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Comprehensive analyses showed that SARS-CoV-2 infection caused COVID-19

and induced strong immune responses and sometimes severe illnesses.

However, cellular features of recovered patients and long-term health

consequences remain largely unexplored. In this study, we collected

peripheral blood samples from nine recovered COVID-19 patients (median

age of 36 years old) from Hubei province, China, 3 months after discharge as

well as 5 age- and gender-matched healthy controls; and carried out RNA-seq

and whole-genome bisulfite sequencing to identify hallmarks of recovered

COVID-19 patients. Our analyses showed significant changes both in transcript

abundance and DNA methylation of genes and transposable elements (TEs) in

recovered COVID-19 patients. We identified 425 upregulated genes,

214 downregulated genes, and 18,516 differentially methylated regions

(DMRs) in total. Aberrantly expressed genes and DMRs were found to be

associated with immune responses and other related biological processes,

OPEN ACCESS

EDITED BY

Shuangbo Kong,
Xiamen University, China

REVIEWED BY

Ayse Banu Demir,
İzmir University of Economics, Turkey
Fei Guo,
Chinese Academy ofMedical Sciences &
Peking Union Medical College, China

*CORRESPONDENCE

Hong-gang Li,
lhgyx@hotmail.com
Ximiao He,
ximiaohe@hust.edu.cn
Li-quan Zhou,
zhouliquan@hust.edu.cn

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to Molecular
and Cellular Pathology,
a section of the journal
Frontiers in Cell and Developmental
Biology

RECEIVED 23 July 2022
ACCEPTED 15 September 2022
PUBLISHED 03 October 2022

CITATION

Yin Y, Liu X-z, Tian Q, Fan Y-x, Ye Z,
Meng T-q, Wei G-h, Xiong C-l, Li H-g,
He X and Zhou L-q (2022),
Transcriptome and DNA methylome
analysis of peripheral blood samples
reveals incomplete restoration and
transposable element activation after 3-
months recovery of COVID-19.
Front. Cell Dev. Biol. 10:1001558.
doi: 10.3389/fcell.2022.1001558

COPYRIGHT

© 2022 Yin, Liu, Tian, Fan, Ye, Meng,
Wei, Xiong, Li, He and Zhou. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Abbreviations: WGBS, whole-genome bisulfite sequencing; DMR, differentially methylated region;
TEs, transposable elements; LINEs, long interspersed nuclear elements; SINEs, short interspersed
nuclear elements; LTRs, long terminal repeats; DNAs, DNA transposons; DEGs, differentially expressed
genes; DETEs, differentially expressed TEs.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Original Research
PUBLISHED 03 October 2022
DOI 10.3389/fcell.2022.1001558

https://www.frontiersin.org/articles/10.3389/fcell.2022.1001558/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1001558/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1001558/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1001558/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1001558/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1001558/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1001558/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2022.1001558&domain=pdf&date_stamp=2022-10-03
mailto:lhgyx@hotmail.com
mailto:ximiaohe@hust.edu.cn
mailto:zhouliquan@hust.edu.cn
https://doi.org/10.3389/fcell.2022.1001558
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2022.1001558


implicating prolonged overreaction of the immune system in response to SARS-

CoV-2 infection. Notably, a significant amount of TEs was aberrantly activated

and their activationwas positively correlatedwith COVID-19 severity. Moreover,

differentially methylated TEs may regulate adjacent gene expression as

regulatory elements. Those identified transcriptomic and epigenomic

signatures define and drive the features of recovered COVID-19 patients,

helping determine the risks of long COVID-19, and guiding clinical intervention.

KEYWORDS

SARS-cov-2, recovery, whole-genome bisulfite sequencing, transposable elements,
differentially methylated regions

Introduction

Emerging SARS-CoV-2 coronavirus which causes coronavirus

disease 2019 (COVID-19) and results in complicated health issues

has expanded rapidly and swept the whole world, threatening

global public health (Guan et al., 2020; Huang et al., 2020).

Identified key receptors for SARS-CoV-2 infection include

ACE2 (Zhou et al., 2020), TMPRSS2 (Hoffmann et al., 2020),

and NRP1 (Cantuti-Castelvetri et al., 2020) which are widely

expressed in different tissues of the human body. Symptoms of

COVID-19 patients include fever, cough, fatigue, headache,

diarrhea, and in severe cases even organ failure. Different

patients have various symptoms after SARS-CoV-2 infection,

and most of them develop mild to moderate illness. Despite

intensive multi-omics investigations (Bojkova et al., 2020; Shen

et al., 2020; Xiong et al., 2020; Delorey et al., 2021; Wu et al., 2021),

the impact of SARS-CoV-2 on the human body and its long-term

effect remains largely unexplored. Notably, SARS patients were

tracked after the outbreak of SARS at 2003, identifying a significant

incidence of sequelae, including pulmonary fibrosis and limited

body function (Gomersall et al., 2004). During the current

pandemic, COVID-19 patients were reported to suffer from

fatigue, sleep difficulties, and anxiety/depression several months

after recovery (Chen et al., 2021). Meanwhile, studies on COVID-

19 patients showed severely impaired gut microbiota up to

3–6 months after recovery (Chen et al., 2021; Tian et al., 2021).

Moreover, pulmonary dysfunction and ‘plasma metabolites’

remain incompletely restored 3 months after recovery (Chen

et al., 2021). Understanding the progress of convalescence of

COVID-19 patients is therefore valuable for clinical intervention.

Transposable elements (TEs) are mobile DNA elements and

comprise about 40% of human genome (Dewannieux et al., 2003).

Fourmajor TE classes are long interspersed nuclear elements (LINEs),

short interspersed nuclear elements (SINEs), long terminal repeats

(LTRs) and DNA transposons. They are involved in many cellular

processes, such as: transcriptional regulation (Percharde et al., 2018),

chromatin structure organization (Fadloun et al., 2013), development

and cell differentiation (Bernardes et al., 2020; Padmanabhan Nair

et al., 2021). Retrotransposons are active TEs capable of “copy and

paste” themselves into the human genome through RNA

intermediates. Well-known retrotransposons include LINEs, SINEs,

and LTRs. LINEs are the most common autonomous

retrotransposons, and the mobilization activity of SINEs relies on

LINEs (Dewannieux et al., 2003; Cordaux and Batzer, 2009).

Retrotransposons can cause insertion, deletion, and inversion in

the human genome and therefore their increased expression may

lead to reduced genome stability (Gilbert et al., 2002; Symer et al.,

2002; Newkirk et al., 2017; Malki et al., 2019). We have reported

inappropriate upregulation of TEs especially retrotransposons upon

SARS-CoV-2 infection in human cell lines and its potential harm

including impaired genome stability, enhanced susceptibility of aged

people and cancer patients, aberrant expression of retrotransposon-

adjacent genes, and induction of inflammation (Yin et al., 2021).

Previous in-depth transcriptome analysis revealed aberrant

inflammatory responses in COVID-19 patients (Blanco-Melo

et al., 2020). Regarding the impact of SARS-CoV-2 on the human

body, a recent study using peripheral blood from COVID-19 patients

showed impaired transcriptional network and epigenetic profiles

which might be useful for targeted treatment and provided

promising hallmarks to predict clinical outcomes (Bernardes et al.,

2020). However, how SARS-CoV-2 impacts TEs in the human body

remains unclear.

Gene expression pattern and epigenetic profile of peripheral

blood reflect the whole body’s metabolic status. In the current

study, we collected peripheral blood from COVID-19 patients

3 months after recovery from COVID-19 and carried out

transcriptome and DNA methylome studies (Figure 1A).

Significant amounts of misregulated genes/TEs and differentially

methylated regions (DMRs) were identified, indicating incomplete

restoration of the human body. Additionally, we identified

transcriptome and epigenome signatures which will help identify

the long-term impact of COVID-19 on health and provide

suggestions for clinical treatment.

Material and methods

Patient recruitment and blood sample
collection

14 Participants were recruited from the Center for

Reproductive Medicine, Tongji Medical College, Huazhong
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University of Science and Technology. Inclusion criteria for

COVID-19 patients included age from 25 to 45 years, having

detailed medical records of hospitalization and discharge.

Diagnosis of COVID-19 was determined by the New

Coronavirus Pneumonia Prevention and Control Program

(7th edition) published by the National Health Commission

of China (http://www.nhc.gov.cn/xcs/zhengcwj/202003/

46c9294a7dfe4cef80dc7f5912eb1989.shtml). Exclusion

criteria included asymptomatic cases, taking antibiotics

within 2 months, gastrointestinal diseases, and severe basic

diseases. Age- and gender-matched healthy controls were

recruited during regular physical check-ups in the same

hospital with none of them receiving antibiotics within

2 months before collection of blood samples. Ethical

approval for the study was obtained by the Ethics

Committee for Clinical Research of Reproductive Medicine

Center, Tongji Medical College, Huazhong University of

Science and Technology. All participants included in the

study gave informed consent. 9 male patients in the

recovery stage (5 Mild, 4 Moderate) and 5 male healthy

controls were recruited for this study. All nine patients

meet confirmatory laboratory evidence by detection of

SARS-CoV-2 RNA in a clinical specimen using a diagnostic

molecular amplification test. No pneumonia symptoms were

seen in the imaging of 5 patients with mild symptoms. In

4 patients with moderate symptoms, fever and respiratory

tract symptoms can be seen, and pneumonia symptoms were

seen on imaging. Age, body mass index (BMI) and other

demographic information can be identified in Table 1.

Blood (5 ml) was withdrawn from each patient into an

Ethylenediamine tetraacetic acid (EDTA)-K2 tube to

decelerate blood coagulation. Total RNA was isolated from

2.5 ml blood including PBMC using total RNA isolation kit

from SIMGEN. Isolated total RNA and remaining blood

samples were subjected to mRNA sequencing and whole-

genome bisulfite sequencing (WGBS) by Annoroad Gene

Technology Co. Ltd. (Beijing).

mRNA isolation for sequencing

Total RNA was used as input material for the RNA sample

preparations. Sequencing libraries were generated using

NEBNext Ultra RNA Library Prep Kit for Illumina (#E7530L,

NEB, United States) following the manufacturer’s

recommendations and index codes were added to attribute

sequences to each sample. The clustering of the index-coded

samples was performed on a cBot cluster generation system using

HiSeq PE Cluster Kit v4-cBot-HS (Illumina) according to the

manufacturer’s instructions. After cluster generation, the

libraries were sequenced on an Illumina HiSeq 2500 system.

Approximately 25M of paired-end reads (150 bp ×2) for each

sample was generated.

FIGURE 1
Transcriptomechangesofperipheral blood samples fromCOVID-
19 patients at acute phase of incremental, complicated, and critical
stages by public RNA-seq data analysis. (A) Scheme illustrating our
experimental design created with BioRender.com. (B) Volcano
plots [-log10 (p value] versus log2 (foldchange of gene expression))
displaying transcriptomechanges (|log2foldchange|>0.6 andp value<0.
05) of COVID-19 patients at incremental, complicated, and critical
stages. (C) Heatmap shows DEGs at incremental, complicated, and
critical stages. (D) Volcano plots displaying TE expression changes (|
log2foldchange|>0.6 and p value < 0.05) of COVID-19 patients at
incremental, complicated, and critical stages. (E)Heatmap showsDETEs
at incremental, complicated, and critical stages. (F) PCA clusters the
sequenced samples by normalized counts for DEGs of incremental/
complicated/critical group and control group. (G) PCA clusters the
sequenced samples by normalized counts for DETEs of incremental/
complicated/critical group and control group.
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DNA isolation for methylation profiling

For constructing WGBS libraries, the genomic DNA was

fragmented to a mean size of 350 bp, followed by blunt-ending,

dA-Tailing, and adaptor ligation. Insert fragments with different

sizes were excised from a 2% agarose gel and purified using the

QIAquick Gel Extraction Kit (QIAGEN). Purified DNA was

bisulfite converted using the EZ DNA Methylation-Gold Kit

(#D5006, ZYMO Research, CA, United States) and PCR

amplified. The WGBS libraries were sequenced at 20×depth

on an Illumina HiSeq 2500 system as paired-end reads

(150 bp ×2). Approximately 15–20 × mean coverage was

generated for each sample.

RNA-seq data processing

Raw reads were processed with Trim Galore (v0.6.4) to

remove adaptor sequences and poor-quality bases with “--q

20 --phred33 --stringency 5 --length 20 –paired.” To include

as many non-uniquely mapped reads as possible, trimmed

reads were firstly aligned to the human genome (hg19) by

STAR (v2.7.5b) (Dobin et al., 2013) (Dobin, Davis et al., 2013)

with default settings including parameters

‘--winAnchorMultimapmax 2000 --outFilterMultimapNmax

1000’. SAMtools (v1.3.1) was used to sort bam files by genomic

coordination and make a bam file index. RSEM (v1.2.28) (Li

and Dewey, 2011) was used to calculate the FPKM value of

genes. TEtranscript (Jin and Hammell, 2018) with default

parameters was used to get counts for different transposable

elements. UCSC genome browser was used for snapshots of

the transcriptome. R package Deseq2 (v1.28.1) (Love et al.,

2014) was used to obtain differentially expressed genes

(DEGs) and differentially expressed TEs (DETEs). Principal

component analysis (PCA) was performed using

DESeq2 normalized counts for DEGs/DETEs. Metascape

(Zhou et al., 2019) was used to visualize functional profiles

of genes and gene clusters. rMATS (v4.1.1) (Shen et al., 2014)

was used to identify alternative splicing events with

“--readLength 150” and other default parameters. We

conducted protein-protein interaction network (PPI

network) analysis using STRING database to explore gene

interaction at protein level (Szklarczyk et al., 2019). Graphs

were created by R. Images were organized by Adobe

Illustrator.

ReMap2022 database for transcription
factor binding enrichment analysis

DETEs were transformed to genomic range objects

(GRanges) using the GRanges R package. The DETE loci were

then compared against the ReMap2022 annotated TFBSs (hg19)

for enrichment of specific transcription factors and plotted as

enrichment dot plots with the ReMapEnrich R package (Hammal

et al., 2022).

TABLE 1 Clinical Characteristics of COVID-19 Patients at recovery stage (R1-R9) and Healthy controls (H1-H5) in this study.

No Gender Ethnicity Age (yrs) Disease
severity

Disease
duration
(days)

Time
from
discharge
to sampling
(days)

BMI CoV-
IgM

CoV-
IgG

R1 Male Chinese 31 Mild1 26 70 25.95 + +

R2 Male Chinese 29 Mild2 25 79 20.05 + +

R3 Male Chinese 24 Moderate1 17 76 28.07 - +

R4 Male Chinese 36 Moderate2 13 83 26.23 - +

R5 Male Chinese 43 Mild3 12 89 23.66 - +

R6 Male Chinese 40 Mild4 32 96 35.43 - +

R7 Male Chinese 39 Moderate3 9 98 32.1 - +

R8 Male Chinese 36 Moderate4 24 78 26.78 - +

R9 Male Chinese 43 Mild5 21 107 25.33 - +

H1 Male Chinese 28 Healthy N/A N/A 26.4 - -

H2 Male Chinese 28 Healthy N/A N/A 21.3 - -

H3 Male Chinese 32 Healthy N/A N/A 21.3 - -

H4 Male Chinese 39 Healthy N/A N/A 23.0 - -

H5 Male Chinese 37 Healthy N/A N/A 22.9 - -

Comparison between COVID-19 group and control group showed no significant differences of age (p > 0.05) or BMI (p > 0.05). Note that average time from discharge to sampling of

COVID-19 patients (R1–R9) was 86 days (about 3 months), and median age was 36 years.
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WGBS data processing and quality control

Raw reads were processed with Trim Galore (v0.6.4) to

remove adaptor sequences and poor quality bases with “--q

20 --phred33 --stringency 5 --length 20 --paired.” Trimmed

reads were then aligned to the human genome (hg19) by

Bismark (v0.22.3) (Krueger and Andrews, 2011) using the

parameters “-p 6 --parallel 1 -N 0 -L 20 --quiet --un

--ambiguous --bam.” SAMtools (v1.3.1) was used to sort

bam files by genomic coordination and make a bam file

index. PCR duplicates were removed using Picard

(v2.23.3). The methylation ratio at each CpG site was

constructed using bismark_methylation_extractor model

with the parameters “-p --comprehensive --no_overlap

--bedgraph –counts --report --cytosine_report --gzip

–buffer --size 30G.” For all samples, the average bisulfite

conversion success ratio is >99.2%, the alignment ratio is

around 80% of read pairs aligning uniquely, and the

duplication rate is <5%. For each CpG site, methylation

levels were calculated by (methylation reads/total coverage

reads). For a more robust analysis, we applied the minimum

threshold 3× coverage and also selected CpGs that all

samples had their methylation levels. This screening

process gave 18 M of CpGs with confident methylation

levels. Methylation profiles were calculated by deeptools

(v3.5.1) (Ramirez et al., 2014).

Differentially methylated regions by
methylKit

The R package methylKit (v1.14.2) (Akalin et al., 2012) was

used to identify DMRs between healthy and recovery groups.

The methylation levels at CpG sites were firstly calculated by

“methRead” function with mincov = 3. Methylation across the

genome was tiled with the ‘tileMethylCounts’ function using

the parameters “win.size = 500, step. size = 500, cov. bases = 5”,

then ‘unite’ function was used to unite tiled regions with the

“destrand = TRUE” parameter. At last, “calculateDiffMeth”

function was used to calculate DMRs. DMRs with a

minimum of 3 CpG sites and absolute methylation mean

difference >10% and q-value < 0.05 were used for further

analysis. DMRs were annotated by R package “ChIPseeker”

(v1.24.0).

Statistical methods

Plotting and statistical tests were performed using R

(v4.0.2). All statistical tests performed in this study were

two-sided. Box plots were generated using the R packages

“ggplot2” (v3.3.2) and “ggpubr” (v0.4.0) to show median,

first and third quartiles and outliers were shown if outside

the 1.5× interquartile range. A two-sidedWilcoxon signed-rank

test was used to assess differences between the two groups.

Enrichment scores were analyzed using chi-square tests,

enrichment score >1 and p-value < 0.05 was defined as

enrichment.

Results

The SARS-cov-2 infection had a profound
impact on transcriptome and TE activation
which was positively correlated with
COVID-19 severity

To identify how the human body responds to SARS-CoV-

2, we downloaded and analyzed public RNA-seq data of

peripheral blood from COVID-19 patients at acute phase

including incremental, complicated, and critical stages, as

well as healthy controls (Bernardes et al., 2020)

(Supplementary Table S1). A total of 2392, 4,241 and

3,655 misregulated genes were identified in these three

stages respectively (Figures 1B,C). DEGs were mainly

enriched in immune response, cell cycle, and DNA repair

(Supplementary Figures S1A,B). We previously reported that

expression of TEs was upregulated upon SARS-CoV-

2 infection in human cell lines. This may result in

impaired genome stability, increased susceptibility of aged

people and cancer patients, misregulation of

retrotransposon-adjacent genes, and probably leading to

worse clinical outcomes for patients with underlying

diseases (Yin et al., 2021). Therefore, we examined the

expression of TEs in the acute phase, and observed a

gradual upregulation of TEs from incremental

(16 upregulated) to complicated (41 upregulated) to

critical (164 upregulated) stage (Figures 1D,E;

Supplementary Figure S2), indicating that TE expression

levels reflected COVID-19 severity. In agreement with the

identification of TE activation, we also noticed cGAS

upregulation at complicated and critical stages

(Figure 1B), while retrotransposon upregulation is one of

the major reasons for stimulating the cGAS-STING pathway

(Gorbunova et al., 2021). The cGAS-STING pathway drives

immune response to cytosolic DNA, activates IFN responses

and induces inflammation. Therefore, retrotransposon is a

promising therapeutic target for reducing inflammation in

COVID-19 patients. Previous study reported release of

mitochondrial DNA into the cytoplasm in SARS-CoV2-

infected cells, and this may be another reason of activation

of cGAS-STING pathway (Domizio et al., 2022). PCA

effectively clustered the samples by either DEGs

(Figure 1F) or DETEs (Figure 1G). Collectively, our results

indicated that SARS-CoV-2 infection triggered immune

responses and activated TEs in human peripheral blood.
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FIGURE 2
Transcriptomeanalysis identifiedgeneexpressionchangesofperipheral bloodsamples fromCOVID-19patients after 3-months recovery. (A)Volcanoplots
[-log10 (p value) versus log2 (foldchange of gene expression)] displaying transcriptome changes (|log2foldchange|>0.6 and p value < 0.05) at recovery stage. (B)
Heatmap shows DEGs in COVID-19 patients at recovery stage. (C)Heatmap shows top 25 downregulated and top 25 upregulated genes at recovery stage. (D)
PCA clusters the sequenced samples by normalized counts for DEGs of recovery group and control group. (E)GOanalysis of upregulated/downregulated
genes for functional enrichment at recovery stage by Metascape. (F) Venn diagram identifies 48 overlapping misregulated genes among incremental,
complicated, critical stages and recovery stage. GO analysis was further performed to identify functional enrichment of the 48 genes by Metascape. (G) PCA of
incremental/complicated/critical groupandcontrol group (left) andPCAof recoverygroupandcontrol group (right), using48overlappedgenes. PCAclusters the
sequenced samples by normalized counts for 48 overlapping misregulated genes among incremental, complicated, critical stages and recovery stage.
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FIGURE 3
Discovery of aberrantly overexpressed TEs in peripheral blood samples fromCOVID-19 patients after 3-months recovery. (A) Boxplot displaying
significantly upregulation of four major TE classes. LINE, SINE, LTR, and DNA transposons are shown, and each dot represents one sample. The
median, first, and third quartiles are shown. Two-sided Wilcoxon signed-rank test were used for the comparisons. (B)Volcano plots [-log10 (p value)
versus log2 (foldchange of gene expression)] displaying TE expression changes (|log2foldchange|>0.6 and p value < 0.05) at recovery stage. (C)
Heatmap demonstrates all 62 upregulated TEs in COVID-19 patients at recovery stage. (D) PCA clusters the sequenced samples by normalized
counts for DETEs of recovery group and control group. (E) Pie chart shows the distribution of DETE in different gene features of human genome.

(Continued )
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Whole-blood transcriptome analysis
revealed that SARS-cov-2 impacted the
expression of multiple genes and
alternative splicing events even after a 3-
months recovery

To understand the recovery progress of the human body after 3-

months convalescence from SARS-CoV-2 infection, we recruited

COVID-19 patients with mild/moderate symptoms and controls at

similar ages in Hubei province, China (Table 1). Generally, patients

had a median age of 36 years and the average follow-up time after

hospital discharge was 86 days (approximately 3 months). Peripheral

blood was collected for subsequent RNA-seq analysis (see

Supplementary Table S2 for quality control information).

Generally, 425 genes were upregulated and 214 genes were

downregulated (Figures 2A–C). PCA effectively clustered the

samples by DEGs (Figure 2D). DEGs were enriched in immune

response-related biological processes (Figure 2E). We then ask

whether the recovery group and acute phase groups share

commonly misregulated genes. We found that among

639 misregulated genes in the recovery group, 205 genes were

also misregulated in acute phase groups (Figure 2F). There were

48 genes misregulated in all four disease stages and involved in T cell

activation and other immune response-related processes (Figures 2F;

Supplementary Figure S3). Notably, we found that these genes play

various roles in immune responses, and include transmembrane

receptors, voltage-gated channel proteins, and transcription factors.

As expected, these 48 overlapping misregulated genes can be used to

discriminate COVID-19 patients from controls, no matter whether

the patients were at acute or recovery stages (Figure 2G), and are

therefore useful for clinical diagnosis and treatment of COVID-19.

Next, we analyzed expression changes of TEs in the recovery

group. When we added up all reads for each class of transposon,

we observed that global expression of LINE, SINE, LTR, and

DNA transposon were all significantly increased (Figure 3A).

There were 62 upregulated TEs with most of them belonging to

SINE and LTR, while no downregulated TE subfamilies were

observed (Figures 3B,C; Supplementary Table S3). Notably, those

with moderate illness seemed to have higher upregulation of

DETEs than those with mild illness, indicating that TE levels

reflected the severity of COVID-19 at the recovery stage. TEs

were not randomly upregulated because differentially expressed

TEs can well cluster the samples (Figure 3D). Surprisingly, 56 of

the 62 upregulated TEs in the recovery group were absent in

patients from the acute phase group, indicating that distinct TE

subfamilies were activated during the recovery progress.

Different TE subfamilies were misregulated in patients from

various stages, and this may be explained by crosstalk among

different TE subfamilies and complicated response inside human

body. Therefore, we analyzed previously reported transcriptome

data of LINE1 knockdown in mouse embryonic stem cells

(mESCs) (Percharde et al., 2018) and indeed found

abnormally expressed subfamilies like SINE and LTR

(Supplementary Figure S4). Another possible reason for

different misregulated TE subfamilies between the acute group

and recovery group is the diversity of human race and genetic

background. Next, we analyzed the distribution of upregulated

TEs in the human genome and found that they were mainly

enriched in promoter, intron, and downstream regions

(Figure 3E). Differentially expressed TEs were overrepresented

in the human genome, indicating that upregulation of TEs plays

important role in SARS-CoV-2-induced transcriptome changes

and serves as a transcriptome signature in COVID-19 patients at

the recovery stage. Meanwhile, our transcriptome analysis

identified significant changes in alternative splicing events in

the recovery group (Figure 3F). Although it is unclear how TEs

were activated in the recovery group, increased expression of

some of these may induce the generation of novel transcripts

inside gene loci and impact alternative splicing patterns

(Figure 3G). Beyond transcriptional disturbance, enhanced TE

expression may also reduce genome stability, induce

inflammation, and cause age-associated disorders.

To further annotate DETEs, we used ReMap2022 to obtain

transcription factor binding sites (TFBSs) from publicly available

ChIP-seq dataset (Hammal et al., 2022). By comparing loci of the

DETEs with annotated TFBSs, we observed distinct categories of

transcription factors enriched at TE loci in different stages

(Figure 4). Notably, zinc finger proteins (ZNFs) are key

regulators of TE expression, and are frequently identified in

enriched transcription factors but diverse ZNFs are seen in these

stages. Therefore, alteration of DETEs at acute and recovery

stages may be caused by dynamic expression of ZNFs at these

stages.

Whole-blood DNA methylome analysis of
the recovery group identified genome-
wide DMRs which mainly localized at TEs’
loci between healthy and recovery groups

Gene expression can be regulated by DNA methylation

which can be long-term memorized. Thus, we next examined

FIGURE 3 (Continued)
Enrich score was calculated by (Feature ratio of DETE)/(Feature ratio of TE), chi-square tests was used for statistics, enrichment score >1 and
p-value < 0.05 was defined as enrichment. (F) Change of alternative splicing (AS) events (FDR<0.05) was observed at recovery stage. (G) UCSC
genome browser view of RNA-seq data demonstrates aberrantly increased TE expression from an intron of CLEC7A gene initiates a novel transcript
within CLEC7A gene locus.
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the expression of DNA Methyltransferase (DNMT) and Ten-

eleven Translocation (TET) family genes which play key roles in

controlling DNA methylation status. Almost all of these genes

showed altered expression levels in patients at the recovery stage

(Supplementary Figure S5). This prompted us to further

investigate changes of in genome-wide DNA methylation in

COVID-19 patients after a 3-months recovery.

To study how DNA methylome was changed between

healthy and recovery groups and how it may correlate with

transcriptome alteration, we examined whole-blood DNA

methylome by WGBS (see Supplementary Table S4 for

quality control information). Generally, whole-genome CG

methylation levels showed no significant alterations

(Figure 5A). Analysis of genomic regions from 2 kb

upstream of transcriptional start sites (TSSs) to 2 kb

downstream of transcriptional end sites (TESs) indicated no

significant CG methylation changes (Figure 5B). Next, we

examined loci of TEs and identified minimum alteration of

global CG methylation level (Figures 5C,D).

To explore changes in CG methylation patterns between

healthy and recovery groups, we analyzed DMRs and identified

18,516 DMRs in total (absolute methylation mean

difference >10% and q-value < 0.05). 8,724 DMRs had hypo-

methylation (hypo-DMRs) and 9,792 DMRs had hyper-

methylation (hyper-DMRs) in the recovery group. Identified

DMRs were mainly enriched at gene promoter, intron, and

certain TE regions (Figure 5E). Although we didn’t detect

significant effects of COVID-19 on DNA methylome in

genome-wide analysis, GO analysis showed that hyper-DMRs

and hypo-DMRs in gene promoter/body regions were involved

FIGURE 4
Transcription factors enriched at DETE loci at different stages of COVID-19 patients by ReMap 2022. Dot plots of enrichment of transcription
factor binding sites derived from ReMap2022 ChIP-seq database at DETE loci within the human genome in incremental (A), complicated (B), critical
(C) and recovery (D) groups by ReMapEnrich R package.
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in various signal pathways, immune response, and metabolism

(Figures 5F,G).

CG methylation at different genomic loci may play different

roles. Without annotation of TE loci, the distribution of identified

DMRs in the human genome was as follows: 9.91% in promoters,

40.64% in gene bodies, 49.45% in intergenic and other regions

(Figure 6A). We then examined expression levels of identified

genes with DMRs at promoters or gene bodies.We found that nine

hyper-DMRs at promoters were associated with downregulated

genes, while 28 hypo-DMRs at promoters were associated with

upregulated genes (Figure 6B; Supplementary Table S5), and these

genes were mainly involved in immune responses (Figure 6C).

Meanwhile, 27 hypo-DMRs at gene bodies were associated with

gene downregulation, and 13 hyper-DMRs at gene bodies were

FIGURE 5
WGBS analysis of recovery and control group revealed comparable DNA methylation profiles and genome-wide DMRs which mainly localized
at TE loci. (A) The whole meanmethylation level per sample of 18M CpG sites for Healthy and Recovery group, and each dot represents one sample.
Boxplot shows the mean methylation status per samples of Healthy and Recovery group, each dot represents mean methylation status of one
sample. (B)Methylation profile of gene features per sample. Methylation levels weremeasured in each 200 bp interval of a 2 kb region upstream
and downstream of all annotated genes. Methylation was measured in 10 equally sized bins for CDSs and introns, and 5 equally sized bins for UTRs.
(C)Methylation profile of TEs per sample. Methylation levels were measured in each 200 bp interval of a 2 kb region upstream and downstream of all
annotated TEs, then for each TEs methylation levels were measured in 20 equally sized bins. (D) Boxplot of meanmethylation status of four major TE
classes. LINE, SINE, LTR, and DNA transposons are shown, and each dot represents one sample. (E) Pie chart demonstrates distribution of DMRs in
different gene features of human genome and TE subfamilies. Enrich score was calculated by (Feature ratio of DMR)/(Feature ratio of reference
genome), sliding windows was made across reference genome with 500 bps consistent with our call DMR strategy. Chi-square tests was used for
statistics, enrichment score >1 and p-value < 0.05 was defined as enrichment. (F) Functional enrichment of genes with hyper-DMRs identified at
promoter/gene body by Metascape. (G) Functional enrichment of genes with hypo-DMRs identified at promoter/gene body by Metascape. For
above boxplots, the median, first, and third quartiles are shown. Two-sided Wilcoxon signed-rank test were used for all the comparisons.
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associated with gene upregulation (Figure 6D), mainly involved in

stress response and related signaling pathways (Figure 6E).

Next, we focused on DMRs between healthy and recovery

groups within TE loci, and identified 13,233 DMRs. The

percentages of these DMRs were as follows: 36.48% in LINE,

38.23% in SINE, 15.71% in LTR, and 9.58% in DNA transposon

(Figure 7A). Subfamilies of SINE with altered DNA methylation

were mainly Alu, subfamilies of LINE were mainly LINE1,

subfamilies of LTR were mainly ERVL-MalR, and subfamilies

of DNA transposon were mainly hAT-Charlie (Figure 7B). We

then analyzed expression changes of different TEs with altered

DNA methylation and identified upregulated expression of TEs

(which aremainly localized at introns) associated with both hyper-

and hypo-DMRs in TEs (Figure 7C). Upregulation of certain TEs

without hypo-DMRs could be explained by aberrant expression of

specific transcriptional regulators. DMRs at TE loci are mainly

distributed at intergenic regions, intron, and promoter regions

(Figure 7D). To explore the potential impact of DNA methylation

changes of intergenic TEs on gene expression, we identified

adjacent genes of intergenic TEs with altered DNA methylation

and calculated total normalized gene counts for each sample.

Interestingly, we observed significant upregulation of genes

adjacent to TEs with increased DNA methylation, suggesting

that these intergenic TEs act as distal gene silencers

(Figure 7E). Further analysis revealed that 19 hypo-DMRs

annotated at TE loci were located at the promoter of

upregulated genes, and nine hyper-DMRs annotated at TE loci

were located at the promoter of downregulated genes (Figure 7F).

GO analysis showed their function in ERK signaling regulation

and T cell activation (Figure 7G). Furthermore, we identified

DMRs at promoter regions that were annotated as various TE

subfamilies, although most of those TE subfamilies were not more

enriched in DMRs at the gene promoter region relative to other

regions in the human genome (Figure 7H). One example is the

SIK1 gene which was upregulated in the recovery group and its

promoter contains hypo-DMR overlapped with SINE (Figure 7I).

These results indicated that TEs with altered DNA methylation

may function as regulatory elements for adjacent gene expression.

Discussion

Our previous study on SARS-CoV-2-infected human cell lines

showed viral infection-induced genemisregulation and upregulation of

TEs (Yin et al., 2021). However, how TEs behave in the human body

remain elusive. To identify how the transcriptional program responds

FIGURE 6
Aberrant DNA methylation at gene loci may be involved in immune response-related gene misregulation. (A) Pie chart (without annotation of
TEs) demonstrates distribution of DMRs in human genome. (B) Scatter plot of the relationship between DNA methylation differences at gene
promoter and their expression differences. (C) Functional enrichment of upregulated/downregulated genes with hypo/hyper-DMRs in gene
promoter regions by Metascape. (D) Scatter plot of the relationship between DNA methylation differences at gene body and their expression
differences. (E) Functional enrichment of upregulated/downregulated genes with hypo/hyper-DMRs in gene body regions by Metascape.
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FIGURE 7
Aberrant DNA methylation at TE loci may be involved in gene regulation. (A) Pie chart demonstrates distribution of DMRs in TE subfamilies. (B)
Pie chart demonstrates distribution of DMRs in LINE/SINE/LTR/DNA transposons. (C) Density scatter plot demonstrates relationship between DNA
methylation differences of TEs and their expression differences. (D) Pie chart (without annotation of TEs) demonstrates distribution of TEs with DMRs
in human genome. (E) Calculation of total gene counts adjacent to TEs with hyper-DMRs in healthy and recovery group. The median, first, and
third quartiles are shown in boxplots. Two-sided Wilcoxon signed-rank test were used for all the comparisons. (F) Scatter plot of the relationship
between DNA methylation differences at TEs and expression differences of genes with promoters containing TEs with DMRs. (G) Functional

(Continued )
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to SARS-CoV-2 in the human body, we downloaded and analyzed a

public RNA-seq dataset of peripheral blood samples from COVID-19

patients in the acute phase (Bernardes et al., 2020). As anticipated, we

observed bothmisregulation of genes and aberrantly activation of TEs.

Despite extensive investigations, the outcome of SARS-CoV-

2 infection, long-term health consequences (Nabavi, 2020), and

long-term recovery progress of COVID-19 patients remain elusive.

The majority of the COVID-19-related DMRs are near the gene

promoter regions and were hypo-methylated even though the global

methylation level remains similar between healthy control and

COVID-19 patients (Balnis et al., 2021). However, currently

reported results on DNA methylome of COVID-19 patients

(Bernardes et al., 2020; Balnis et al., 2021) all depended on 450K

or 850Kmethylation arraywhich covered only a small percent of CpG

sites (1% 3%) and could not be used to obtain DNA methylation

information of transposable elements. Our WGBS data produced

nearly whole-genomeCpG sites coverage (coverages of all samples are

around 80%) which is valuable for genome-wide identification of

differentially methylated regions, especially for transposable elements.

Here, we asked whether 3 months was enough to restore the

transcriptome and DNA methylation of the patient’s peripheral

blood cells to normal. Based on our results, even though the

global methylation level remains the same between healthy control

and 3-months recovered patients, the overall transcriptome or

epigenome profile of peripheral blood samples from the recovery

group is still sufficiently different from the control group.

Our result shows that genes involved in leukocyte differentiation

are enriched in both upregulated and downregulated genes, and this

means that leukocyte differentiation was disturbed (Supplementary

Table S6). In upregulated genes, we observed the RELB gene which is

the key component of the NF-kappa-B complex, and the NF-kappa-

B pathway has been reported to play an important role in leukocyte

differentiation (Maslova et al., 2020). We also found upregulation of

BCL3 andNFKBIZ. BCL3 is a transcriptional activator that promotes

the transcription of NF-kappa-B target genes (Bours et al., 1993), and

NFKBIZ is involved in the regulation of NF-kappa-B transcription

factor complexes (Cowland et al., 2006; Totzke et al., 2006). Notably,

we noticed the downregulation of LILRB4 which was reported to

interfere with NF-kappa-B upregulation (Chang et al., 2002).

Moreover, downregulated genes also include CEBPA and

HDAC9 which are coactivators/corepressors and participate in

transcriptional regulation to control cell proliferation and

differentiation, and they may orchestrate the expression of NF-

kappa-B targets in a context-dependent manner. Therefore, some

immune response-related biological processes like leukocyte

differentiation were severely disturbed instead of being simply

activated or inhibited in recovery COVID-19 patients, through

pathways such as the NF-kappa-B pathway. For patients in the

acute phase and recovery stage, 48 genes mainly involved in immune

responses were consistentlymisregulated, implicating their long-term

involvement in cellular responses to SARS-CoV-2. Interestingly,

those genes include transmembrane receptors like PILRB, voltage-

gated channel protein HVCN1, and transcription factors like

BCL6 and NR4A1, etc. PILRB is a cellular signaling activating

receptor and is involved in the regulation of the immune system.

Upregulation of PILRB in recovery patients indicates its involvement

in orchestrating immune cell types. Voltage-gated channel protein

HVCN1 is expressed in immune cells and its mRNA level was

downregulated in the recovery group. HVCN1 facilitates reactive

oxygen species generation in phagocytosis during immune responses

and its downregulation might reflect inefficient immune responses

upon SARS-CoV-2 infection, leading to an extended time before full

recovery. We also detected upregulated transcription factors

BCL6 and NR4A1. BCL6 is a zinc finger transcription factor and

regulates the transcriptional activity of STAT-dependent IL-4

responses in B cells. NR4A1 is expressed in human lymphocytes

and regulates transcription in response to stress stimuli. These two

transcription factorsmight play key roles in controlling the cell fate of

immune cells in COVID-19 patients and contribute to long-term

COVID-19 symptoms. Notably, sub-families of TEs remained

upregulated 3months after recovery, suggesting that a longer

timeframe may be needed to return to normal levels.

Retrotransposons can encode proteins and form retrovirus-like

particles (Grow et al., 2015), so it is possible that some virus-like

particles visualized by electron microscopy (EM) in COVID-19

patients (Yao et al., 2021) may derive from TEs like LTRs due to

their enhanced expression rather than SARS-CoV-2.

While some aberrant gene expression can be interpreted by

DNA methylation changes, other mechanisms undermining the

transcriptional network in the human body need further

exploration. Our WGBS analysis showed no significant

changes in global DNA methylation and no significant

changes in DNA methylation at TE subtypes, and this may be

caused by bulk and heterogeneous levels of cells. Interestingly, we

still found 18,516 DMRs between the healthy and recovery

groups, and 13,233 DMRs were within TE loci. This

supported altered TE expression and changes in DNA

methylation at TE loci. Next, we conducted PPI network

FIGURE 7 (Continued)
enrichment of upregulated/downregulated genes whose promoters contain TEs with hypo/hyper-DMRs byMetascape. (H) The upper pie chart
demonstrates the distribution of TEs overlapped with DEG`s promoters in TE subfamilies. Enrich score was calculated by (TE subfamily ratio of TEs
overlapped with DEG`s promoters)/(TE subfamily ratio of TEs overlapped with all gene`s promoters). The bottom pie chart shows the distribution of
DMRs overlapped with gene`s promoters in TE subfamilies. Enrich score was calculated by (TE subfamily ratio of DMRs overlapped with gene`s
promoters)/(TE subfamily ratio of gene promoters). Sliding windows was made across gene promoters with 500 bps consistent with our call DMR
strategy. Chi-square tests was used for statistics, enrichment score >1 and p-value < 0.05 was defined as enrichment. (I)UCSC genome browser view
of RNA-seq data demonstrated increased SIK1 expression in recovery group and position of hypo-DMR in SIK1 promoter.
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analysis using STRING database to explore gene interaction at

protein level. We used significantly downregulated/upregulated

genes in RNA-seq result which also overlapped with DNA

methylation changes. As shown in Supplementary Figure S6,

several genes did have strong interactions. For example, we found

that the chemokine receptor CCR7 was downregulated with

hyper-methylation at the promoter, and transcription factor

RUNX3 was upregulated with hyper-methylation in the gene

body in recovery COVID-19 patients. This finding supports that

RUNX3 protein was increased to repress mRNA level of CCR7,

because it was previously reported that RUNX3 protein inhibits

Ccr7 expression immune cells in mice (Fainaru et al., 2005). It

should be noted that there was a contribution of cell population

differences between healthy and recovery groups in identified

genes/TEs which showed differential expression patterns or

DNA methylation patterns. For example, healthy and recovery

individuals may have different circulating memory T cells/

exhausted T cell features. However, at least part of those

changes at TE loci should be due to TE activation in acute

and recovered patients. One supporting evidence of TE activation

is that our previous study on human cell lines showed

upregulation of TE upon SARS-CoV-2 infection (Yin et al.,

2021). Another important supporting evidence is that our

analysis of RNA-seq data of acute patients showed activation

of the cGAS-STING pathway (see Figure 1B for cGAS

upregulation in acute patients) which can be triggered by

upregulation of retrotransposon-derived cytoplasmic DNA

(Decout et al., 2021). Interestingly, a recent preprint

manuscript showed that viral load of SARS-CoV-2 was

positively correlated with TE upregulation (Sorek et al., 2021),

and this is in agreement with our result that TE activation was

positively correlated with COVID-19 severity at the recovery

stage. However, the study also showed that TE activation was

relatively mild during SARS-CoV-2 infection, and this may be

partially explained by the cGAS-STING pathway which can be

activated upon SARS-CoV-2 infection and may be responsible

for the degradation of cytoplasmic retrotransposon-derived

DNA to inactivate retrotransposons. We did not identify

significant activation of cGAS gene in recovered patients,

probably because TE activation is not severe enough to

activate the cGAS-STING pathway. Besides transcriptomes

and DNA methylomes, whether COVID-19 leaves other

irreversible sequelae requires further investigation, such as

telomere length (TL) and mitochondrial DNA (mtDNA) copy

number, which is associated with many diseases including

cardiovascular diseases, psychiatric disorders, cancers, and

inflammatory diseases (Shay, 2016; Sun and St John, 2016).

Our study reveals genes with aberrant expression and

genomic regions with altered epigenetic modification in

COVID-19 patients 3 months after recovery. Our results

support the long-term disease stage marked by an

overactivated immune response. Besides, this report provides

potential genomic targets to facilitate the convalescence of

COVID-19 patients. Moreover, we provide potential

transcriptional and epigenetic signatures to track SARS-CoV-

2 infection history, identify the profound viral impact on

human cells and reveal long COVID-19 risks. However, due

to genetic mutations of SARS-CoV-2 variants, gender, health,

age of patients, and other factors, transcriptional and epigenetic

changes may vary and need further validation and

investigations.

In summary, we examined the transcriptomes and DNA

methylomes of COVID-19 patients 3 months after recovery, and

noticed that both genes and TEs were impacted at transcription

and DNA methylation levels. Misregulated genes were involved

in immune response and other biological functions, such as stress

response, and metabolic processes, while TEs in intron and other

regions were specifically activated which may disrupt the

transcription process and genome integrity and induce

inflammation. Furthermore, DNA methylome analysis showed

that genes with DMRs were also involved in immune response-

related processes; and differentially methylated promoter and

distal intergenic region may play important roles in gene

regulation. Finally, altered CG methylation can indirectly

impact gene expression and may play regulatory roles in

stress, illness, and aging. Further studies are needed to track

changes in transcriptome and DNA methylome of COVID-19

patients for a longer time to identify how long is required for a

full recovery.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found below: Bioproject

PRJCA006301, https://ngdc.cncb.ac.cn/bioproject/browse/

PRJCA006301.

Ethics statement

The studies involving human participants were reviewed and

approved by the Ethics Committee for Clinical Research of

Reproductive Medicine Center, Tongji Medical College,

Huazhong University of Science and Technology. The

patients/participants provided their written informed consent

to participate in this study.

Author contributions

L-QZ, XH, H-GL, and C-LX conceived and designed the

project. YY, QT, ZY, and T-QM collected the blood samples. YY

and X-ZL analyzed the data and wrote the manuscript. Y-XF and

G-HW helped with data analysis. L-QZ, XH and H-GL revised

Frontiers in Cell and Developmental Biology frontiersin.org14

Yin et al. 10.3389/fcell.2022.1001558

https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA006301
https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA006301
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1001558


the manuscript. All authors have read and approved the final

manuscript.

Funding

This work was supported by the National Natural Science

Foundation of China [NSFC 32000488, to YY, NSFC 32170820,

to L-QZ], Fundamental Research Funds for the Central

Universities, HUST [2021GCRC073, to XH, 2019kfyXJJS083,

to YY], HUST COVID-19 Rapid Response Call

[2020kfyXGYJ057, to H-GL], the National Key R&D Program

of China [2018YFC1004500 and 2018YFC1004000, to L-QZ],

and program for HUST Academic Frontier Youth Team

[to L-QZ].

Acknowledgments

The authors would like to express their thanks to Drs. Hui

Zhou, Xing-jie Zhang, and Zhen-Yu Zhong for their assistance

on this study.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcell.2022.

1001558/full#supplementary-material

References

Akalin, A., Kormaksson, M., Li, S., Garrett-Bakelman, F. E., Figueroa, M. E.,
Melnick, A., et al. (2012). methylKit: a comprehensive R package for the analysis of
genome-wide DNA methylation profiles. Genome Biol. 13 (10), R87. doi:10.1186/
gb-2012-13-10-r87

Balnis, J., Madrid, A., Hogan, K. J., Drake, L. A., Chieng, H. C., Tiwari, A., et al.
(2021). Blood DNAmethylation and COVID-19 outcomes. Clin. Epigenetics 13 (1),
118. doi:10.1186/s13148-021-01102-9

Bernardes, J. P., Mishra, N., Tran, F., Bahmer, T., Best, L., Blase, J. I., et al. (2020).
Longitudinal multi-omics analyses identify responses of megakaryocytes, erythroid
cells, and plasmablasts as hallmarks of severe COVID-19. Immunity 53 (6),
1296–1314.e9. doi:10.1016/j.immuni.2020.11.017

Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W. C., Uhl, S., Hoagland, D., Moller,
R., et al. (2020). Imbalanced host response to SARS-CoV-2 drives development of
COVID-19. Cell 181 (5), 1036–1045. doi:10.1016/j.cell.2020.04.026

Bojkova, D., Klann, K., Koch, B., Widera, M., Krause, D., Ciesek, S., et al. (2020).
Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature 583
(7816), 469–472. doi:10.1038/s41586-020-2332-7

Bours, V., Franzoso, G., Azarenko, V., Park, S., Kanno, T., Brown, K., et al. (1993).
The oncoprotein Bcl-3 directly transactivates through kappa B motifs via
association with DNA-binding p50B homodimers. Cell 72 (5), 729–739. doi:10.
1016/0092-8674(93)90401-b

Cantuti-Castelvetri, L., Ojha, R., Pedro, L. D., Djannatian, M., Franz, J., Kuivanen,
S., et al. (2020). Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity.
Science 370 (6518), 856–860. doi:10.1126/science.abd2985

Chang, C. C., Ciubotariu, R., Manavalan, J. S., Yuan, J., Colovai, A. I., Piazza, F.,
et al. (2002). Tolerization of dendritic cells by T(S) cells: The crucial role of
inhibitory receptors ILT3 and ILT4. Nat. Immunol. 3 (3), 237–243. doi:10.1038/
ni760

Chen, Y., Gu, S., Chen, Y., Lu, H., Shi, D., Guo, J., et al. (2021). Six-month follow-
up of gut microbiota richness in patients with COVID-19. Gut 71, 222–225. doi:10.
1136/gutjnl-2021-324090

Cordaux, R., and Batzer, M. A. (2009). The impact of retrotransposons on human
genome evolution. Nat. Rev. Genet. 10 (10), 691–703. doi:10.1038/nrg2640

Cowland, J. B., Muta, T., and Borregaard, N. (2006). IL-1beta-specific up-
regulation of neutrophil gelatinase-associated lipocalin is controlled by IkappaB-
zeta. J. Immunol. 176 (9), 5559–5566. doi:10.4049/jimmunol.176.9.5559

Decout, A., Katz, J. D., Venkatraman, S., and Ablasser, A. (2021). The cGAS-
STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev.
Immunol. 21 (9), 548–569. doi:10.1038/s41577-021-00524-z

Delorey, T. M., Ziegler, C. G. K., Heimberg, G., Normand, R., Yang, Y.,
Segerstolpe, A., et al. (2021). COVID-19 tissue atlases reveal SARS-CoV-
2 pathology and cellular targets. Nature 595 (7865), 107–113. doi:10.1038/
s41586-021-03570-8

Dewannieux, M., Esnault, C., and Heidmann, T. (2003). LINE-mediated
retrotransposition of marked Alu sequences. Nat. Genet. 35 (1), 41–48. doi:10.
1038/ng1223

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al.
(2013). Star: Ultrafast universal RNA-seq aligner. Bioinformatics 29 (1), 15–21.
doi:10.1093/bioinformatics/bts635

Domizio, J. D., Gulen, M. F., Saidoune, F., Thacker, V. V., Yatim, A., Sharma, K.,
et al. (2022). The cGAS-STING pathway drives type I IFN immunopathology in
COVID-19. Nature 603 (7899), 145–151. doi:10.1038/s41586-022-04421-w

Fadloun, A., Le Gras, S., Jost, B., Ziegler-Birling, C., Takahashi, H., Gorab, E., et al.
(2013). Chromatin signatures and retrotransposon profiling in mouse embryos
reveal regulation of LINE-1 by RNA. Nat. Struct. Mol. Biol. 20 (3), 332–338. doi:10.
1038/nsmb.2495

Fainaru, O., Shseyov, D., Hantisteanu, S., and Groner, Y. (2005). Accelerated
chemokine receptor 7-mediated dendritic cell migration in Runx3 knockout mice
and the spontaneous development of asthma-like disease. Proc. Natl. Acad. Sci. U. S.
A. 102 (30), 10598–10603. doi:10.1073/pnas.0504787102

Gilbert, N., Lutz-Prigge, S., and Moran, J. V. (2002). Genomic deletions created
upon LINE-1 retrotransposition. Cell 110 (3), 315–325. doi:10.1016/s0092-8674(02)
00828-0

Gomersall, C. D., Joynt, G. M., Lam, P., Li, T., Yap, F., Lam, D., et al. (2004).
Short-term outcome of critically ill patients with severe acute respiratory syndrome.
Intensive Care Med. 30 (3), 381–387. doi:10.1007/s00134-003-2143-y

Gorbunova, V., Seluanov, A., Mita, P., McKerrow, W., Fenyo, D., Boeke, J. D.,
et al. (2021). The role of retrotransposable elements in ageing and age-associated
diseases. Nature 596 (7870), 43–53. doi:10.1038/s41586-021-03542-y

Grow, E. J., Flynn, R. A., Chavez, S. L., Bayless, N. L., Wossidlo, M., Wesche, D. J.,
et al. (2015). Intrinsic retroviral reactivation in human preimplantation embryos
and pluripotent cells. Nature 522 (7555), 221–225. doi:10.1038/nature14308

Frontiers in Cell and Developmental Biology frontiersin.org15

Yin et al. 10.3389/fcell.2022.1001558

https://www.frontiersin.org/articles/10.3389/fcell.2022.1001558/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2022.1001558/full#supplementary-material
https://doi.org/10.1186/gb-2012-13-10-r87
https://doi.org/10.1186/gb-2012-13-10-r87
https://doi.org/10.1186/s13148-021-01102-9
https://doi.org/10.1016/j.immuni.2020.11.017
https://doi.org/10.1016/j.cell.2020.04.026
https://doi.org/10.1038/s41586-020-2332-7
https://doi.org/10.1016/0092-8674(93)90401-b
https://doi.org/10.1016/0092-8674(93)90401-b
https://doi.org/10.1126/science.abd2985
https://doi.org/10.1038/ni760
https://doi.org/10.1038/ni760
https://doi.org/10.1136/gutjnl-2021-324090
https://doi.org/10.1136/gutjnl-2021-324090
https://doi.org/10.1038/nrg2640
https://doi.org/10.4049/jimmunol.176.9.5559
https://doi.org/10.1038/s41577-021-00524-z
https://doi.org/10.1038/s41586-021-03570-8
https://doi.org/10.1038/s41586-021-03570-8
https://doi.org/10.1038/ng1223
https://doi.org/10.1038/ng1223
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1038/s41586-022-04421-w
https://doi.org/10.1038/nsmb.2495
https://doi.org/10.1038/nsmb.2495
https://doi.org/10.1073/pnas.0504787102
https://doi.org/10.1016/s0092-8674(02)00828-0
https://doi.org/10.1016/s0092-8674(02)00828-0
https://doi.org/10.1007/s00134-003-2143-y
https://doi.org/10.1038/s41586-021-03542-y
https://doi.org/10.1038/nature14308
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1001558


Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., et al. (2020).
Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382
(18), 1708–1720. doi:10.1056/NEJMoa2002032

Hammal, F., de Langen, P., Bergon, A., Lopez, F., and Ballester, B. (2022). ReMap
2022: A database of human, mouse, Drosophila and arabidopsis regulatory regions
from an integrative analysis of DNA-binding sequencing experiments. Nucleic
Acids Res. 50 (1), D316–D325. doi:10.1093/nar/gkab996

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen,
S., et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is
blocked by a clinically proven protease inhibitor. Cell 181 (2), 271–280. doi:10.1016/
j.cell.2020.02.052

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features
of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395
(10223), 497–506. doi:10.1016/S0140-6736(20)30183-5

Jin, Y., and Hammell, M. (2018). Analysis of RNA-seq data using TEtranscripts.
Methods Mol. Biol. 1751, 153–167. doi:10.1007/978-1-4939-7710-9_11

Krueger, F., and Andrews, S. R. (2011). Bismark: A flexible aligner and
methylation caller for bisulfite-seq applications. Bioinformatics 27 (11),
1571–1572. doi:10.1093/bioinformatics/btr167

Li, B., and Dewey, C. N. (2011). Rsem: Accurate transcript quantification from
RNA-seq data with or without a reference genome. BMC Bioinforma. 12, 323.
doi:10.1186/1471-2105-12-323

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 (12), 550.
doi:10.1186/s13059-014-0550-8

Malki, S., van der Heijden, G. W., O’Donnell, K. A., Martin, S. L., and Bortvin, A.
(2019). A role for retrotransposon LINE-1 in fetal oocyte attrition in mice. Dev. Cell
51 (5), 658. doi:10.1016/j.devcel.2019.11.011

Maslova, A., Ramirez, R. N., Ma, K., Schmutz, H., Wang, C., Fox, C., et al. (2020).
Deep learning of immune cell differentiation. Proc. Natl. Acad. Sci. U. S. A. 117 (41),
25655–25666. doi:10.1073/pnas.2011795117

Nabavi, N. (2020). Long Covid: How to define it and how to manage it. BMJ 370,
m3489. doi:10.1136/bmj.m3489

Newkirk, S. J., Lee, S., Grandi, F. C., Gaysinskaya, V., Rosser, J. M., Vanden Berg,
N., et al. (2017). Intact piRNA pathway prevents L1 mobilization in male meiosis.
Proc. Natl. Acad. Sci. U. S. A. 114 (28), E5635–E5644. doi:10.1073/pnas.1701069114

Padmanabhan Nair, V., Liu, H., Ciceri, G., Jungverdorben, J., Frishman, G.,
Tchieu, J., et al. (2021). Activation of HERV-K(HML-2) disrupts cortical patterning
and neuronal differentiation by increasing NTRK3. Cell Stem Cell 28, 1566–1581.e8.
doi:10.1016/j.stem.2021.04.009

Percharde, M., Lin, C. J., Yin, Y., Guan, J., Peixoto, G. A., Bulut-Karslioglu, A.,
et al. (2018). A LINE1-nucleolin partnership regulates early development and ESC
identity. Cell 174 (2), 391–405. e319. doi:10.1016/j.cell.2018.05.043

Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A., and Manke, T. (2014).
deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids
Res. 42, W187–W191. doi:10.1093/nar/gku365

Shay, J. W. (2016). Role of telomeres and telomerase in aging and cancer. Cancer
Discov. 6 (6), 584–593. doi:10.1158/2159-8290.CD-16-0062

Shen, B., Yi, X., Sun, Y., Bi, X., Du, J., Zhang, C., et al. (2020). Proteomic and
metabolomic characterization of COVID-19 patient sera. Cell 182 (1), 59–72. e15.
doi:10.1016/j.cell.2020.05.032

Shen, S., Park, J. W., Lu, Z. X., Lin, L., Henry, M. D., Wu, Y. N., et al. (2014).
rMATS: robust and flexible detection of differential alternative splicing from
replicate RNA-Seq data. Proc. Natl. Acad. Sci. U. S. A. 111 (51), E5593–E5601.
doi:10.1073/pnas.1419161111

Sorek, M., Meshorer, E., and Schlesinger, S. (2021). Impaired activation of
transposable elements in SARS-CoV-2 infection.doi:10.1101/2021.02.25.432821v3

Sun, X., and St John, J. C. (2016). The role of the mtDNA set point in
differentiation, development and tumorigenesis. Biochem. J. 473 (19),
2955–2971. doi:10.1042/BCJ20160008

Symer, D. E., Connelly, C., Szak, S. T., Caputo, E. M., Cost, G. J., Parmigiani,
G., et al. (2002). Human l1 retrotransposition is associated with genetic
instability in vivo. Cell 110 (3), 327–338. doi:10.1016/s0092-8674(02)
00839-5

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J.,
et al. (2019). STRING v11: Protein-protein association networks with
increased coverage, supporting functional discovery in genome-wide
experimental datasets. Nucleic Acids Res. 47 (1), D607–D613. doi:10.1093/
nar/gky1131

Tian, Y., Sun, K. Y., Meng, T. Q., Ye, Z., Guo, S. M., Li, Z. M., et al. (2021).
Gut microbiota may not Be fully restored in recovered COVID-19 patients
after 3-month recovery. Front. Nutr. 8, 638825. doi:10.3389/fnut.2021.
638825

Totzke, G., Essmann, F., Pohlmann, S., Lindenblatt, C., Janicke, R. U., and
Schulze-Osthoff, K. (2006). A novel member of the IkappaB family, human
IkappaB-zeta, inhibits transactivation of p65 and its DNA binding. J. Biol.
Chem. 281 (18), 12645–12654. doi:10.1074/jbc.M511956200

Wu, P., Chen, D., Ding,W., Wu, P., Hou, H., Bai, Y., et al. (2021). The trans-omics
landscape of COVID-19. Nat. Commun. 12 (1), 4543. doi:10.1038/s41467-021-
24482-1

Xiong, Y., Liu, Y., Cao, L., Wang, D., Guo, M., Jiang, A., et al. (2020).
Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral
blood mononuclear cells in COVID-19 patients. Emerg. Microbes Infect. 9 (1),
761–770. doi:10.1080/22221751.2020.1747363

Yao, X. H., Luo, T., Shi, Y., He, Z. C., Tang, R., Zhang, P. P., et al. (2021). A cohort
autopsy study defines COVID-19 systemic pathogenesis. Cell Res. 31 (8), 836–846.
doi:10.1038/s41422-021-00523-8

Yin, Y., Liu, X. Z., He, X., and Zhou, L. Q. (2021). Exogenous coronavirus
interacts with endogenous retrotransposon in human cells. Front. Cell. Infect.
Microbiol. 11, 609160. doi:10.3389/fcimb.2021.609160

Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., et al. (2020). A
pneumonia outbreak associated with a new coronavirus of probable bat origin.
Nature 579 (7798), 270–273. doi:10.1038/s41586-020-2012-7

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O.,
et al. (2019). Metascape provides a biologist-oriented resource for the analysis of
systems-level datasets. Nat. Commun. 10 (1), 1523. doi:10.1038/s41467-019-
09234-6

Frontiers in Cell and Developmental Biology frontiersin.org16

Yin et al. 10.3389/fcell.2022.1001558

https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1093/nar/gkab996
https://doi.org/10.1016/j.cell.2020.02.052
https://doi.org/10.1016/j.cell.2020.02.052
https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.1007/978-1-4939-7710-9_11
https://doi.org/10.1093/bioinformatics/btr167
https://doi.org/10.1186/1471-2105-12-323
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1016/j.devcel.2019.11.011
https://doi.org/10.1073/pnas.2011795117
https://doi.org/10.1136/bmj.m3489
https://doi.org/10.1073/pnas.1701069114
https://doi.org/10.1016/j.stem.2021.04.009
https://doi.org/10.1016/j.cell.2018.05.043
https://doi.org/10.1093/nar/gku365
https://doi.org/10.1158/2159-8290.CD-16-0062
https://doi.org/10.1016/j.cell.2020.05.032
https://doi.org/10.1073/pnas.1419161111
https://doi.org/10.1101/2021.02.25.432821v3
https://doi.org/10.1042/BCJ20160008
https://doi.org/10.1016/s0092-8674(02)00839-5
https://doi.org/10.1016/s0092-8674(02)00839-5
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.3389/fnut.2021.638825
https://doi.org/10.3389/fnut.2021.638825
https://doi.org/10.1074/jbc.M511956200
https://doi.org/10.1038/s41467-021-24482-1
https://doi.org/10.1038/s41467-021-24482-1
https://doi.org/10.1080/22221751.2020.1747363
https://doi.org/10.1038/s41422-021-00523-8
https://doi.org/10.3389/fcimb.2021.609160
https://doi.org/10.1038/s41586-020-2012-7
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/s41467-019-09234-6
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1001558

	Transcriptome and DNA methylome analysis of peripheral blood samples reveals incomplete restoration and transposable elemen ...
	Introduction
	Material and methods
	Patient recruitment and blood sample collection
	mRNA isolation for sequencing
	DNA isolation for methylation profiling
	RNA-seq data processing
	ReMap2022 database for transcription factor binding enrichment analysis
	WGBS data processing and quality control
	Differentially methylated regions by methylKit
	Statistical methods

	Results
	The SARS-cov-2 infection had a profound impact on transcriptome and TE activation which was positively correlated with COVI ...
	Whole-blood transcriptome analysis revealed that SARS-cov-2 impacted the expression of multiple genes and alternative splic ...
	Whole-blood DNA methylome analysis of the recovery group identified genome-wide DMRs which mainly localized at TEs’ loci be ...

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


