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A B S T R A C T   

The cooking process is fundamental for bean consumption and to increase the bioavailability of 
its nutritional components. The study aimed to determine the effect of cooking on bean seed coat 
through morphological analyses with different microscopy techniques and image analyses. The 
chemical composition and physical properties of raw black bean (RBB) and cooked black bean 
(CBB) seeds were determined. The surface and cross-sectional samples were studied by Optical 
microscopy (OM), environmental scanning electron microscopy (ESEM), atomic force microscopy 
(AFM) and confocal laser scanning microscopy (CLSM). The composition of samples showed 
significant differences after the cooking process. OM images and gray level co-occurrence matrix 
algorithm (GLCM) analysis indicated that cuticle-deposited minerals significantly influence 
texture parameters. Seed coat surface ESEM images showed cluster cracking. Texture fractal 
dimension and lacunarity parameters were effective in quantitatively assessing cracks on CBB. 
AFM results showed arithmetic average roughness (Ra) (121.67 nm) and quadratic average 
roughness (Rq) (149.94 nm). The cross-sectional ESEM images showed a decrease in seed coat 
thickness. The CLSM results showed an increased availability of lipids along the different 
multilayer tissues in CBB. The results generated from this research work offer a valuable potential 
to carry out a strict control of bean seed cooking at industrial level, since the structural changes 
and biochemical components (cell wall, lipids and protein bodies) that occur in the different 
tissues of the seed are able to migrate from the inside to the outside through the cracks generated 
in the multilayer structure that are evidenced by the microscopic techniques used.  
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1. Introduction 

The common bean (Phaseolus vulgaris L.) is one of the most important foods in the Mexican culture since Prehispanic times due to its 
nutritional attributes as an excellent source of protein, fiber, calcium, and iron [1]. Likewise, its biological activity has been 
demonstrated as antioxidant, anticancerigenous, anti-diabetic, and as a weight control [2–4]. 

Structurally, beans are composed of two main tissues: seed coat and endosperm [5,6]. The seed coat is the outer covering of the 
seed, and the endosperm is the most abundant tissue that contains mainly proteins, lipids (a good source of poly unsaturated fatty acids 
with functions of peroxidation reactions), and carbohydrates (reserve and structural) [7–9]. The seed coat acts as a barrier for the 
endosperm against different environmental conditions, it is a thin and resistant layer due to its microstructure and composition. The 
presence of calcium oxalate crystals has been evidenced, which intervene in the mechanical and textural properties [10–13]. On the 
other hand, the color depends on the presence of phenolic compounds in the seed [1,3,12,14,15]. 

In the surface of the seed coat, there is a small opening called a micropyle, which is the structure through which water penetrates to 
begin the germination process [16,17]. The architecture of the seed coat is described as a multilayered structure; the first tissue 
covering the whole seed is called the cuticle, followed by palisade cells of elongated sclereids called macrosclereids, and, finally, the 
parenchyma cells (nutrient transport layer during the development of the seed) [18,19]. 

All commercial varieties of beans are subjected to a cooking process before being consumed. This treatment increases the di
gestibility of the starch and modifies nutritional components, such as proteins. Macroscopic texture changes during thermal processing 
of black bean seeds involve hydration, solubilization, swelling of the starch granules, and dissolution of the cell wall and the lamellar 
polymers of the cotyledon [20,21]. 

The studies carried out so far regarding the effect of the cooking process on beans have focused mainly on the endosperm, 
particularly, the starch granules of hardened beans [22] grown under different water regimes [9], and on bean flour by studying the 
nutritional and non-nutritional compounds. These studies have provided information at the microstructural level of the endosperm 
after the cooking process through the use of microscopic techniques; however, a global study on structural changes in the bean seeds 
has not been performed yet. Studying the microstructure of the bean seed will allow evaluating how the cooking process influences its 
nutritional properties (protein denaturation, starch gelatinization, and inactivation of non-nutritional compounds) and texture 
properties, which affect the technological processes (delaying, accelerating, and optimizing the quality of the cooking process). 

Microscopy techniques are valuable tools to study the microstructure of food matrices, as well as the distribution of phenolic 
compounds, proteins, and carbohydrates. Several authors [23–25] have reported the use of image analysis combined with microscopy 
techniques, demonstrating their effectiveness in the measurement of morphological, morphometric, and textural characteristics using 
algorithms such as GLCM [13,21,24,26,27]. The objective of this work was to study the microstructural changes that occur in the black 
bean (Phaseolus vulgaris L.) during the cooking process using microscopy techniques combined with image analysis. 

2. Materials and methods 

2.1. Plant material 

Twenty kilograms of raw black bean (RBB) seeds of the Jamapa variety were procured from Campo Experimental Cotaxtla of 
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) and the Schettino Company of the state of Veracruz, 
Mexico. RBB seeds were manually cleaned to remove seeds with cracks or appreciable damaged seeds and stored at room temperature 
for later use. The moisture content of RBB was 8.57 ± 0.13% dry weight (DW), which is within the range reported by Corzo-Rios et al. 
[28] (<15%). 

2.2. Cooking process 

Beans were cooked following the method of Dueñas et al. [29] with the following modifications. RBB seeds were placed in distilled 
water a 1:3 w/v ratio in a pressure cooker at 100 ◦C, for a period of 55 min, which was defined until 75% of the beans felt soft and 
slightly lumpy [30]. Finally, CBB seeds were separated for further analysis. 

2.3. Proximal chemical composition 

RBB and CBB were lyophilized in a freeze dryer (FreeZone 2.5, Labconco, Kansas City, MO, USA) and pulverized using a mechanical 
mill (M 20, IKA, Germany). Methods from the Association of Official Analytical Chemists [31] were used to analyze the following 
parameters: ash content (method 923.03), protein (NX6.25, method 955.04), Lipid content crude fat (method 920.39), and total 
carbohydrate contents were estimated by the formula (% total carbohydrates = 100 - % protein - % ash - % Lipid content crude fat). All 
reported proximate analysis data in this manuscript are the arithmetic mean of triplicate measurements. 

2.4. Microstructural analysis of RBB and CBB 

The chemical and microstructural analyses of the seeds are relevant aspects for the knowledge of their properties and function [21]. 
In this research, we analyzed the surface of the seeds corresponding to the external part of the seed coat and the different tissues 
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present in the beans’ cross-section, corresponding to the seed coat and cotyledon. Microscopy techniques have also been useful to study 
the architecture, microstructure (OM, ESEM, AFM), and macromolecules distribution (CLSM) in bean seeds. 

2.4.1. Optical microscopy 
Texture image analysis was performed to study changes in the seed coat surface after the cooking process (RBB and CBB) using the 

images from an optical microscope (BX-41, OLYMPUS, Japan). The images were acquired in bright-field in TIFF format with a size of 
1280 × 1024 pixels using the NIS-Elements software (V.2.30). 

2.4.2. Environmental scanning electron microscopy 
The microstructure of the surface and cross-section seed coat of RBB and CBB were observed using an ESEM (EVO LS10, Carl Zeiss, 

Germany). The samples were placed on aluminum stubs attached with double-sided carbon conductive tape; the images were acquired 
with a secondary electron detector at 20 kV [32]. Additionally, elemental microanalysis of the seed coat surface and cross-section were 
determined with the coupled energy-dispersive X-ray detector (EDX) [33]; this analysis allowed the characterization of the crystals by 
cross-section. 

2.4.3. Atomic force microscopy 
Seed coat surface roughness of the RBB and CBB was analyzed through AFM. The samples were placed on stainless steel disc with 

double-sided adhesive tape. Three different areas (2.5 × 2.5 μm2, 1 × 1 μm2 and 820 × 820 nm2) were scanned in the tapping mode 
(RTESP-300, Bruker, Camarillo, CA) at 1.0 Hz applying an AFM (MultiMode V connected to minicontroller NanoScope V, Bruker, 
USA). The micrographs were processed with the software NanoScope Analysis v. 1.80 (Veeco, USA), to calculate the roughness pa
rameters Ra and Rq [34]. All images were stored in RGB color format (704 × 576 pixels) in TIFF format. 

2.4.4. Confocal laser scanning microscopy 
Confocal Laser Scanning Microscopy is used to visualize the different structures of tissues in combination with multicolor fluo

rescent staining and labeling of sample structures of interest based on their composition [35]. For the histological study, cross-sections 
of the RBB samples were softened and fixed with a saturated solution of picric acid for 5 h [36,37] and washed with 70% ethanol to 
eliminate the acid traces. After that, the sections were dehydrated in a gradual series of ethyl alcohol solutions (80, 90, and 100%) for 2 
h each one [36]. After this treatment, the RBB samples were subsequently cleared with ethanol-xylol series (3:1, 1:1, 1:3) and absolute 
xylol for 10 min. The samples were embedded in paraffin-xylol (3:1) for 4 h at 60 ◦C and Paraplast® (absolute paraffin) (SIGMA 
Chemical Co., St. Louis, MO, USA) in a tissue embedding system (KD-BM-II, Kedee Instrument, Co., LTD. Jinhua, China). On the other 
hand, dehydration of the CBB samples was carried out with 30, 40, 50, 60, 70, 80, 90, 100% ethanol, and clarification was conducted 
with the same ethanol-xylol series for 5 min. Finally, the CBB samples were embedded in the same way as the RBB samples. To obtain 
10-μm thick sections, the paraffin sample blocks were cut with a rotary microtome (RM 2235, Leica Biosystems, Germany), placed in a 
bath with gelatin. and transferred to glass slides. Samples were deparaffinized [38] with absolute xylol, xylol-ethanol solution (1:1), 
and ethanol-xylol series (96, 70, and 25%) for 5 min. 

The histological sections were stained with calcofluor-white (0.1%) (fluorescent, Sigma 18909, USA) for 30 min to elucidate the 
distribution of cell walls, which are mainly formed by polysaccharides such as cellulose and hemicellulose. Subsequently, the samples 
were stained with Nile red (0.1%) (fluorescent, Sigma 72485, USA) [39] for 10 min at room temperature to show the presence and 
distribution of the lipids in the samples. Samples were observed under the CLSM (LSM 710, NLO, Carl Zeiss, Germany) using the 
excitation wavelength for calcofluor-white that was 405 nm with 16% transmittance, and for Nile red that was 514 nm with 12% 
transmittance; then, the fluorescence in the range of 559–630 nm was detected. 

2.5. Image analysis 

Image analysis was used to quantify the microstructural changes generated by the cooking process. For this study, the images 
obtained with the techniques of light (OM and CLSM) and ESEM were analyzed by 50 measurements of each layer using ImageJ 1.52a 
software (National Institutes of Health, Bethesda, MD, USA, https://imagej.nih.gov/ij/). 

Original images of optical microscopy were cropped (480 × 480 pixels) and processed to obtain texture image parameters for the 
seed coat surface of RBB and CBB. Using the GLCM algorithm, the contrast, homogeneity, and entropy parameters were obtained, as 
well as the distribution of minerals by 50 measurements were analyzed in each determination [21,27,40]. 

On the other hand, seed coat surface ESEM images were used to obtain the parameter of fractal dimension texture (FDT) with 
shifting differential box counting (SDBC) and lacunarity (λ) using the box counting method with the FracLac 2015 plugins of the 
ImageJ software [41,42]. 

The morphological characterization of the CaOx crystals along the different tissues of the multilayer seed coat (number of crystals/ 
mm2) was carried out in the cross-section of ESEM images. For this, binary images were obtained using the threshold tool (197/255). 
Area (A), perimeter (P), Feret diameter, and aspect ratio (AR) parameters were obtained by 50 measurements [43]. Ninety mea
surements were made to obtain the average size of starch granules present in the cotyledon of the samples. 

2.6. Statistical analysis 

A statistical analysis was performed for all the results. Multiple comparison was made with the least significant difference (least 
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significant difference, LSD) of Tukey, using the MINITAB® 16 software. 

3. Results and discussion 

3.1. Proximal chemical composition of black beans 

The chemical properties of the bean samples underwent changes during the cooking process. Table 1 shows the chemical 
composition, observing significant differences (p < 0.05) in the protein content of RBB (17.47 ± 0.05) and CBB (18.17 ± 0.05), this 
increase in protein content presented by CBB could be related to the interaction between phenolic compounds and proteins, which 
have been reported to form cross-linked complexes that undergo conformational and structural changes by the cooking process [20,44, 
45]. The protein content is within the range reported for different common bean varieties (17.08%–25.46%) [28,46–50], these dif
ferences in results can be explained by differences in growing conditions, including soil type, irrigation and fertilization. 

In the case of lipid content, a decrease from 2.88 ± 0.11 to 2.54 ± 0.05 was observed after the cooking process, this could be 
attributed to a lipolysis phenomenon [51], this reaction is catalyzed in certain occasions by the high temperatures of the processing of 
some foods in the presence of water [28,45,52,53]. The chemical composition of these compounds changes significantly during 
cooking [54]. High temperatures and humidity induce lipid oxidation which can impact texture. Lipid oxidation, polymerization and 
degradation have been associated with the “Hard to cook (HTC)” phenomenon that directly affects macro- and micronutrient 
composition and, therefore, a decrease in the health benefits of bean consumption [20,45,55,56]. 

Significant differences were observed in the ash content of RBB (5.38 ± 0.13) and CBB (4.43 ± 0.04), this can be attributed to the 
solubilization and consequent outflow of these components to the cooking water. RBB showed values similar to those reported by other 
authors for black beans, ranging from 3.88 to 4.52% [57,58]. The CBB values are within the interval reported by Ovando-Martínez 
et al. [9] for different types of beans (3.96–4.65%); the mineral content depends on the residues of the extraction procedure, mineral 
composition of the soil which varies according to the season of the year, and the degree of maturity of the seeds [59,60]. 

The total carbohydrate content was determined by difference of the total chemical components on a dry basis shown in Table 1 
(ash, lipids and total nitrogen). Significant differences were observed between RBB (74.27 ± 0.07) and CBB (74.86 ± 0.15) these 
values are within the range reported by various authors (65.4–73.4 %) [60–63]. Heat treatments increase water absorption and 
swelling of starch granules, breaking the bonds of amylose-amylopectin chains, starch complexes with proteins or lipids, hemicellu
lose, minerals, reduces antinutrients (phytic acid, tannins, and oxalates) and improves their nutritional value by increasing the di
gestibility of proteins and starch [9,28–30,46,64–73]. 

3.2. Impact of the cooking process on the microstructural properties of the seed coat surface 

3.2.1. Optical microscopy 
Fig. 1 shows the optical images of RBB and CBB seed coat surface. Bright areas are observed in both samples along their seed coat 

Table 1 
Summary of chemical composition, physical properties and crystals morphology of RBB and CBB.  

Chemical composition of seed 

Compound RBB CBB 

g/100 g 

Proteins 17.47 ± 0.05b 18.17 ± 0.05a 

Lipids 2.88 ± 0.11a 2.54 ± 0.05b 

Ash 5.38 ± 0.13a 4.43 ± 0.04b 

Total Carbohydrates1 74.27 ± 0.07b 74.86 ± 0.15a 

Physical properties of seed 

Parameters  

Length (μm) 12.26 ± 0.77b 13.23 ± 0.96a 

Width (μm) 8.08 ± 0.42b 8.28 ± 0.50a 

Contrast 36.61 ± 6.97a 28.00 ± 4.77b 

Homogeneity 0.29 ± 0.08a 0.34 ± 0.03b 

Entropy 7.01 ± 0.26a 6.76 ± 0.18b 

Crystal distribution (%) 1.26 ± 0.75a 0.26 ± 0.26b 

Crystal morphological features 

A (μm2) 94.45 ± 25.73a 17.38 ± 4.50b 

P (μm) 58.63 ± 5.78a 24.83 ± 4.86b 

Feret Diameter (μm) 16.88 ± 1.99a 6.77 ± 1.71b 

AR 2.37 ± 0.477a 1.51 ± 0.55a 

All results were expressed as the mean value ± standard deviation. RBB: Raw Black Bean, CBB: Cooked 
Black Bean, A: Area, P: perimeter. Letters between averages in the same row column indicate significant 
statistical differences (p ≤ 0.05), using the Tukey test. 
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surface that probably correspond to randomly distributed minerals or crystals (Fig. 1a, b, d, e). The spatial distribution of bright areas 
was found to be random and heterogeneous throughout the cuticle tissue, and the bean seed coat has been reported to have a higher 
concentration of minerals compared to the cotyledon [74]. Minerals in the cuticle of the black bean seed coat can have several sig
nificant implications for seed structure, function, and potentially, its interaction with the environment. The cuticle is the protective 
outer layer of the seed coat, and the presence of minerals in this layer can serve several purposes (Increased mechanical strength, 
barrier function, resistance to environmental stress, storage of mineral nutrients, influence on seed germination, and contribution to 
seed coat color) [13,75–78]. 

The distribution of the minerals was found in a very low proportion within the material once the cooking process occurred, 
occupying only 0.26 ± 0.26% of the total surface area (Table 1). This finding corroborates the results obtained in the proximal 
chemical analysis in which the total ash content decreased once the cooking process was done, causing breakage of the granule, and 
lixiviation of soluble solids, minerals, and cuticle [28]. On the other hand, it provides new sensory properties, such as flavor, aroma, 
and texture to the seed [79], improving bioaccessibility during digestion for beneficial health effects [71]. 

Texture parameters based on GLCM algorithms have been effective in quantitatively characterizing microstructural changes on 
food surfaces [80,81]. These parameters based on the GLCM algorithms were obtained from the OM images and their values are listed 
in Table 1 and Fig. 1c–f. Significant differences were found in all parameters evaluated. Regarding the contrast parameter, the results 
showed a decrease of 26.5% after the cooking process, this behavior is associated with a considerable decrease in the content of the 
crystals on the surface that were solubilized. On the other hand, in CBB, we observed a slight decrease in the entropy value of the image 
with respect to RBB, which means that the texture of the surface of the seed coat is less disordered. This fact is again related to the 
content of crystals, where, due to less content of these structures, the texture of the image tends to be more homogeneous. Finally, an 
inverse pattern to entropy was found in the homogeneity parameter. The change in the content of the minerals located on the seed coat 
surface due to the cooking process notably influenced the values of the determined texture parameters. 

The cooking process has an impact on the technological and functional properties that lead to the generation of new structures and 
biological activities. The above results indicate that the combination of OM and image analysis are essential tools for the quantitative 
study of the microstructure of the surface of leguminous seeds. 

3.2.2. Characterization of seed coat surface and cotyledon by means of environmental scanning electron microscopy 
ESEM images of the seed coat surface from RBB and CBB at different magnifications are shown in Fig. 2. The RBB shows irregu

larities along the outer layer of the seed coat that could be associated with its treatment during post-harvest handling (Fig. 2a). As 
observed, the cuticle (Cl) is the first tissue that presents the multilayer structure of the seed coat, which provides the bean seed with a 
certain impermeability to water due to its thickeness [82]. 

Once the cooking process was carried out, the layer covering the bean disappeared because it solubilizes. Subsequently, a cracking 
pattern caused by the cooking process was formed and, as a consequence, clusters of the macrosclereid cells (MC) were generated 
(Fig. 2b), which form the second tissue of the multilayer [82]. Fig. 2c shows that, in RBB, the MC tissue has a rough surface and is 
naturally compact, whereas, in CBB, the surface is fractured and cracked. 

Fig. 2d shows the cracking of the seed coat surface, which caused a loss of its compact structure and exposed the individual cells of 
the MC. Ellipsoidal starch granules were observed on the RBB and CBB (Fig. 2e) with a size of 19–30.51 μm for raw samples and 
102.3–106.8 μm after the cooking process, these starch granules which were able to migrate from the inside to the outside through the 

Fig. 1. Optical images of RBB (a) and CBB (d) seed coat surface at 50× resolution and their respective grayscale images (b and e) and binarized 
image by Image analysis (c, f). 
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cracks generated in the multilayer structure. These structural changes will be taken up again in the CLSM section for a better 
understanding. 

Another possible explanation for the exposure of the starch granules on the surface could be that the micropyle zone allows the 
absorption of water for the physiological processes of the seed. During the cooking process, in addition to the progressive absorption of 
water, the micropyle can act as a carrier of some starch granules to the cooking water. Due to the presence of this starch (constituted by 
a high level of amylose (32–45.4%) and resistant starch (78.3%), beans are considered a low glycemic index food that attenuates the 
postprandial insulin response, which contributes to reduce colon cancer [72,83]. 

Elemental microanalysis of the seed coat surface in both samples (RBB and CBB) showed minerals such as Ca, K, Mg, Fe, Si, and Zn 
(Fig. 2e and f). The elemental analysis shows a decrease in the intensity of these minerals (Fig. 2d), highlighting CaOx crystals that are 
observed after seed rupture, which are found inside the multilayer tissue of the seed coat. This corroborates the decrease in ash content 
in CBB as shown in the proximate chemical analysis due to the diffusion of certain minerals in the cooking water. 

Several studies have reported that beans are part of traditional diets in Mexico [84,85] and they are an important sources of iron, 

Fig. 2. ESEM images of the RBB (a) and CBB (b) surface at 100×, and their respective magnifications at 500× (c) and (d), EDS spectrum of the RBB 
and CBB surface (d) and (e). 
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zinc, and calcium. The surface of food matrices that have undergone cracking presents an irregular and complex texture that can be 
quantitatively characterized by parameters such as fractal dimension texture (FDT) that allows analyzing the irregularities of the 
surface of an image and lacunarity (λ), which represents the distribution of the holes or “gaps” in an image [24,86]. A FDT value of 
2.4225 ± 0.0126 was obtained for RBB and 2.5371 ± 0.0174 for CBB according to Fig. 3a and b. The RBB image has a smooth surface 
that generated a relatively low FDT value, which was also observed in the parameters of homogeneity and entropy. This smooth surface 
is given by the cuticle composed of hydrophobic substances (waxes), such as cutin and suberin [76]; this layer is partially solubilized by 
the cooking process, fracturing the surface of the MC cells and causing a crack pattern. The latter results in a higher FDT value in CBB as 
the crack pattern provides a more complex surface, which generated rougher texture, greater entropy and homogeneity. 

Lacunarity is a property of fractal objects that represents the distribution of holes or “gaps” in an image and is an indicator of the 
object’s symmetry [24,87]. A λ value of 0.793 ± 0.043 for RBB and 0.233 ± 0.053 for CBB were obtained. RBB had higher values of 
lacunarity and a surface with less structures (Fig. 3c), therefore, the intensities of the pixels are lower, resulting in a greater space 
between each structure and a smoother surface. The CBB lacunarity value indicates that the cracking pattern on the seed surface filled 
the image in the same way throughout the scan (Fig. 3d), losing its smooth and compact structure. Similar results were obtained by 
Garcia-Armenta et al. [86], who found that the fracture pattern created by water penetration into the thick maltodextrin agglomerates 
influenced the homogeneity and symmetry of the surface. 

3.2.3. Atomic force microscopy 
Fig. 4 shows the topographic images of RBB and CBB obtained by AFM with a scan size of 2.5 × 2.5 μm2 (Fig. 4). The RBB surface 

(Fig. 4a, b) corresponds to the cuticle that has a scaly and heterogeneous surface throughout the scanning area. As described in the 
ESEM images there is a solubilization of the cuticle and a cracking pattern induced by the cooking process, which generated clusters of 
macrosclereid cells, as seen in Fig. 4c depicting the CBB surface. 

The circular surface of the macrosclereid cells can be seen throughout the image in Fig. 4d, with a diameter between 0.476 and 2.88 
μm. Roughness parameters (Ra and Rq) showed significant differences in RBB and CBB. A Ra value of 53.37 ± 17.95 nm and Rq of 67.21 
± 60.97 nm was obtained for RBB, whereas a 50% increase in the values of Ra (121.67 ± 52.22 nm) and Rq (149.94 ± 22.58 nm) was 
observed after subjecting the bean to a cooking process. 

After the cooking process the cuticle and minerals are partial solubilized and leaves the surface of the macrosclereid cells exposed, 
causing an increase in the roughness; in addition, the cooking process generates a pattern of cracking that contributes to the increase of 
the roughness in CBB. 

The topographic images corroborate the morphological changes on the surface of RBB and CBB that are mainly attributed to the 
cracking pattern caused during the cooking process. AFM allowed observing quantitative changes in the roughness of beans subjected 
to a cooking process. 

Fig. 3. FDT values by the SDBC algorithm and 3D graph of the RBB (a) and CBB (b) surface, binary images of the RBB (c) and CBB (d) surface 
obtained by Image analysis from ESEM images. 
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3.3. Microstructural cross-sectional changes of the seed coat 

3.3.1. ESEM characterization after the cooking process 
Fig. 5 shows the images obtained by ESEM from a cross-section of the RBB and CBB, respectively. Fig. 5a shows the structure of the 

Fig. 4. AFM images of (a) height and (b) amplitude error from RBB and CBB (c, d), respectively. Scan size (2.5 × 2.5 μm2).  

Fig. 5. ESEM images at 500× of RBB (a) and CBB (b), and their respective binary images (c) and (d). MC: Macrosclereid cells, SC: Subepidermal 
pillar cells, SP: Spongy parenchyma cells, CS: Cotyledon surface. CaOx: Calcium oxalate crystals. 
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different tissues of RBB: MC cells that make up the palisade tissue (38.97 μm), subepidermal pillar cells (SC) (17.21 μm), and spongy 
parenchyma cells (SP) (44.18 μm); then, the cotyledon surface (CS) is observed. 

A decrease was observed in seed coat thickness after the cooking process because during this process the starch granules of the 
cotyledon initiate a swelling phenomenon that causes a rupture of the seed coat multilayer tissues, as shown in Fig. 5b. Individual CaOx 
crystals were found located inside the SC cells, which coincides with other studies [53,88] conducted on different biological materials, 
indicating that their production in the seed coat plays a protective role against insects. 

During the cooking process (100 ◦C, 55 min), degradation of cell wall components occurred affecting the integrity of the multilayer 
walls, as has been reported for other legumes [82,89]. The bean grain expands 7% after cooking, generating a compression of the 
multilayer structure due to the swelling of the granules of the cotyledon, the SP zone is no longer spongy and elastic due to a reduction 
of its thickness, the SC cells decrease their size and number of CaOx crystals, losing rigidity. The MC cells are partially fractured and 
contribute together with the micropyle to promote water diffusion inside the grain. 

Image analysis was carried out to evaluate the morphology of the CaOx crystals of RBB and CBB, from binary images show in Fig. 5c 
and d. The morphological features of crystals are shown in Table 1. The size parameters (A, P, Feret diameter) showed significant 
differences in RBB and CBB. These results indicate that the size of the CaOx crystals decreases in CBB, mainly due to the solubilization 
caused by the cracking of the seed by the cooking process. 

The shape parameters of CaOx crystals were not significantly different between the samples. The values of the AR parameters of the 
oxalate crystals indicate their rectangular prism shape, these parameters serve as qualitative and quantitative indicators [90]. CaOx 
crystals can play several roles in plant tissues, such as protection, stiffness, and regulation of calcium content [91]. Structural changes 
during the cooking process in the seed coat multilayer affect the content of CaOx crystals in CBB. 

3.3.2. Confocal laser scanning microscopy 
Fig. 6 shows the optical and fluorescence images of a cross-section of RBB and CBB, where the different components that integrated 

the multilayer tissue of the seed coat and the main compounds of the endosperm, exposing the microstructural changes caused by the 
cooking process. Among the main changes observed in RBB (Fig. 6a) and CBB (Fig. 6c) are the decrease in size and abundance of CaOx 
crystals, swelling of SG. The cells forming the SP tissue leave abundant spaces among them to facilitate gas exchange, which after the 
cooking process is lost due to increased CS. The cell wall (CW) is found surrounding the bean cotyledon cells that contain the starch 
granules, the CW components (cellulose and hemicellulose) were evidenced by CLSM (Fig. 6b and d), where they were marked in blue, 

Fig. 6. Images obtained by CLSM of a cross-section of the sample. Optical image of RBB (a), calcofluor-Nile red stain of RBB (b), optical image of 
CBB (c) and its calcofluor-Nile red stain (d). SG: Starch granules; L: Lipids; CW: Cell wall; CT: Cuticle; CaOx: Calcium oxalate crystals 
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showing a decrease in CBB. 
As previously described in the ESEM images, a swelling of the starch granules that could be covering the CW is observed and at the 

same time they are partially solubilized. This behavior can be explained from Fig. 6c, showing empty spaces where starch granules are 
observed inside the bean seed in the cotyledon structure of amyloplasts (Fig. 6a). Starch granules during the cooking process swell and 
lose their structural order, originating loss of the maltese cross (birefringence) (Fig. 6a–c) that has been described by Chaves Villareal 
et al. [92] and Chigwedere et al. [20]. It has been reported that seed coat permeability is low, so water is forced to enter through the 
raphe, hilum, and micropyle [82] during the cooking process, resulting in swelling of the starch granules. Pressure is exerted from the 
inside to the outside, causing the seed to expand, lose rigidity, the seed coat surface fracture, and granules migration into the cooking 
water. 

Lipids are found around the SG and on the surface of RBB and CBB as evidenced by a red stain. Cuticle tissue is composed of 
hydrophobic substances (waxes), such as cutin and suberin [76] and the chromoplasts encrusted in the sclereids distributed in the MC 
cells [93]. 

Along the CBB cross-section (Fig. 6d), a red stain is observed in both the seed coat and the endosperm. The cell membranes of the 
different tissues constituting the seed have a membrane formed by a double layer of phospholipids. After the cooking process, this 
membrane breaks leaving exposed lipids, increasing their availability in the multilayer tissues of the seed coat and cotyledon as a 
consequence of the seed’s cell expansion, which facilitates the formation of starch-lipid complexes [94] as evidenced by CLSM images. 

In light of the results Fig. 7 presents a diagram that schematizes four main stages that characterize the cooking process. First (I): it 
begins with the solubilization of soluble compounds (proteins and minerals) on the surface of the seed coat, as observed in the chemical 
analysis and OM analysis. Second (II): the expansion of starch granules in the cotyledon by the cooking process exerts pressure from the 
inside to the outside, due to the progressive entry of water through the raphe, hilum, and micropyle. Third (III): The seed expands, loses 
rigidity, and gives rise to a compression of the multilayer structure of the seed coat that generates a cracking, forming clusters of MC 
cells on the surface, facilitating the entry of water into the cotyledon, and leading to the total swelling of the seed (7%). Fourth (IV): the 
softening of the starch granules generated the expansion of the cells, resulting in a greater availability of lipids in the seed coat and 
cotyledon, as evidenced by the CLSM images. 

4. Conclusions and perspectives 

The chemical composition, physical properties, the multilayer structure of the seed coat, and the morphological characteristics of 
the crystals in the studied beans were qualitatively and quantitatively affected by the cooking process. The distribution of minerals on 
the surface was determined by OM and the surface texture change was quantitatively characterized by the GLCM algorithm. The 
cooking process generated changes in the CBB surface as measured by the determination of fractal dimension parameters of texture and 
lacunarity. ESEM revealed cracking in the form of clusters in the cross section of bean seeds caused by the swelling of starch granules, 
as well as a decrease in the size of CaOx crystals quantified by morphological parameters (A, P, Feret diameter, and AR). AFM results 
revealed changes in seed coat surface topography that were quantitatively evidenced by roughness parameters (Ra and Rq). The lipid 
membrane, covering the seed coat and cotyledon cells, ruptured after the cooking process resulting in increased lipid availability, as 
evidenced by CLSM. The information provided by the techniques and methods allowed us to propose a model that explains the 
structural changes that take place in the bean by the cooking process, which consisted of four stages. The combination of microscopy 
techniques with image analysis contributes to a better understanding of the structural changes and their effect on the nutritional and 
functional properties induced by the cooking process. The data generated from this research offer data for the seed processing in
dustries, since they allow the implementation of properly controlled cooking processes (parameters involved in the process, cook time, 
temperature, solid: liquid ratio, among others), which will reflect benefits in the quality of the final product. 
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[27] J. Nicolás-Bermúdez, I. Arzate-Vázquez, J.J. Chanona-Pérez, J.V. Méndez-Méndez, G.A. Rodríguez-Castro, H. Martínez-Gutiérrez, Morphological and 
micromechanical characterization of calcium oxalate (CaOx) crystals embedded in the pecan nutshell (Carya illinoinensis), Plant Physiology. Biochem. 132 
(2018) 566–570, https://doi.org/10.1016/j.plaphy.2018.10.008. 

[28] L.J. Corzo-Ríos, X.M. Sánchez-Chino, A. Cardador-Martínez, J. Martínez-Herrera, C. Jiménez-Martínez, Effect of cooking on nutritional and non-nutritional 
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