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Abstract: The paper is focused on creep-rupture tests of samples made of the 2024 alloy in the
T3511 temper under uniaxial tensile stress conditions. The basic characteristics of the material at the
temperatures of 100, 200 and 300 ◦C were determined, such as the Young’s modulus E, yield point
σy, ultimate tensile strength σc and parameters K and n of the Ramberg–Osgood equation. Creep
tests were performed for several different levels of nominal axial stress (load) at each temperature.
It was observed that in the process of creep to failure at 200 and 300 ◦C, as the stress decreases,
the creep time increases and, at the same time, the strain at rupture increases. However, such a
regularity is maintained until a certain transition stress value σt is reached. Reducing the stress below
this value results in a decreased value of the strain at rupture. A simple model of creep damage
accumulation was proposed for the stress range above the transient value. In this model, the increase
in the isotropic damage state variable was made dependent on the value of axial stress and the
increase in plastic axial strain. Using the results of experimental creep-rupture tests and the failure
condition, the parameters of the proposed model were determined. The surface of fractures obtained
in the creep tests with the use of SEM technology was also analyzed.

Keywords: creep-rupture test; damage accumulation; aluminum alloy; SEM observations;
theoretical model

1. Introduction

One of the earliest and best-known equations describing the creep phenomenon under
uniaxial loading (tension) is the Norton power law [1]:

dε
dt

= Bσn (1)

where B and n are material parameters; ε and σ are the axial strain and stress, respectively;
and t is time. It allows describing a stable, secondary creep. Nowadays, however, the
increasing demands placed on advanced structures and their components subjected to
long-term permanent loads over time render this law an insufficient modeling tool. It is
necessary to be able to describe all three creep stages. Moreover, it is not enough to know
the increase rate but also to be able to predict the accumulation of damage caused by
the creep. For modeling the damage increase, a certain scalar parameter (damage state
variable), denoted by D (e.g., [2,3]) or ω (e.g., [4,5]), is usually introduced, which equals
zero for the undamaged material condition and reaches the value of unity for the complete
material failure.

One of the first models to describe the damage state was proposed by Kachanov [6]
and Rabotnov [7] and was based on the laws of continuum damage mechanics:

dε
dt = B

(
σ

1−ω
)n, dω

dt = C
(
σ

1−ω
)m (2)
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whereω is the damage parameter mentioned, and B, C, n and m are the material constants,
with B and n being related to Norton’s law. Currently, we can find many modifications
of this model consisting of the generalization of multiaxis states by introducing reduced
values of stress σeq and strain εeq. The values of hydrostatic pressure and principal stresses
(e.g., [8,9]) or the values of tensor invariants and the stress deviator (e.g., [10]) are often
used here. Rapid elastic–plastic damage dominates in the tertiary creep rather than classical
creep damage, which is not captured well enough by the type (2) equations. In order to
eliminate this inconvenience, a model using the exponential function was proposed by
Liu and Murakami [11]. It was successfully used in predicting creep crack growth [12].
In the paper by Othman et al. [13], the damage accumulation measure was treated as the
composition of two: ω1 and ω2. One of them (ω1) is related to the dislocation density,
and the other (ω2) is defined as the area fraction of cavitation under the creep constraint
and reaches a value of 1/3 at rupture. This model was also used in a generalized form
for complex stress states [14]. There are more models in which the damage state variable
is considered the sum of the two components. To take into account material softening in
the tertiary creep due to void nucleation at the grain boundary and to precisely describe
the primary creep stage in aluminum alloys, Kowalewski et al. [15] proposed to introduce
additional parameters h and H, which relate to the primary creep stage and represent
material hardening. Value H peaks at the end of the primary creep and remains constant
in the tertiary. The generalization of this model into complex stress states can be found in
many papers (e.g., [16,17]). Parameter H was later used many times in modeling practical
engineering creep problems (e.g., [18–22]).

To predict the crack propagation in [23,24] the model describing an increase in damage
in the zone in front of the crack tip is presented:

dω
dt

=

.
ε

ε∗f
(3)

where ε∗f is the strain at rupture in the complex load state, and
.
ε is the creep rate. Parameter

ε∗f takes into account the multiaxial effect [25], namely:

ε∗f
εf

=
sinh

( 2
3

n−0.5
n+0.5

)
sinh

(
2 n−0.5

n+0.5
σh
σeq

) (4)

where σh and σeq are hydrostatic and reduced stresses, respectively, according to Huber–
von Mises; εf is the strain at fracture in the uniaxial state; and n is the stress exponent in the
secondary creep. This model allowed for analyzing the crack initiation and propagation for
P91 steel, Cr-Mo-V steel, ceramic materials or P92 steel [26–29]. In order to better predict
the increased rate of void growth, Wen and Tu [30] proposed replacing the “sinh” function
in (4) with an exponential function. Other formulas taking into account the multiaxiality
factor ε∗f can also be found in the literature [31–33].

The observation and registration (using an optical digital microscope) of density
changes Dc of the crazing on the surface subjected to the creep process enabled the formu-
lation of the relationship [5]:

ω =
lg(t)
lg(tr)

(5)

where t and tr denote the current creep time and the time to rupture, respectively. An even
simpler form of the damage state variable was used in the paper of Cardoso et al. [34]:

D =
t
tr

(6)

In this case, the results of hardness measurements were used to determine the material
damage. The use of a parameter similar to the parameter provided above was also proposed
by Rui et al. [35], taking into account the results of the EBSD analysis of austenitic steels.
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The so-called grain reference orientation deviation parameter (GROD) was introduced into
the model. It was demonstrated that the relationship between the creep strain and the
GROD parameter is linear and allows easy modeling of damage growth.

Structural elements are often subject to “cyclic” creep behavior. At time ti and tem-
perature Ti, some stress σi is subjected. Robinson’s rule is then used to sum the creep
damage [36] derived from the Palmgren–Miner fatigue hypothesis:

D =
n

∑
i=1

ti

tfi
(7)

where tfi denotes the time to failure under defined conditions. This model was used by
Borkowski et al. [37] to determine damage to steam turbine blades and by Loghman and
Moradi [38] to analyze creep effects in a thick-walled spherical reactor. The work of Hu
et al. [39] shows the strain form of Relationship (7) by replacing the time values with the
corresponding strains.

Because Robinson’s linear rule did not reflect the actual experimental results well
enough, Pavlou [40] proposed to determine damage using the graphical dependence of
the stress logarithm on the Larson–Miller parameter. To consider load history for the cycle
block during creep, Batsoulas [41] introduced the function of cumulative creep damage in
the form:

dω
ω

= φ(t,σ, T)
dε
ε

(8)

where φ(t, σ, T) is a function of time, stress and temperature. The integration of Equation (8)
will allow obtaining the current value of the damage. Hu et al. [39], pointing to the
shortcomings of the approach presented in [40,41], propose the use of the creep damage
tolerance parameter λf dependent on the minimum strain rate. At the same time, both the
approach proposed by Hu et al. and the Pavlou model for the titanium alloy were verified.

Wen et al. [42] presented the total damage D of a nickel-based single crystal as the
damage DS resulting from microstructural material degradation and cavitation damageω.
To describe the increase rate ω, the nondilatational strain rate was used. Pettinà et al. [43]
presented total damage as the damage Dcr, resulting clearly from creep effects and damage
Denv related to the oxidizing influence of the environment. This allowed taking into account
the process of creep oxidation of ZrN ceramics at high temperatures.

The paper of Dyson [44] takes into account several micromechanisms related to
damage accumulation during creep. The effects of parameters such as depletion of the
Laves phase, cavity density in the grain boundary, precipitation particle coarsening and
dislocation damage are described in detail.

In the above-mentioned relationships describing the damage growth, the scalar vari-
able of the damage state (D orω) is used. In fact, this variable can be treated as a special
case of the general, tensor damage measure, similarly to isotropic damage models, which
can be treated as a special anisotropic case. Indeed, the creep process is, in its nature,
anisotropic. To describe it in the creep process, Chaboche [45] used a fourth-order damage
tensor D by introducing an effective stress tensor. Murakami [46,47] used a second-rank
tensor to describe the growth and joining of voids at grain boundaries in a representative
volume. Ganczarski and Skrzypek [48] pointed out the fact that the model proposed by
Murakami did not allow for sufficiently accurate modeling of damage growth in axially
symmetric cases, especially in the area close to the axis of symmetry, and presented its
modification. A more detailed review of the anisotropic damage models used to describe
the creep process and their applications can be found in [49,50]. The damage accumulation
model in the creep weld material is proposed by Peravali et al. [51]. It was assumed that
the damage increases in the plane of maximum normal stresses both along and across the
welding direction. A second-order damage tensor was used here.

This study concerns short-term creep-rupture tests for aluminum alloy EN-AW 2024
(T3511), which were carried out at the temperatures of 100, 200 and 300 ◦C. Depending on
the load, the creep time ranged from several dozen minutes to one hundred and several
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dozen hours. A microscopic analysis of fractures was also performed, thanks to which the
mechanisms of material damage and fracture were identified. Based on the test results
and the analysis of the failure mechanism, a simple, two-parameter model of damage
accumulation is presented. This, together with experimental verification, is the main aim
of the paper. An increase in the damage state variable ω was made dependent on an
increase in plastic strain and the value of the defined stress. The parameters of the model
were determined, and the possibilities of its application were indicated. The proposed
model has never been used in modeling creep problems before. Moreover, the influence of
different creep stress and creep times on the nature of fractures and the failure mechanism
are presented.

2. Test Stand, Material Characteristic, Samples

The tested material was EN-AW 2024 aluminum alloy in the T3511 temper, in the form
of extruded bars with a diameter of 16 mm. The shape and dimensions of the samples used
in the monotonic tensile tests and creep-rupture tests are shown in Figure 1. The chemical
composition (weight %) of the tested alloy is [52]: Si (0.13%), Fe (0.25%), Cu (4.4%), Mn
(0.62%), Mg (1.7%), Cr (0.01%), Zn (0.08%), Ti (0.05%) and Al (bal.).
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The view of the microstructure of the material in the longitudinal and transversal
cross-sections can be found in an earlier paper [52]. The samples were made by turning with
the use of a numerically controlled lathe. This guaranteed the repeatability of dimensions
as well as an identical load pattern for each sample in the machining process. The threaded
gripping parts of the specimen ensured secure clamping and eliminated the possibility of
the specimen slipping out of the holder due to elevated temperature.

Tensile and creep-rupture tests at an elevated temperature were carried out using a
Zwick/Roell Kappa 100SS four-column creep-testing machine (Zwick/Roell, Ulm, Ger-
many) with an electromechanical drive (Figure 2a). It allows for the performance of creep,
creep-rupture and stress relaxation tests at loads up to 100 kN. The sample was mounted
in the loading system by means of high-temperature tension strings. The articulated end
of one of them guaranteed that the load had the form of pure tension. The thermal load
was generated by a Maytec three-zone furnace (Mess und Regeltechnik GmbH, Singen,
Germany) with an upper temperature range of 900 ◦C, controlled by a special controller.
Three thermocouples allowed for precise measurement of the sample temperature. Due
to the small measurement base, only two thermocouples were used, i.e., the upper and
lower. The TestXpertII system controlled both the creep-testing machine and the furnace.
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Before starting the actual test, the sample was heated at the rate suggested by the furnace
manufacturer, i.e., 3 ◦C/min for the test temperature of 100 ◦C, 6 ◦C/min for 200 ◦C and
10 ◦C/min for 300 ◦C. Each of the temperatures was achieved with an accuracy of ±2 ◦C.
The temperature of 100 ◦C was reached after about 100 min, 200 ◦C after approx. 85 min
and 300 ◦C after 65 min. The heating time tolerance was ±5 min. The strain of the gauge
length of the sample inside the furnace was measured with the use of a special device [53]
(Figure 2b). It allows the measurement of sample elongations at an elevated temperature
outside the furnace using devices designed for operation at room temperature. The Epsilon
3542-025M-025-HT1 extensometer (Epsilon Technology Corp, Jackson, MS, USA) with a
gauge length of 25 mm and a range of ±12.5 mm was used as a precise measuring device.
The extensometer was calibrated before each single test. In both the monotonic tensile and
creep-rupture tests, the samples were loaded with the same strain rate of 0.0015/s. After
the end of the test, the samples were cooled always under the same conditions, i.e., in the
open air.
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The process of modeling damage accumulation in the creep process described in the
following sections requires knowledge of the selected monotonic characteristics of the
material. These include Young’s modulus E and tensile strength σc as well as parameters K
and n of the Ramberg–Osgood equation [54]:

ε = εe + εp =
σ

E
+
( σ

K

) 1
n (9)

where σ and ε are the stress and the corresponding strain, and εe and εp are the elastic and
plastic strains. These material characteristics were determined based on the monotonic
tensile tests at 100, 200 and 300 ◦C [52,55,56] and are summarized in Table 1. It should be
emphasized that the monotonic tensile tests were carried out for three samples at each
temperature, and their results were averaged. Note that when setting the parameters n
and K, only the range of the stress–strain curve was taken into account until the neck
was formed in the sample, i.e., until the ultimate tensile strength value σc was reached.
These parameters were obtained by approximating the results of the experimental tests
obtained in the monotonic tensile test at different temperatures by Equation (9). The
diagrams of monotonic tensile tests at 100, 200 and 300 ◦C obtained in the experiment and
by approximation are shown in Figure 3. The approximation was also limited to the strain
value corresponding to stress σc.
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Table 1. Values of material parameters obtained in the monotonic tensile tests.

T (◦C) E (GPa) σc (MPa) n K (MPa)

100 71 536 0.0759 641

200 70 460 0.0633 542

300 56 219 0.0097 227
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3. Experimental Results and Discussion
3.1. Creep-Rupture Tests

The creep tests were performed at temperatures of 100, 200, 300 ◦C, according to the
ISO standard [57] at five different constant force values at temperatures of 200 and 300 ◦C
and at three values at 100 ◦C (Table 2). The creep process was repeated three times with the
same load value, and the results were averaged.

Table 2. Values of time and plastic strain observed in the creep-rupture tests at different temperatures
and for different values of σcreep.

T (◦C) σcreep (MPa) Creep-Rupture Time (h) εp1 (%) εp2 (%)

100
524 20.35 5.4 19.3
530 2.64 6.0 18.2
532 0.45 6.6 16.9

200

229 89.05 0 16.2
235 64.73 0 19.4
256 24.25 0 28.8
279 7.49 0 26.5
297 2.69 0 22.9

300

51 135.83 0 41.7
66 23.50 0 45.9
75 17.93 0 43.7
92 4.47 0 37.7

123 0.82 0 33.8

Photos of typical ruptured samples after the creep process are shown in Figure 4. The
curves of the nominal axial strain versus time at each temperature for different load levels
are shown in Figure 5.
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Due to significantly different creep times for different values of the nominal stress
value σcreep at the same temperature, the diagrams of strain versus time are decomposed
into two with different time scales. As can be seen, the creep process of the tested alloy
has a classic, three-stage character, like most aluminum alloys (e.g., [58–60]). Under creep
conditions at 200 and 300 ◦C, as the nominal stress (load) decreases, the creep time and
strain at rupture increase. However, such a tendency can be observed only within a certain
load range, corresponding to the time range from zero to approximately twenty hours.
After the load is reduced below a certain transient value of the nominal stress σt, which has
a certain limit value for the creep time tt, the tendency is reversed. There is a clear decrease
in the strain at rupture with a decrease in load, which is, of course, accompanied by an
increase in the creep-rupture time.

This is related to the evolution of the material microstructure as a result of long-term
thermal and mechanical loading and may also apply to other aluminum alloys (e.g., [61]).
The results of the single tests in which this tendency was observed are highlighted in gray
in Table 2. However, to precisely determine the aforementioned transient load and time
values, additional creep-rupture tests should be performed.

The creep process can also be represented schematically in the nominal stress–strain
(σ–ε) system (Figure 6). Section OA corresponds to the elastic range. Section AB describes
the behavior of the material after reaching the yield point σy until the moment when a
defined constant force in the creep process is reached. What corresponds to this moment is
a certain plastic strain εp1. The Ramberg–Osgood (R–O) equation (Equation (9)) was used
to describe the AB section. Section BC corresponds to the creep process at constant force
until specimen rupture under permanent strain εp2. Note that σcreep is the nominal stress
determined for the constant cross-section of the specimen. Strain values εp1 and εp2 can be
found in Table 2. In the creep-rupture process at 100 ◦C, the values of nominal stress above
the yield point of the material at this temperature were used. In the creep-rupture tests
at temperatures of 200 and 300 ◦C, the nominal stress values under the yield point of the
material at these temperatures were used. Thus, the deformation value εp1 was equal to
zero (Figure 6).
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3.2. Microscopic Analysis of Fracture Surfaces

Surface tests of fractures obtained in the creep-rupture tests were carried out using
the Olympus SXD110 optical microscope (Olympus Corp, Essex, UK) and the Phenom XL
scanning electron microscope (SEM) (Thermo Fisher Scientific, Waltham, MA, USA). The
first of the devices allows for magnification from 20 to 1071 times. The Phenom microscope
is fitted with a backscattered electron detector (BSD), a secondary scattered electron detector
(SED) and an energy-dispersion spectrometer (EDS). It allows for magnifications from 80
to 100,000 times.
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Creep to failure of the investigated alloy at 100 ◦C gives a fracture surface (Figure 7)
similar to the surface obtained in the case of monotonic tensile (e.g., [52]). The orientation
angle of the fracture plane (approx. 45◦) proves the dominant share of maximum shear
stresses in the fracture process. However, numerical calculations show that the maximum
value is reached by principal stresses σ1 in the symmetry axis [52]. In the central area,
normal stress initially dominates, as evidenced by the SEM images shown in Figure 7c,d.
At the bottom of almost each of the pores, coarse precipitates can be clearly seen. The
fracture process began in the sample axis. Due to the effect of stress σ1, the pores elongated,
and thus their diameter decreased. As soon as the wall (bridge between the pores) touched
the sharp edge of the precipitate, it was ruptured, which caused two adjacent pores to join.
The process of normal stress domination lasted for a relatively short time, as evidenced by
the slightly deformed remains of ruptured bridges. The crack was initiated in the sample
axis after which rapid shearing occurred. At high magnifications, it can be noticed that as
the values of σcreep decrease, and thus the creep time increases, the diameter of the cavities
increases (Figure 7c,d). At the same time, there was a growing tendency for smaller pores
to join into larger ones. The rupturing of the bridges happened before the pores could join.
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The fracture surface obtained in the creep-rupture tests at 200 ◦C has a two-plane
character (Figure 8a–c). The central part is occupied by a plane perpendicular to the load
direction (central region). Its smoothness increases with an increase in the stress value
σcreep. The other part of the characteristic planes (external region) connects the central
region with the external surface of the sample and is oriented at an angle of approximately
45◦ relative to the load direction. The share of the first of these regions in the entire cross-
section decreases as the load increases. The border between the two areas is very clear, as
shown in Figure 9f. The failure mechanism thus becomes less and less ductile. The pores
within the central surface were clearly deformed in the direction of the principal stress σ1
(Figure 8d,f). Numerical analysis of the monotonic tensile process (e.g., [52]) shows that as
soon as the neck forms, the stress state becomes triaxial. However, failure is determined
not by the maximum equivalent stresses σeq but by the maximum principal stresses σ1.
Fracture starts in the sample axis similarly to creep at 100 ◦C. Here, however, the dominance
of the principal stresses lasts much longer. The crack propagates perpendicular toward the
load direction for a longer time. With longer times of exposure to elevated temperature,
the cavities have larger diameters (see Figure 8d,f). At the same time, the pores tend to
join into larger ones. There are not many of the finest pores shown in Figure 8d. The
character of the external region in both cases is very similar (Figure 8e); hence, for the stress
σcreep = 297 MPa, there was no need to present its view. Here, it was the maximum shear
stress that was responsible for the failure. A large number of fine pores that have not grown
significantly but have been sheared rapidly can be seen. There are also a few remnants of
larger pores that were initially deformed in the direction of stress σ1, as evidenced by the
presence of stripes on the surfaces of the bridges. Subsequently, the bridges between the
pores were sheared rapidly.
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The surface of fractures obtained in the creep-rupture tests at 300 ◦C had two planes
(central and external regions) only for high loads and thus for short creep times (Figure 9c).
The share of the shear surface area (external region) here is small. In the case of lower stress
values, the character of the fracture was clearly ductile, and the entire area was dominated
by stress σ1.

At the same time, the fracture surfaces of both parts of the same sample following the
rupture were not “negative” and “positive,” as was in all other cases. Due to the prolonged
exposure to elevated temperature, the bridges between the pores in the central region
were broken. The crack initiating in the axis of symmetry propagated toward the outer
surface. During this time, the material on the outside was still slowly deforming in the
direction of the loading. The final result is shown in Figure 9a,b. The diameter of the
cavities after ruptured pores increased as the stress σcreep decreased. Such a situation was
observed for σcreep = 51 MPa (Figure 9d) compared to σcreep = 75 MPa (not shown in the
figure). However, even at higher loads, such as σcreep = 123 MPa, the central region was
characterized by larger and more regular shapes of the cavities (Figure 9e). This is due
to the fact that the pores were not significantly deformed in the direction of the stress σ1
action and were ruptured earlier. In the external area, there are cavities after the pores
sheared in the direction of maximum shear stress acting. The presence of numerous stripes
on the surface of the cavities (Figure 9f) indicates that the shearing process at 300 ◦C was
not as rapid as at 200 ◦C.

4. A Simple Model for Creep Damage Accumulation

In the proposed computational model, it was assumed that in the creep-rupture
process, damage growth depends on the value of the axial stress and an increase in
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permanent (plastic) strain. By introducing a measure of damage stateω, the law of damage
was adopted in the form used to predict the fatigue life of sintered porous steels [62]:

dω =

Aω
(
σ
σc

)nω
dεp dla σ > 0 i dεp > 0

0 dla σ ≤ 0 lub dεp ≤ 0
(10)

where: Aω, nω—material parameters independent of the loading value; σ—the current
value of the tensile stress; σc—nominal critical stress for the undamaged material (the
ultimate tensile strength was assumed).

The failure criterion was adopted in a simple form:

ω = 1 (11)

Value ω = 0 means undamaged material. The total damage growth ∆ω during the
creep-rupture process can be expressed as the sum of two components:

∆ω = ∆ω1 + ∆ω2 (12)

where: ∆ω1, ∆ω2—growth of the ω, respectively, in sections AB and BC (Figure 6) and
according to Equation (10):

∆ω1 =

ω1k∫
0

dω1 =
Aω
σnω

c

εp1∫
0

σnωdεp (13)

∆ω2 =

ω2k∫
ω1k

dω2 = Aω

(
σcreep

σc

)nω
εp2∫
εp1

dεp (14)

where: σcreep—nominal (engineering) stress, corresponding to the constant force in the
creep process; εp1—permanent strain, corresponding to the beginning of the stage of
reaching the required force in the creep process (Point B, Figure 4); εp2—permanent strain,
corresponding to sample rupture (Point C, Figure 4);ω1k,ω2k—values of the damage state
variable corresponding to deformations εp1 and εp2.

Assuming the hardening curve in the form consistent with Equation (9), i.e.,:

σ = K
(
εp
)n (15)

Equations (13) and (14) will finally take the following form:

∆ω1 = Aω

(
K
σc

)nω
εp1∫
0

(
εp
)nnωdεp =

(
K
σc

)nω Aω
(nnω + 1)

(
εp1
)(nnω+1) (16)

∆ω2 = Aω

(
σcreep

σc

)nω(
εp2 − εp1

)
(17)
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∆ω
(
εp
)
=


(

K
σc

)nω Aω
(nnω+1)

(
εp
)(nnω+1) for εp ≤ εp1(

K
σc

)nω Aω
(nnω+1)

(
εp1
)(nnω+1)

+ Aω
(
σcreep
σc

)nω(
εp − εp1

)
for εp1 < εp ≤ εp2

(18)

Adopting the failure condition in the form (11), we obtain:

ω = ∆ω1 + ∆ω2 =

(
K
σc

)nω Aω
(nnω + 1)

(
εp1
)(nnω+1)

+ Aω

(
σcreep

σc

)nω(
εp2 − εp1

)
= 1 (19)

When εp1 = 0:

ω = ∆ω2 = Aω

(
σcreep

σc

)nω
εp2 = 1 (20)

The values of Aω and nω obtained using Conditions (19) or (20) are summarized
in Table 3. The values of the damage state variable ω obtained for the mentioned pa-
rameters in the creep-rupture process at temperatures of 100, 200 and 300 ◦C are also
presented here. The simple gradient method and the systematic search method were used
in numerical algorithms.

Table 3. Values of Aω and nω obtained during the creep process at different temperatures and for
different values of σcreep and also the value of the damage parameterω.

T (◦C) σcreep (MPa) nω Aω ∆ω1 ∆ω2 ω

100
524

12.46 8.21
0.134 0.861 0.995

530 0.164 0.871 1.035
532 0.198 0.756 0.954

200

229 0 0.468 0.468
235 0 0.583 0.583
256 1.51 8.29 0 0.985 0.985
279 0 1.033 1.033
297 0 0.981 0.981

300

51 0 0.795 0.795
66 0 0.998 0.983
75 0.51 4.01 0 1.015 1.029
92 0 0.971 0.985

123 0 1.010 1.005

It should be emphasized that in the procedure of determining parameters Aω and
nω, the results of the creep tests, in which a decrease in the value of the strain at rupture
was observed with a decrease in the nominal stress, were omitted. This means that the
proposed model is not applicable to this load range. They are highlighted in gray in Table 3.
However, for these cases also, the values of ∆ω2 and ω were calculated and listed in
the table. As can be seen, these values are very far from unity. Using the determined
parameters Aω and nω and the damage growth law in (18), the value of the damage state
variable was determined for different values of the load at a given temperature as a function
of the current plastic strain εp (Figure 10). On the other hand, Table 3 presents the values
of the damage state variableω determined by the computational model at the moment of
the actual (determined experimentally) sample failure. They are in the range from 0.954
to 1.035 (except the gray cells), which means that the sample failure prediction error did
not exceed 4.6%. At the same time, it can be seen how much the lines corresponding to
σcreep = 229 MPa and σcreep = 235 MPa in Figure 10b and σcreep = 51 MPa in Figure 10c do
not satisfy the conditionω = 1.
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5. Conclusions

This paper presents the results of experimental creep-rupture tests of aluminum alloy
EN-AW 2024 T3511 at temperatures of 100, 200 and 300 ◦C under uniaxial stress conditions.
The results prove that the fracture process always begins in the sample axis as a result
of the action of maximum principal stresses σ1. Pores are deformed in the direction of
the loading action, and the initiator of the bridge rupturing is usually a coarse precipitate.
Adjacent pores join as a result of the rupturing of successive bridges, enlarging the crack.
It always propagates from the axis toward the outer sample surface. In the case of lower
temperatures and higher load values, the time of normal stress domination is short, and
failure occurs by rapid shearing of the material. Due to higher temperature values and
lower loads, the failure is primarily determined by normal stress.

The results of the experimental tests were the basis of the proposed simple model,
allowing to determine the damage state, in particular the moment of failure of samples
caused by the creep at an elevated temperature. In this model, an increase in the damage
state variable dω was made dependent on the increase in plastic strain and the value
of stress loading the sample. It was assumed that the damage state variable ω is the
sum of two components ω1 and ω2. The first term (ω1) describes the accumulation of
creep damage for stresses in the range above the yield point until a constant force is
established. The second term (ω2) defines the method of adding damage from the moment
of reaching the value of the constant load to material failure. In special cases, i.e., when
the creep load does not exceed the yield point of the material, the first of the said terms
is zero. The proposed model requires the determination of only two material parameters,
which is possible based on the analysis of the results of the experimental creep-rupture
tests at a specific temperature. The advantage of these parameters is their independence
from the loading value, but only from the temperature, which was demonstrated in the
paper. A method of determining these parameters was also proposed, and their values
for three different temperatures were presented. The scope of the model’s applicability
was indicated.

Using the strain–creep time dependencies known from the literature, the damage
state variable can be represented as a function of time. It will allow, for example, the
determination of the time to failure under given loading and temperature conditions.

The results of the experimental tests made it possible to indicate the presence of a
certain transition value of the creep stress σt, a corresponding creep time value tt and strain
at rupture εt. Until these values are reached, the creep time increases with a decrease in
the load value, and the strain value at the time of failure increases simultaneously. After
exceeding these transient values, the decrease in load is accompanied by an increase in the
creep failure time, with a simultaneous decrease in the value of the strain at rupture. This
was the case for 200 and 300 ◦C, where the loading did not exceed the yield point of the
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material at a specific temperature. This is a consequence of the loaded material residing at
an elevated temperature for a sufficiently long time.
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