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Since the advent of microarray technologies that permit high-
throughput gene expression analyses in tumor samples, there
has been an explosion of data generated, both through the anal-
ysis of archived clinical material and through prospective stud-
ies that expressly collect samples for molecular analyses (1–3).
Fortunately, much of this has been made publicly available
through shared repositories, enabling investigators without di-
rect access to clinical material the opportunity to carry out dis-
covery and validation studies to better characterize the
molecular basis of tumor behavior and response to therapies
(4,5). The recent efforts of The Cancer Genome Atlas and other
groups to generate comprehensive molecular profiles of human
cancers have further enriched these data sets, now using the
current state-of-the-art RNA-seq technologies (2,3).

There are few areas of cancer research where gene expres-
sion profiling has had as great an impact as in breast cancer.
Both in basic research and clinical application, gene expression
analysis underlies the common molecular classification
schemes (eg, intrinsic subtypes), and its importance is second
only to the gold standard pathological measurement of estrogen
receptor (ER), progesterone receptor (PR), and human epidermal
growth factor receptor 2 (HER2) in defining treatment plans for
individual patients (6–11). The development and validation of
prognostic gene expression classifiers in early breast cancer (eg,
OncotypeDX [12], Prosigna [13], Mammaprint [14], Gene expres-
sion Grade Index [15], and others) has substantially refined ad-
juvant chemotherapy decision-making, permitting optimized
delivery of this treatment and sparing thousands of women
toxic therapy where it is not required (16).

Given the central role gene expression analyses play in the in-
vestigation and management of breast cancer, the report by Gao et
al. (17), describing artifactual gene expression changes in serially
sampled specimens collected as part of a randomized controlled
trial, are particularly relevant to the design and interpretation of
gene expression biomarker studies. In their accompanying article,

the authors build on previous reports describing alterations in gene
expression related to delays in tissue processing following sam-
pling, including substantial changes in early response genes be-
tween diagnostic core biopsies and surgical specimens (18–20).
They now analyze and compare whole-genome expression data
from samples of ERþ breast cancers obtained by core needle biopsy
at baseline and paired surgical specimens obtained after two weeks
of preoperative aromatase inhibitor treatment (AI), or control from
the POETIC trial (21). The analysis of gene expression alterations in
the treated group identified major signaling pathways known to be
affected by estrogen deprivation; in addition, as previously
reported, substantial changes in some genes are documented in
control-treated patients, which are attributed to pre-analytical vari-
ables in sample collection and handling. Namely, the baseline core
biopsies were processed directly, whereas the surgical specimens
were handled routinely following resection (often with a delay for
clinical assessment), and core cut samples were obtained from the
pathology specimens. This would result in substantial differences
in ischemic time that could produce cellular responses and affect
sample integrity. Gao et al. showed that many of the genes whose
expression is most altered between baseline and surgery in the AI-
treated group are also those affected in the control arm (Figure 1)
(17). This is a striking finding as it indicates that the genes that
could have been attributed to AI treatment were actually due to a
confounding factor. The possibility that the expression changes in
the surgical samples of the control group were the result of the in-
tervening biopsy causing a wound healing, immune, or other per-
turbation was addressed by an analysis of a different trial
(FAIMoS), where the post-AI samples were collected by a repeat
core biopsy prior to surgical resection of the tumor (22). With the
benefit of treatment and control groups in POETIC, the authors
conclude that the sampling differences in serial specimen collec-
tion resulted in the detection of purely artifactual changes in some
genes, while also masking real treatment-induced changes in other
genes.
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In preclinical settings, researchers have more control over
their experiments, consequently reducing the risk of confound-
ing factors biasing the analysis results. For instance, we showed
that gene expression profiles of cancer cell lines using large-
scale in vitro drug screening initiatives, such as the Genomics of
Drug Sensitivity in Cancer (GDSC) (23) and the Cancer Cell Line
Encyclopedia (24), were reasonably consistent across studies
(25,26). However, intrinsic noise of the pharmacological profil-
ing assay and differences in experimental protocols resulted in
marked inconsistencies for the drug sensitivity data (27,28).
Similar to Gao et al., the Connectivity Map project investigated
the effects of short-term drug treatment on the transcriptomic
state of cancer cells in a preclinical setting (29). Although it is
not possible to control for all the possible confounding factors,
the resulting drug perturbation signatures yielded reasonable
consistency across compounds of the same pharmacological
class (29–31). These preclinical data indicate that the use of
standard operating procedures, notably for sample collection
and molecular profiling, resulted in robust pharmacogenomic
readouts.

However, such controlled experimental design is often dif-
ficult to implement in clinical settings. Prospective studies to
evaluate pharmacodynamic effects of novel therapies are of-
ten undertaken in early phase clinical trials, which do not al-
ways include a control arm (32). In this setting, where analysis
of paired samples may be used to adjudicate drug effect, de-
termine dosing, infer potential predictive biomarkers, or iden-
tify putative combination partners, care must be taken to
account for technical confounders in downstream analyses if
technical controls cannot be integrated in the study design.
This is especially critical in window of opportunity trials,
where no therapeutic effect is expected, or in studies of agents
whose biological effect is weaker or less well-defined than the
AIs studied in POETIC. In such cases, harmonizing baseline
and end-of-treatment sampling procedures (ie, paired biop-
sies, as used in FAIMOS), as well as inclusion of a control
group, is likely advisable, and is typically lacking when as-
sessment of routinely available archival tissue samples is
performed.

Retrospective analyses of paired tissue specimens, com-
monly performed in situations where mature outcome clinical
data are required, are even more likely to suffer from technical
differences in tissue sampling. Examples include the compari-
son of residual disease (at surgery) with pretreatment biopsies
in the neoadjuvant setting to identify correlates of drug resis-
tance; or metastatic disease (biopsies) to resected primaries (at
surgery) to identify features associated with disease progression
and dissemination. Attempts to control for potential confound-
ing factors arising from technical issues in retrospective studies
require both the recognition that this phenomenon is present
and a database of important artifactual changes, as Gao et al.
provided in their supplemental data for presurgical ERþ breast
cancer. While some of these are likely to be common to other
histologies, attention to other settings is necessary to account
for disease-specific alterations. Failure to consider and control
for such changes can, and undoubtedly will, result in spurious
results and misleading conclusions. For those working in this
area, take heed: the sample matters.
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