and down-

regulated genes in the given sample or in the consensus signature for a set of samples.

2.4. Expression Data Sets

We evaluate each algorithm on expression data sets for human diseases where age is a 

reported and disease-relevant variable, the first four of which were described in Pietras et al.:
15

Autism spectrum disorder (ASD): Based on a study by Alter, et al.22 (GSE25507 in the 

Gene Expression Omnibus (GEO) database23), this data set includes expression microarrays 

characterizing peripheral blood lymphocytes of 72 children with autism spectrum disorders 

and 59 controls, with ages ranging from 2 to 14 years.

Huntington’s disease (HD): This data set includes normalized gene counts from an 

RNASeq experiment characterizing blood from 91 Huntington’s disease carriers, 27 of 

whom are pre-symptomatic, and 33 similar-aged controls24 (GSE51779 in GEO). Samples 

are annotated with patient ages in years to .01 precision.

Alzheimer’s disease (AD): We include all samples from Batch 1 marked as “included in 

the case-control study” in an Illumina beadchip data set by Sood, et al.25 from the 

AddNeuroMed consortium26 (GSE63060 in GEO). It contains 49 samples characterizing 
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peripheral blood in Alzheimer’s patients and 67 from similar-aged controls, with ages in 

integer years.

Chronic obstructive pulmonary disease (COPD): This data set includes small 

airway gene expression microarray data from 15 smokers with COPD and 12 smokers who 

are apparently healthy, derived from studies by Carolan, et al.27 and Tilley, et al.28 

(GSE5058 in GEO). Each patient has an integer age in years.

Bronchopulmonary dysplasia (BPD): Drawn from a study on preterm birth 

complications by Pietrzyk, et al.29 (GSE32472 in GEO), this data set includes microarray 

data profiling peripheral blood of 66 five-day-old infants born preterm and later diagnosed 

with BPD, plus 35 controls who did not develop BPD but may have had other complications. 

Gestational ages at birth range from 22 to 33 weeks.

2.5. Gene Set Collections

For aTEMPO and CSAX, we used the same Gene Ontology30 gene sets used in Pietras et al.
15 for the four data sets originally described in that paper. This collection excludes all gene 

sets of size greater than 500 or less than 5, resulting in a total of 6079 gene sets. For BPD, 

we used DFLAT31 biological process gene sets, generated October 2017, excluding gene 

sets of size greater than 500 or less than 10, resulting in 4917 gene sets.

2.6. Anomaly Detection Tasks

We evaluate aTEMPO and each of the comparator methods on five replicates of “semi-

supervised” anomaly detection tasks, where we train on normal samples only and evaluate 

on normal and abnormal test data. Specifically, for each data set and replicate, we generate a 

training set consisting of a randomly-selected 2
3  of the known normal data, and a test set 

consisting of the remaining 1
3  of the normals and all of the anomalies (corresponding to 

disease states). Each anomaly detection algorithm is given access to the expression data and 

ages for each sample, and asked to produce an anomaly score for each test set sample. We 

calculate the Area Under the ROC Curve (AUC) for each replicate and algorithm to assess 

each method’s ability to distinguish normals from anomalies.

3. Results

Full results for all data sets and methods on anomaly detection and single sample tasks, as 

well as several supplemental tables, are available on the project website at bcb.cs.tufts.edu/

atempo.

3.1. Anomaly Detection

On the semi-supervised anomaly detection task, aTEMPO outperformed competitors on all 

five data sets (Table 1). While there is often a close competitor, no other individual method 

is consistently strong on all five data sets. Performance is best on the COPD or BPD data 

sets for all methods. This observation likely partially reflects the fact that COPD is the data 

set analyzing the most disease-relevant tissue (small airway cells rather than blood).
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We had additional phenotypic information for two data sets. Patients with the Huntington’s 

genotype were either symptomatic or asymptomatic at the time of the study, and BPD 

patients were designated as having either mild, moderate, or severe BPD. We additionally 

evaluated anomaly detection to identify only members of these subgroups (full results 

online). Here, aTEMPO was still the best-performing method overall, though again there 

was often a close competitor and aTEMPO was slightly outperformed by another method in 

two cases. We also found that aTEMPO’s ability to identify disease cases as anomalous 

increased with disease severity, a pattern that holds for all five comparator methods as well. 

However, no method performed well at identifying pre-symptomatic Huntington’s patients 

as atypical when trained on normal controls.

Nonetheless, aTEMPO and CSAX can potentially mitigate this problem by using only a 

subset of the gene-set-specific anomaly scores for each patient. Both aTEMPO and CSAX 

compute a single anomaly score for each sample that is the sum of anomaly scores for each 

gene set and sample. Instead of using all gene sets, we could instead compute an anomaly 

score using only a subset of the gene sets - ideally those which we know to be related to the 

disease of interest.

For example, on the HD data set, semi-supervised anomaly detection of asymptomatic 

Huntington’s disease is poor, with the most accurate method obtaining an AUC of only 0.55. 

However, by using only those gene sets found to be dysregulated by TEMPO when 

comparing the normal patients in each replicate to the symptomatic patients, we are able to 

obtain far better performance even on the asymptomatic patients. The average AUC of 

aTEMPO improves from 0.520 to 0.727 using this approach, and the average performance of 

CSAX changes from 0.469 to 0.610. We conclude that in domains where we have some 

prior knowledge about the types of anomalies we are looking for - for example, early 

detection of a known disease - we can likely increase the predictive power of aTEMPO.

3.2. Single-sample aTEMPO for precision medicine

3.2.1. Individual aTEMPO results differ from TEMPO—There is significant 

variation in suprisal values amongst individual patients with a disease. While TEMPO 

reports a single dysregulation score for each gene set that captures the overall trend of 

dysregulation in that gene set, the suprisal value for an individual patient might be quite 

different. Supplemental Table 3 shows the average of the rank correlations between the 

TEMPO dysregulation scores for each gene set and each disease sample’s anomaly scores 

for each gene set. There is generally a mildly positive rank correlation (0.07 – 0.43) between 

the typical sample’s results and the TEMPO results across all samples, but the variance is 

quite high. The correlation can even be substantially negative for individual samples (e.g. 

below −0.5). Cases in which individual patients’ dysregulation in a particular gene set differs 

substantially from an overall disease average might offer especially valuable opportunities 

for precision therapeutics.

3.2.2. aTEMPO differs from non-temporal single-sample methods—Overall, 

correlations between the scores for either the positively or negatively enriched gene sets 

from any of the comparator methods for a given patient and the aTEMPO scores for the 
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corresponding gene sets for that patient are low, as can be seen in Table 2 (correlations 

shown are for BPD - tables for other data sets are similar, and available online). Correlations 

of results between the different enrichment-based methods are more substantial, with the 

exception of ssGSEA. This illustrates that temporal modeling produces novel and distinct 

results from those found by single-sample enrichment methods.

3.2.3. Sample heterogeneity in bronchoplumonary dysplasia (BPD)—For BPD, 

we used subjects’ disease severity and sex to examine how single sample aTEMPO 

characterizes sample heterogeneity and disease subtypes. To consider broader patterns of 

heterogeneity that may be related to clinical properties of the BPD patients, we identified 

gene sets defining large distinct subgroups within the aTEMPO results.

Specifically, we consider gene sets where the anomaly score for that gene set is one of the 

100 highest for at least a fifth of the samples, and where it is not one of the 100 highest for at 

least another fifth of the samples, suggesting that there are sub-populations of BPD cases 

with different patterns. There are 123 such gene sets in the aTEMPO results, many of which 

are related to vascular development, neurodevelopment, and hearing. Fifty three of these 

gene sets are significantly related to BPD severity (ANOVA p-values ≤ .05). These include 

two vascular gene sets (“vasculogenesis” and “aorta morphogenesis”), six 

neurodevelopmental gene sets, and four hearing-related gene sets (including “cochlea 

development” and “inner ear morphogenesis”). These associations were not found by any of 

the static single sample comparator methods.

While BPD severity has previously been associated with male sex,32 only a single one of the 

123 gene sets is significantly associated with sex. However, average anomaly scores for 

males are higher than those for females (5.07 vs 4.67) and the average intra-class rank 

correlations for the anomaly score vectors are lower in males than females (0.17 vs 0.25). 

This suggests that the primary difference in between sexes might not be any specific gene 

set, but rather a greater lack of uniformity in progression of BPD in males.

The observed dysregulation of vasculogenesis and its correlation with BPD severity is 

particularly interesting, because vascular development is known to be disordered in infants 

with BPD, but whether this is a cause or consequence of the disorder, or of common 

comorbidities such as sepsis or retinopathy of prematurity, is the subject of active debate.33 

BPD is also known to correlate with neurodevelopmental delays in the toddler and preschool 

years,34,35 but the cause of this correlation is again not known, and it is thought that 

infection might play a role in causing both. Hearing loss has also been associated with BPD,
36 but the correlation has been putatively attributed to ototoxicity from postnatal antibiotic 

use. The association of these functions at five days of life with the severity of disease in a 

future diagnosis of BPD hints at other possible and perhaps actionable causes.

3.2.4. Huntington’s disease anomalies suggest precision therapeutics—The 

gene set with the highest average aTEMPO anomaly score in HD patients is “negative 

regulation of DNA recombination,” for which three patients had surprisal scores more than 

three standard deviations above the mean. The gene set with the third highest average 

suprisal is “positive regulation of sodium ion transmembrane transport.” The aTEMPO 

Pietras et al. Page 7

Pac Symp Biocomput. Author manuscript; available in PMC 2020 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scores for these gene sets are moderately correlated (0.49) across samples, even though the 

gene sets are completely distinct.

Recombination is invaluable in repairing the double stranded breaks (homologous 

recombination) implicated in HD and other trinucleotide repeat disorders. Acidosis, thought 

to be a product of impaired energy metabolism in HD brains that leads to CNS lactate build 

up and disruption of acid-sensing ion channels, has been observed in HD models in vivo and 

in vitro as well as in patient brains.37 These findings suggest that modulation of ion channels 

may be of therapeutic benefit in the subset of patients with high surprisal scores in both 

DNA recombination and sodium ion transport pathways, as temporally dysregulated ion 

channels may have an influence on regulation of recombination and DNA repair pathways.

To assess precision medicine opportunities for those pathways suggested by aTEMPO to be 

developmentally anomalous, we queried the Broad’s connectivity database (https://clue.io/). 

Connectivity mapping in these three individual patients indeed suggests drugs affecting ion 

transport. ATPase inhibitors are also over-represented among the top hits in several of these 

patients. Sodium-related ATPase activity is known to be disrupted in Huntington’s patients, 

likely causing aberrant mitochondrial function.38

3.2.5. Alzheimer’s disease, tyrosine phosphorylation, and cholinergic 
balance—The gene sets with the highest average surprisal in the aTEMPO results from AD 

patients were “peptidyl-tyrosine modification” and “phosphatidylcholine metabolic 

process.” In particular, there were six AD patients for whom “phosphatidylcholine metabolic 

process” and related gene sets were highly anomalous (aTEMPO scores of at least ten).

Connectivity mapping queries for the signatures of these patients reveal acetylcholine 

receptor antagonists among the top suggested drugs for four of the six patients, including the 

single most-connected drug for one patient. Acetylcholine receptors regulate 

phosphotidylcholine levels; there is a balance in the cholinergic system that needs to be 

maintained.39 Acetylcholine receptor antagonists have previously been proposed as AD 

therapeutics.40

In addition, retinol, which has also been suggested as a means to restore cholinergic balance 

in AD,41,42 was the drug with the highest average negative connectivity score across these 

six patients, with strongly negative scores in four of the six. Again, the aTEMPO results 

seem to be identifying specific patients as candidates for suggested therapeutic approaches 

that have not yet proven to be universally effective.

Further, analyses of post-mortem AD brain tissue has revealed elevated levels of 

phosphotyrosine protein and reduced specific activity of protein tyrosine kinases. These 

studies have suggested that tyrosine and phosphatase systems may be important in AD 

pathogenesis.43,44 The results of aTEMPO support these hypotheses, suggesting that the 

systems of tyrosine phosphorylation and modification are dysregulated in some patients.

The intracellular neurofibrillary tangles involved in AD are made of the microtubule protein 

tau that is abnormally tyrosine phosphorylated and interacts with tyrosine kinases. The 

results from aTEMPO suggest that the subset of patients with the highest surprisal scores in 
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these pathways may benefit from therapies that target the phosphorylation of the tau protein 

with kinase inhibitors.45,46 Few such therapeutics appear in the public connectivity database, 

so it was not possible to evaluate this hypothesis using connectivity queries. However, given 

the prior connectivity results, the hypothesis that aTEMPO is identifying candidates for such 

tau-targeting compounds seems plausible.

4. Discussion

Anomaly detection, which can functionally characterize how a sample’s expression or other 

genomic data differs from a set of normal control samples, is proving to be a promising 

paradigm for precision medicine. We introduced a model that finds predictable age-related 

pathway expression patterns and that identifies anomalous cases in which those patterns 

break down. The highlighted pathways differ from those found by static single-sample 

methods or by the original TEMPO approach. Note that in principle, there is no reason the 

temporal data needs to represent patient age - it could be time since study inception, or even 

some completely different ordinal variable, provided it is relevant to both the control and 

disease states.

We acknowledge several limitations of our approach. Crucially, we have no independent 

clinical data from these patients, so we have no way of experimentally validating that 

aTEMPO gene sets truly suggest effective precision therapeutics in these studies. The 

connectivity data that we used to provide some concurring evidence is derived primarily 

from cancer cells, whose relevance to disease-relevant cells in the diseases we consider is 

variable. We also note that we used the same expression data for the connectivity queries and 

the aTEMPO analysis, so this confirmation is not truly independent. However, the data are 

used in a completely different way, so finding suggested therapeutics that reflect the 

temporal dysregulation patterns identified by aTEMPO is still somewhat confirmatory. 

Nonetheless, true experimental validation awaits future work.

Simulation would also provide a method for experimentally validating aTEMPO results. 

However, while there are established and accepted methods for generating simulated static 

expression data sets (e.g., Law et. al.47), simulating data with time-related patterns for 

aTEMPO while remaining a fair comparison for static methods is nontrivial. Development 

of such simulation methods is an important direction for future work.

The PLSR models currently constructed by aTEMPO are currently extremely simple. This is 

necessary to reduce risk of overfitting when training models of up to 500 features with as 

few as fifteen training samples. Massive multi-omics data sets might allow training of more 

complicated and more accurate models, potentially incorporating other clinical variables. 

Such data sets may also make libraries of pre-trained models practical, which would allow 

meaningful aTEMPO characterization to be obtained for data sets consisting of only a single 

patient, assuming data consistency issues could be addressed.

In the supplemental material, we explored omitting gene sets from the anomaly score if their 

models were not significantly predictive. While this particular technique did not significantly 
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improve over normal aTEMPO, exploring other weighting schemes for As might prove a 

valuable direction for future work.

Finally, one advantage that enrichment-based single sample methods like GSVA and 

ssGSEA have over characterizing single samples via anomaly detection is that they allow for 

directionality. A high aTEMPO anomaly score for a gene set merely indicates that the gene 

set’s normal developmental pattern is somehow dysregulated, but doesn’t directly indicate 

how it is dysregulated. Future efforts should explore this issue as well.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
PLSR prediction for an arbitrary gene set G1. Error likelihoods LG1, D are used as anomaly 

scores for gene set G1.
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Table 1.

Average anomaly detection AUCs over five replicates, with standard deviations, for each method. Top scores 

per data set are in bold.

aTEMPO FRaC FRaC, age feature CSAX LOF One-class SVM

ASD 0.692 0.531 0.683 0.534 0.533 0.500

(0.025) (0.063) (0.034) (0.077) (0.060) (0.000)

AD 0.615 0.586 0.493 0.507 0.605 0.526

(0.030) (0.050) (0.019) (0.044) (0.047) (0.025)

COPD 0.987 0.987 0.710 0.854 0.707 0.500

(0.030) (0.018) (0.147) (0.130) (0.042) (0.000)

HD 0.622 0.468 0.616 0.491 0.550 0.506

(0.070) (0.045) (0.038) (0.034) (0.056) (0.034)

BPD 0.845 0.758 0.816 0.714 0.729 0.686

(0.025) (0.062) (0.039) (0.080) (0.033) (0.048)
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Table 2.

Average correlations between single sample score vectors for the same patient across methods in BPD. 

Correlations between aTEMPO and enrichment-based methods include only gene sets that are either positively 

or negatively enriched in the comparator method.

ssGSEA Plage Zscore aTEMPO (+) aTEMPO (−)

GSVA 0.102 −0.212 0.829 0.062 −0.052

ssGSEA −0.029 0.105 0.043 −0.08

Plage −0.156 0.018 −0.008

Zscore −0.004 −0.016
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