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Abstract

Background: Interest in the application of machine learning (ML) to the design, conduct, and analysis of clinical trials
has grown, but the evidence base for such applications has not been surveyed. This manuscript reviews the
proceedings of a multi-stakeholder conference to discuss the current and future state of ML for clinical research. Key
areas of clinical trial methodology in which ML holds particular promise and priority areas for further investigation are
presented alongside a narrative review of evidence supporting the use of ML across the clinical trial spectrum.

Results: Conference attendees included stakeholders, such as biomedical and ML researchers, representatives from the
US Food and Drug Administration (FDA), artificial intelligence technology and data analytics companies, non-profit
organizations, patient advocacy groups, and pharmaceutical companies. ML contributions to clinical research were
highlighted in the pre-trial phase, cohort selection and participant management, and data collection and analysis. A
particular focus was paid to the operational and philosophical barriers to ML in clinical research. Peer-reviewed
evidence was noted to be lacking in several areas.

Conclusions: ML holds great promise for improving the efficiency and quality of clinical research, but substantial
barriers remain, the surmounting of which will require addressing significant gaps in evidence.
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Background
Interest in machine learning (ML) for healthcare has
increased rapidly over the last 10 years. Though the aca-
demic discipline of ML has existed since the mid-
twentieth century, improved computing resources, data
availability, novel methods, and increasingly diverse
technical talent have accelerated the application of ML

to healthcare. Much of this attention has focused on
applications of ML in healthcare delivery; however,
applications of ML that facilitate clinical research are
less frequently discussed in the academic and lay press
(Fig. 1). Clinical research is a wide-ranging field, with
preclinical investigation and observational analyses lead-
ing to traditional trials and trials with pragmatic ele-
ments, which in turn spur clinical registries and further
implementation work. While indispensable to improving
healthcare and outcomes, clinical research as currently
conducted is complex, labor intensive, expensive, and
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may be prone to unexpected errors and biases that can,
at times, threaten its successful application, implementa-
tion, and acceptance.
Machine learning has the potential to help improve

the success, generalizability, patient-centeredness, and
efficiency of clinical trials. Various ML approaches are
available for managing large and heterogeneous sources
of data, identifying intricate and occult patterns, and
predicting complex outcomes. As a result, ML has value
to add across the spectrum of clinical trials, from
preclinical drug discovery to pre-trial planning through
study execution to data management and analysis
(Fig. 2). Despite the relative lack of academic and lay
publications focused on ML-enabled clinical research
(vìs-a-vìs the attention to ML in care delivery), the
profusion of established and start-up companies de-
voting significant resources to the area indicates a
high level of interest in, and burgeoning attempts to
make use of, ML application to clinical research, and
specifically clinical trials.
Key ML terms and principles may be found in Table 1.

Many of the ML applications discussed in this article
rely on deep neural networks, a subtype of ML in which
interactions between multiple (sometimes many) hidden
layers of the mathematical model enable complex, high-
dimensional tasks, such as natural language processing,
optical character recognition, and unsupervised learning.
In January 2020, a diverse group of stakeholders, includ-
ing leading biomedical and ML researchers, along with
representatives from the US Food and Drug Administra-
tion (FDA), artificial intelligence technology and data an-
alytics companies, non-profit organizations, patient

advocacy groups, and pharmaceutical companies con-
vened in Washington, DC, to discuss the role of ML in
clinical research. In the setting of relatively scarce pub-
lished data about ML application to clinical research, the
attendees at this meeting offered significant personal,
institutional, corporate, and regulatory experience per-
taining to ML for clinical research. Attendees gave pre-
sentations in their areas of expertise, and effort was
made to invite talks covering the entire spectrum of clin-
ical research with presenters from multiple stakeholder
groups for each topic. Subjects about which presenta-
tions were elicited in advance were intentionally broad
and included current and planned applications of ML to
clinical research, guidelines for the successful integration
of ML into clinical research, and approaches to over-
coming the barriers to implementation. Regular discus-
sion periods generated additional areas of interest and
concern and were moderated jointly by experts in ML,
clinical research, and patient care. During the discussion
periods, attendees focused on current issues in ML, in-
cluding data biases, logistics of prospective validation,
and the ethical issues associated with machines making
decisions in a research context. This article provides a
summary of the conference proceedings, outlining ways
in which ML is currently being used for various clinical
research applications in addition to possible future op-
portunities. It was generated through a collaborative
writing process in which drafts were iterated through
continued debate about unresolved issues from the con-
ference itself. For many of the topics covered, no con-
sensus about best practices was reached, and a diversity
of opinions is conveyed in those instances. This article

Fig. 1 The number of clinical practice–related publications was determined by searching “(“machine learning” or “artificial intelligence”) and
(“healthcare”).” The number of healthcare-related publications was determined by searching “(“machine learning” or “artificial intelligence”) and
(“healthcare”)”, and the number of clinical research–related publications was determined by searching “(“machine learning” or “artificial
intelligence”) and (“clinical research”).”
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also serves as a call for collaboration between clinical re-
searchers, ML experts, and other stakeholders from aca-
demia and industry in order to overcome the significant
remaining barriers to its use, helping ML in clinical re-
search to best serve all stakeholders.

The role of ML in preclinical drug discovery and
development research
Successful clinical trials require significant preclinical in-
vestigation and planning, during which promising candi-
date molecules and targets are identified and the
investigational strategy to achieve regulatory approval is
defined. Missteps in this phase can delay the identifica-
tion of promising drugs or doom clinical trials to even-
tual failure. ML can help researchers leverage previous

and ongoing research to decrease the inefficiencies of
the preclinical process.

Drug target identification, candidate molecule
generation, and mechanism elucidation
ML can streamline the process and increase the success
of drug target identification and candidate molecule gen-
eration through synthesis of massive amounts of existing
research, elucidation of drug mechanisms, and predictive
modeling of protein structures and future drug target in-
teractions [1]. Fauqueur et al. demonstrated the ability
to identify specific types of gene-disease relationships
from large databases even when relevant data-points
were sparse [2], while Jia et al. were able to extract drug-
gene-mutation interactions from the text of scientific
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Fig. 2 Areas of machine learning contribution to clinical research. Machine learning has the potential to contribute to clinical research through
increasing the power and efficiency of pre-trial basic/translational research and enhancing the planning, conduct, and analysis of clinical trials
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manuscripts [3]. This work, along with other efforts to
render extremely large amounts of biomedical data in-
terpretable by humans [4, 5], helps researchers leverage
and avoid duplicating prior work in order to target more
promising avenues for further investigation. Once prom-
ising areas of investigation have been identified, ML also
has a role to play in the generation of possible candidate
molecules, for instance through use of a gated graph
neural network to optimize molecules within the con-
straints of a target biological system [6]. In situations in
which a drug candidate performs differently in vivo than
expected, ML can synthesize and analyze enormous
amounts of data to better elucidate the drug’s mechan-
ism, as Madhukar et al. showed by applying a Bayesian
ML approach to an anti-cancer compound [7]. This type
of work helps increase the chance that drugs are tested
in populations most likely to benefit from them. In the
case of the drug evaluated by Madhukar et al., a better
understanding of its mechanism facilitated new clinical
trials in a cancer type (pheochromocytoma) more likely
to respond to the drug (rather than prostate and endo-
metrial cancers, among others).
Interpretation of large amounts of highly dimensional

data generated during in vitro translational research (in-
cluding benchtop biological, chemical, and biochemical
investigation) informs the choice of certain next steps
over others, but this process of interpretation and inte-
gration is complex and prone to bias and error. Aspuru-
Guzik has led several successful efforts to use
experimental output as input for autonomous ML-
powered laboratories, integrating ML into the planning,
interpretation, and synthesis phases of drug development
[8, 9]. More recently, products of ML-enabled drug de-
velopment have approached human testing. For

example, an obsessive-compulsive personality disorder
drug purportedly developed using AI-based methods is
scheduled to begin phase I trials this year. The lay press
reports that the drug was selected from among only 250
candidates and developed in only 12 months compared
with the 2000+ candidates and nearly five years of devel-
opment more typically required [10]. However, due to
the lack of peer-reviewed publications about the devel-
opment of this drug, the details of its development can-
not be confirmed or leveraged for future work.

Clinical study protocol optimization
As therapeutic compounds approach human trials, ML
has a role to play in maximizing the success and effi-
ciency of trials during the planning phase through appli-
cation of simulation techniques to large amounts of data
from prior trials in order to facilitate trial protocol de-
velopment. For instance, study simulation may optimize
the choice of treatment regimens for testing, as shown
in a reinforcement learning approaches to Alzheimer’s
disease and to non-small cell lung cancer [11, 12]. A
start-up company called Trials.AI allows investigators to
upload protocols and uses natural language processing
to identify potential pitfalls and barriers to successful
trial completion (such as inclusion/exclusion criteria or
outcome measures) [13]. Unfortunately, performance of
these example models has not been evaluated in a peer-
reviewed manner, and they therefore offer only concep-
tual promise that ML in research planning can help en-
sure that a given trial design is optimally suited to the
stakeholders’ needs.
In summary, there are clear opportunities to use ML

to improve the efficiency and yield of preclinical investi-
gation and clinical trial planning. However, most peer-

Table 1 Key terms related to machine learning in clinical research

Term Definition

Machine learning (ML) A mathematical model that is able to improve its performance on a task by exposure to data.

Deep neural networks ML models with one or more latent (hidden) layers allowing for the generation of non-linear output and complex inter-
actions between layers. Deep neural networks power “deep learning,” which enables tasks, such as image recognition,
natural language processing (NLP), and complex predictions.
Subtypes of deep neural networks are classified based on the relationship between hidden layers and include
convolutional, recurrent, gated graph, and generative adversarial neural networks.

Training, test, and
validation sets

Training set: Dataset from which the model learns the optimal parameters to accomplish the task.
Test set: Dataset on which the performance of a trained, parameterized model is evaluated.
Validation set: Dataset that is used to evaluate the model’s performance during training. Differs from a test set in that it
is used during training to establish hyperparameters of the model.

Supervised learning A subset of ML in which the outcomes to be learned by the model (“labels”) are provided in the training set. For
example, teaching a model to identify breast cancer patients for study inclusion would require training the model on a
training set containing labeled patients with and without breast cancer prior to validating that model on a new set of
unlabeled patients with and without breast cancer.

Unsupervised learning A subset of ML in which there are no pre-specified labels for the model to learn to predict; instead, models identify hid-
den patterns in the data.

Natural language
processing (NLP)

A form of artificial intelligence that enables the understanding of language. Much modern NLP uses deep neural
networks in which words and their relationships to each other are encoded in a set of highly dimensional vectors,
enabling the model to parse the meaning of new pieces of text it is presented with.

Weissler et al. Trials          (2021) 22:537 Page 4 of 15



reviewed reports of ML use in this capacity focus on
preclinical research and development rather than clinical
trial planning. This may be due to the greater availability
of suitable large, highly dimensional datasets in transla-
tional settings in addition to greater potential costs,
risks, and regulatory hurdles associated with ML use in
clinical trial settings. Peer-reviewed evidence of ML ap-
plication to clinical trial planning is needed in order to
overcome these hurdles.

The role of ML in clinical trial participant
management
Clinical trial participant management includes the selec-
tion of target patient populations, patient recruiting, and
participant retention. Unfortunately, despite significant
resources generally being devoted to participant manage-
ment, including time, planning, and trial coordinator ef-
fort, patient drop-out and non-adherence often cause
studies to exceed allowable time or cost or fail to pro-
duce useable data. In fact, it has been estimated that be-
tween 33.6 and 52.4% of phase 1–3 clinical trials that
support drug development fail to proceed to the next
trial phase, leading to a 13.8% overall chance that a drug
tested in phase I reaches approval [14]. ML approaches
can facilitate more efficient and fair participant identifi-
cation, recruitment, and retention.

Selection of patient populations for investigation
Improved selection of specific patient populations for
trials may decrease the sample size required to observe a
significant effect. Put another way, improvements to pa-
tient population selection may decrease the number of
patients exposed to interventions from which they are
unlikely to derive benefit. This area remains challenging
as prior work has discovered that for every 1 intended
response, there are 3 to 24 non-responders for the top
medications, resulting in a large number of patients who
receive harmful side effects over the intended effect [15].
In addition to facilitating patient population selection
through the rapid analysis of large databases of prior re-
search (as discussed above), unsupervised ML of patient
populations can identify patterns in patient features that
can be used to select patient phenotypes that are most
likely to benefit from the proposed drug or intervention
[16]. Unstructured data is critical to phenotyping and
identifying representative cohorts, indicating that con-
sidering additional data for patients is a crucial step to-
ward identifying robust, representative cohorts [17]. For
example, unsupervised learning of electronic health rec-
ord (EHR) and genetic data from 11,210 patients eluci-
dated three different subtypes of diabetes mellitus type
II with distinct phenotypic expressions, each of which
may have a different need for and response to a candi-
date therapy [18]. Bullfrog AI is a start-up that has

sought to capitalize on the promise of targeted patient
population selection, analyzing clinical trial data sets “to
predict which patients will respond to a particular ther-
apy in development, thereby improving inclusion/ex-
clusion criteria and ensuring primary study outcomes
are achieved” [19]. Though appealing in principle, this
unsupported claim conflates outcome prediction
(which is unlikely to succeed and runs counter to the
intent of clinical research) with cohort selection
(which would ideally identify patients on the basis of
therapeutically relevant subtypes). Successfully identi-
fying more selective patient populations does carry
potential pitfalls: first, trials may be less likely to gen-
erate important negative data about subgroups that
would not benefit from the intervention; and second,
trials may miss subgroups who would have benefitted
from the intervention, but whom the ML model
missed. These potential pitfalls may be more likely to
affect rural, remote, or underserved patient subgroups
with more limited healthcare interactions. These two
pitfalls carry possible implications for drug/device de-
velopment regulatory approval and commercialization,
as pivotal trials in more highly selected, and less rep-
resentative, patient subgroups may require balancing
the benefits of greater trial success with the draw-
backs of more limited indications for drug/device use.

Participant identification and recruitment
Once the specific cohort has been selected, natural
language processing (NLP) has shown promise in
identification of patients matching the desired pheno-
type, which is otherwise a labor-intensive process. For
instance, a cross-modal inference learning model algo-
rithm jointly encodes enrollment criteria (text) and
patient records (tabular data) into a shared latent
space, matching patients to trials using EHR data in a
significantly more efficient manner than other ma-
chine learning approaches [20]. Some commercial en-
tities offer similar services, including Mendel.AI and
Deep6AI, though peer-reviewed evidence of their de-
velopment and performance metrics is unavailable,
raising questions about how these approaches perform
[21, 22]. A potential opportunity of this approach is
that it allows trialists to avoid relying on the com-
pleteness of structured data fields for participant
identification, which has been shown to significantly
bias trial cohorts [23, 24]. Unfortunately, to the extent
that novel ML approaches to patient identification
rely on EHRs, biases in the EHR data may affect the
algorithms’ performances, leading to replacement of
one source of bias (underlying the completeness of
structured data) with another (underlying the gener-
ation of EHR documentation).
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Participant retention, monitoring, and protocol adherence
Two broad approaches are available to improve partici-
pant retention and protocol adherence using ML-assisted
methods. The first is to use ML to collect and analyze
large amounts of data to identify and intervene upon par-
ticipants at high risk of study non-compliance. The second
approach is to use ML to decrease participant study bur-
den and thereby improve participants’ experiences.
AiCure is a commercial entity focused on protocol ad-

herence using facial recognition technology to ensure
patients take the assigned medication. AiCure was dem-
onstrated to be more effective than a modified directly
observed therapy strategy at detecting and improving pa-
tient adherence in both a schizophrenia trial and an
anticoagulation trial among patients with a history of
recent stroke [25, 26]. Unfortunately, AiCure’s model
development and validation process has not been pub-
lished, heightening concerns that it may perform differ-
ently in different patient subgroups, as has been
demonstrated in other areas of computer vision [27].
Furthermore, these approaches, though promising, may
encounter a potential barrier to implementation because
their perceived invasiveness of privacy may not be ac-
ceptable to all research participants and because select-
ing patients with access to and comfort with the
necessary devices and technology may introduce bias.
The other approach to improving participant retention

uses ML to reduce the trial burden for participants using
passive data collection techniques (methods will be dis-
cussed further in the “Data collection and management”
section) and by extracting more information from avail-
able data generated during clinical practice and/or by
study activities. Information created during routine clin-
ical care can be processed using ML methods to yield
data for investigational purposes. For instance, genera-
tive adversarial network modeling of slides stained with
hematoxylin and eosin in the standard clinical fashion
can detect which patients require more intensive and ex-
pensive multiplexed imaging, rather than subjecting all
participants to that added burden [28]. NLP can also fa-
cilitate repurposing of clinical documentation for study
use, such as auto-populating study case report forms,
often through reliance on the Unified Medical Language
System [29, 30]. Patients also create valuable content
outside of the clinical trial context that ML can process
into study data to reduce the burden of data collection
for trial participants, such as natural language processing
of social media posts to identify serious drug reactions
with high fidelity [31]. Patient data from wearable de-
vices have proven to be able to correlate participant ac-
tivity with the International Parkinson and Movement
Disorders Society Unified Parkinson’s Disease Rating
Scale, distinguish between neuropsychiatric symptom-
atology patterns, and identify patient falls [32–34].

In summary, although ML and NLP have shown
promise across a broad range of activities related to im-
proving the management of participants in clinical trials,
the implications of these applications of ML/NLP in re-
gard to clinical trial quality and participant experience
are unclear. Studies comparing different approaches to
participant management are a necessary next step to-
ward identifying best practices.

Data collection and management
The use of ML in clinical trials can change the data col-
lection, management, and analysis techniques required.
However, ML methods can help address some of the dif-
ficulties associated with missing data and collecting real-
world data.

Collection, processing, and management of data from
wearable and other smart devices
Patient-generated health data from wearable and other
mobile/electronic devices can supplement or even re-
place study visits and their associated traditional data
collection in certain situations. Wearables and other
devices may enable the validation and use of new,
patient-centered biomarkers. Developing new “digital
biomarkers” from the data collected by a mobile device’s
various sensors (such as cameras, audio recorders, accel-
erometers, and photoplethysmograms) often requires
ML processing to derive actionable insights because the
data yielded from these devices can be sparse as well as
variable in quality, availability, and synchronicity. Using
the relatively large and complex data yielded by wear-
ables and other devices for research purposes therefore
requires specialized data collection, storage, validation,
and analysis techniques [34–37]. For instance, a deep
neural network was used to process input from a mobile
single-lead electrocardiogram platform [38], a random
forest model was used to process audio output from pa-
tients with Parkinson’s disease [39], and a recurrent
neural network was used to process accelerometer data
from patients with atopic dermatitis [40]. These novel
digital biomarkers may facilitate the efficient conduct
and patient-centeredness of clinical trials, but this ap-
proach carries potential pitfalls. As has been shown to
occur with an electrocardiogram classification model,
ML processing of wearable sensor output to derive re-
search endpoints introduces the possibility of corrupt re-
sults if the ML model is subverted by intentionally or
unintentionally modified sensor data (though this risk
exists with any data regardless of processing technique)
[41]. Because of the complexity involved, software
intended to diagnose, monitor, or treat medical condi-
tions is regulated by the FDA, and the FDA has pro-
cesses and guidance related to biomarker validation and
qualification for use in regulatory trials.
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Beyond the development of novel digital biomarkers,
other device-related opportunities in patient centricity
include the ability to export data and analytics back to
participants to facilitate education and insight. Barriers
to implementation of ML processing of device data in-
clude better defining how previously validated clinical
endpoints and patient-centric digital biomarkers overlap
as well as understanding participant opinions about priv-
acy in relation to the sharing and use of device data.
FDA approval of novel biomarkers will also be required.
Researchers interested in leveraging the power of these
devices must explain to patients their risks and benefits
both for ethical and privacy-related reasons and because
implementation without addressing participant concerns
has the potential to worsen participant recruitment and
retention [42].

Study data collection, verification, and surveillance
An appealing application of ML, specifically NLP, to
study data management is to automate data collection
into case report forms, decreasing the time, expense, and
potential for error associated with human data extrac-
tion, whether in prospective trials or retrospective re-
views. Though this use requires overcoming variable
data structures and provenances, it has shown early
promise in cancer [43, 44], epilepsy [30], and depression
[45], among other areas [29]. Regardless of how data
have been collected, ML can power risk-based monitor-
ing approaches to clinical trial surveillance, enabling the
prevention and/or early detection of site failure, fraud,
and data inconsistencies or incompleteness that may
delay database lock and subsequent analysis. For in-
stance, even when humans collect data into case report
forms (often transmitted in PDF form), the adequacy of
the collected data for outcome ascertainment can be
assessed by combining optical character recognition with
NLP [46]. Suspicious data patterns in clinical trials, or
incorrect data in observational studies, can be identified
by applying auto-encoders to distinguish plausible from
implausible data [47].

Endpoint identification, adjudication, and detection of
safety signals
ML can also be applied to data processing. Semi-
automated endpoint identification and adjudication of-
fers the potential to reduce time, cost, and complexity
compared with the current approach of manual adjudi-
cation of events by a committee of clinicians, be-
cause while endpoint adjudication has traditionally been
a labor-intensive process, sorting and classifying events
lies well within the capabilities of ML. For instance,
IQVIA Inc. has described the ability to automatically
process some adverse events related to drug therapies
using a combination of optical character recognition and

NLP, though this technique has not been described in
peer-reviewed publications [48]. A potential barrier to
implementation of semi-automated event adjudication is
that endpoint definitions and the data required to sup-
port them often change from trial to trial, which theoret-
ically requires re-training a classification model for each
new trial (which is not a viable approach). More re-
cently, efforts have been made to standardize outcomes
in the field of cardiovascular research, though not all tri-
als adhere to these outcomes. Trial data have not been
pooled to facilitate model training for cardiovascular
endpoints, and most fields have not yet undertaken simi-
lar efforts [49]. Further efforts in this area will require
true consensus about event definitions, use of consensus
definitions, and a willingness of stakeholders to share ad-
equate data for model training from across multiple
trials.

Approaches to missing data
ML can be used in several different ways to address the
problem of missing data, across multiple causes for data
missingness, data-related assumptions and goals, and
data collection and intended analytic methods. Possible
goals may be to impute specific estimates of the missing
covariate values directly or to average over many pos-
sible values from some learned distribution to compute
other quantities of interest. While the latest methods are
evolving and more systematic comparisons are needed,
some early evidence suggests more complex ML
methods may not always be of benefit over simpler im-
putation methods, such as population mean imputation
[50]. Applications of missing value techniques include
analysis of sparse datasets, such as registries, EHR data,
ergonomic data, and data from wearable devices [51–
54]. Although these techniques can help mitigate the
negative effects of data missingness or scarcity, over-
reliance on data augmentation methods may lead to the
development of models with limited applicability to new,
imperfect datasets. Therefore, a more meaningful ap-
proach would be to apply ML to improve data collection
during the conduct of research itself.

Data analysis
Data collected in clinical trials, registries, and clinical
practices are fertile sources for hypothesis generation,
risk modeling, and counterfactual simulation, and ML is
well suited for these efforts. For instance, unsupervised
learning can identify phenotypic clusters in real-world
data that can be further explored in clinical trials [55,
56]. Furthermore, ML can potentially improve the ubi-
quitous practice of secondary trial analyses by more
powerfully identifying treatment heterogeneity while still
providing some protection (although incomplete) against
false-positive discoveries, uncovering more promising
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avenues for future study [57, 58]. Additionally, ML is ef-
fectively used to generate risk predictions in retrospect-
ive datasets that can subsequently be prospectively
validated. For instance, using a random forest model in
COMPANION trial data, researchers were able to im-
prove discrimination between patients who would do
better or worse following cardiac resynchronization ther-
apy compared with a multivariable logistic regression
[59]. This demonstrates the ability of random forests to
model interactions between features that are not cap-
tured by simpler models.
While predictive modeling is an important and neces-

sary task, the derivation of real-world evidence from
real-world data (i.e., making causal inferences) remains a
highly sought-after (and very difficult) goal toward which
ML offers some promise. Proposed techniques include
optimal discriminant analysis, targeted maximum likeli-
hood estimation, and ML-powered propensity score
weighting [60–64]. A particularly intriguing technique
involves use of ML to enable counterfactual policy esti-
mation, in which existing data can be used to make pre-
dictions about outcomes under circumstances that do
not yet, or could not, exist [65]. For instance, trees of
predictors can offer survival estimates for heart failure
patients under the conditions of receiving or not receiv-
ing a heart transplant and reinforcement learning sug-
gests improved treatment policies on the basis of prior
sub-optimal treatments and outcomes [66, 67]. Unfortu-
nately, major barriers to implementation are a lack of
interoperability between EHR data structures and
fraught data sharing agreements that limit the amount
of data available for model training [68].
In summary, there are many effective ML ap-

proaches to clinical trial data management, process-
ing, and analysis but fewer techniques for improving
the quality of data as they are generated and col-
lected. As data availability and quality are the founda-
tions of ML approaches, the conduct of high-quality
trials remains of utmost importance to enable higher-
level ML processing.

Barriers to the integration of ML techniques in
clinical research
Both operational and philosophical barriers limit the
harnessing of the full potential of ML for clinical re-
search. ML in clinical research is a high-risk proposition
due to the potential to propagate errors or biases
through multiple research contexts and into the corpus
of biomedical evidence due to the use of flawed models;
however, as previously discussed, ML offers promising
ways to improve the quality and efficiency of clinical re-
search for patients and other stakeholders. Both the op-
erational and philosophical barriers to ML integration
require attention at each stage of model development

and use to overcome hurdles while maximizing stake-
holder confidence in the process and its results. Oper-
ational barriers to ML integration in clinical research
can aggravate and reinforce philosophical concerns if
not managed in a robust and transparent manner. For
instance, inadequate training data and poor model cali-
bration can lead to racial bias in model application, such
as has been noted in ML for melanoma identification
[27]. Stakeholders, including regulatory agencies, fund-
ing sources, researchers, participants, and industry part-
ners, must collaborate to fully integrate ML into clinical
research. The wider ML community espouses “FAT
(fairness, accountability, and transparency) ML” princi-
ples that also include responsibility, explainability, accur-
acy, auditability, and fairness and that should be applied
to ML in clinical research, as discussed further.

Operational barriers to ML in clinical research
The development of ML algorithms and their deploy-
ment for clinical research use is a multi-stage, multi-
disciplinary process. The first step is to assemble a team
with the clinical and ML domain expertise necessary for
success. Failing to assemble such a team and to commu-
nicate openly within the team increases the risks of ei-
ther developing a model that distorts clinical reality or
using an ML technique that is inappropriate to the avail-
able data and research question at hand [69]. For in-
stance, a model to predict mortality created without any
clinical team members may identify intubation as pre-
dictive of mortality, which is certainly true but likely
clinically useless. Collaboration is necessary and valuable
for both the data science and clinical science compo-
nents of the team but may require additional up-front,
cross-disciplinary training, transparency, and trust to
fully operationalize.
The choice and availability of data for algorithm devel-

opment and validation is both a stubborn and highly sig-
nificant barrier to ML integration into clinical research,
though its full discussion is outside the scope of this
manuscript. Many recent ML models, especially deep
neural networks, require large amounts of data to train
and validate. To ensure generalizability beyond the train-
ing data set, developers should use multiple data sources
during this process because a number of documented
cases demonstrated that algorithms performed signifi-
cantly differently in validation data sets compared with
training data sets [70]. Because data used in clinical re-
search are often patient related and generated by institu-
tions (in the case of EHR data) or companies (in the
case of clinical trial data) at a significant cost, owners of
data may be reluctant to share. Even when they are will-
ing to share data, variation in data collection and storage
techniques can hamper interoperability. Large datasets,
such as MIMIC, eICU, and the UK Biobank, are good

Weissler et al. Trials          (2021) 22:537 Page 8 of 15



resources when other real-world data cannot be ob-
tained [71–73], but any single data source is inadequate
to yield a model that is ready for use, especially because
training on retrospective data (such as MIMIC and UK
Biobank) does not always translate well to prospective
applications. For example, Nestor et al. demonstrated
the importance of considering year of care in MIMIC
due to temporal drift, and Gong et al. demonstrated
methods for feature aggregation across large temporal
changes, such as EHR transitions [70, 74]. Furthermore,
certain disease states and patient types are less likely to
be well represented in data generated for the purpose of
clinical care. For example, while MIMIC is widely used
because of its public availability, models trained on its
ICU population are unlikely to generalize to many appli-
cations outside critical care. These issues with data avail-
ability and quality are intimately associated with
problems surrounding reproducibility and replicability
[75], which are more difficult to achieve in ML-driven
clinical research for a number of reasons in addition to
data availability, including the role of randomness in
many ML techniques and the computational expense of
model replication. The ongoing difficulties with reprodu-
cibility and replicability of ML-driven clinical research
threaten to undermine stakeholder confidence in ML in-
tegration into clinical research.

Philosophical barriers to ML in clinical research
Explainability refers to the concept that the processes
underlying algorithmic output should be explainable to
algorithm users in terms they understand. A large
amount of research has been devoted to techniques to
accomplish this, including attention scores and saliency
maps, but concerns about the performance and suitabil-
ity of these techniques persist [76–79]. Though an ap-
pealing principle, a significant debate exists about
whether the concept of explainability interferes unneces-
sarily with the ability of ML to positively contribute to
clinical care and research. Explainability may lead re-
searchers to incorrectly trust fundamentally flawed
models. Proponents of this argument instead champion
trustworthiness. Advocates of trustworthiness are of the
opinion that many aspects of clinical medicine (and of
clinical research)—such as laboratory assays, the
complete mechanisms of certain medications, and statis-
tical tests—that are not well or widely understood con-
tinue to be used because they have been shown to work
reliably and well, even if how or why remains opaque to
many end users [80]. This philosophical barrier has
more recently become an operational barrier as well
with the passage of the European Union’s General Data
Protection Regulation, which requires that automated
decision-making algorithms provide “meaningful infor-
mation about the logic involved.”

Part of the focus on explainability and trustworthiness
is due to a desire to understand whether ML algorithms
are introducing bias into model output, as was notably
shown to be the case in a highly publicized series of Pro-
Publica articles about recidivism prediction algorithms
[81]. Bias in clinical research–focused algorithms has the
potential to be equally devastating, for instance, by the-
oretically suggesting non-representative study cohorts
on the basis of a lower predicted participant drop-out.

Guidelines toward overcoming operational and
philosophical barriers to ML in clinical research
Because the operational problems previously detailed can
potentiate the philosophical tangles of ML use in clinical
research, many of the ways to overcome these hurdles
overlap. The first and foremost approach to many of these
issues includes data provenance, quality, and access. The
open-access data sources previously discussed (MIMIC,
UK Biobank) are good places to start, but inadequate on
their own. Enhanced access to data and the technical ex-
pertise required to analyze it is needed. Attempts to ren-
der health data interoperable have been ongoing for
decades, yielding data standard development initiatives
and systems, such as the PCORnet Common Data Model
[82], FHIR [83], i2b2 [84], and OMOP [85]. Recently,
regulation requiring health data interoperability through
use of core data classes and elements has been enacted by
the US Department of Health and Human Services and
Centers for Medicare and Medicaid Services on the basis
of the 21st Century Cures Act [85, 86]. Where bar-
riers to data sharing persist, other options to improve
the amount of data available include federated data
and cloud-based data access, in which developers can
train and validate models on data that they do not
own or directly interact with [87–89]. This has be-
come increasingly common in certain fields, such as
genomics and informatics, as evidenced by large con-
sortia, such as eMERGE and OHDSI [90, 91].
Recently, a group of European universities and pharma-

ceutical companies have joined to create “MELODDY,” in
which large amounts of drug development data will be
shared while protecting companies’ proprietary informa-
tion, though no academic publications have yet been pro-
duced [91]. “Challenges” in which teams compete to
accomplish ML tasks often yield useful models, such as
early sepsis prediction or more complete characterization
of breast cancer cell lines, which can then be distributed
to participating health institutions for validation in their
local datasets [92–95].
Algorithm validation can both help ensure that ML

models are appropriate for their intended clinical re-
search use while also increasing stakeholder confidence
in the use of ML in clinical research. Though the spe-
cifics continue to be debated, published best practices
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for specific use cases are emerging [96]; recent sugges-
tions to standardize such reporting in a one-page “model
card” are notable [97]. For instance, possible model
characteristics that could be reported include the
intended use cohort, intended outcome of interest, re-
quired input data structure and necessary transforma-
tions, model type and structure, training cohort
specifics, consequences of model application outside of
intended use, and algorithm management of uncertainty.
Performance metrics that are useful for algorithm evalu-
ation in clinical contexts include receiver-operating
characteristic and precision-recall curves, calibration, net
benefit, and c-statistic for benefit [92]. Depending on the
intended use case, the most appropriate metrics to re-
port or to optimize will differ. For instance, a model
intended to identify patients at high risk for protocol
non-adherence may have a higher tolerance for false-
positives than one intended to simulate study drug
dosages for trial planning. Consensus decisions about
obligatory metrics for certain model structures and use
cases are required to ensure that models with similar
intended uses can be compared with one another. Devel-
opers will need to specify how often these metrics
should be re-evaluated to assess for model drift. Ideally,
evaluation of high-stakes clinical research models should
be overseen by a neutral third party, such as a regulatory
agency.
To foster trustworthiness even in the absence of

explainability, it is essential that the model development
and validation processes be transparent, including the
reporting of model uncertainty. This may allow more ad-
vanced consumers to evaluate the model from a tech-
nical standpoint while at the very least helping less-
advanced users to identify situations in which a model’s
output should be approached with caution. For instance,
understanding the source, structure, and drawbacks of
the data used for model training and validation will pro-
vide insight into how the model’s output might be af-
fected by the quality of the underlying data. However,
trustworthiness may be built by running ML models in
clinical research contexts in parallel with traditional re-
search methods to show that the ML methods perform
at least as well as traditional approaches. Though the
importance of these principles may appear self-evident,
the large number of ML models being used commer-
cially for clinical research without reporting of the
models’ development and performance characteristics
suggests more work is needed to align stakeholders in
this regard. Even while writing this manuscript, in which
peer-reviewed publications were used whenever avail-
able, we encountered many cases in which the only “evi-
dence” supporting a model’s performance was a
commercial entity’s promotional material. In several
other instances, the peer-reviewed articles available to

support a commercial model’s performance offered no
information at all about the model’s development or val-
idation, which, as discussed earlier, is crucial to engen-
dering trustworthiness. Another concerning aspect of
commercial ML-enabled clinical research solutions is
private companies’ and health care systems’ practice of
training, validating, and applying models using patient
data under the guise of quality improvement initiatives,
thereby avoiding the need for ethical/institutional review
board approval or patient consent [93]. This practice
puts the entire field of ML development at risk of gener-
ating biased models and/or losing stakeholder buy-in (as
occurred in dramatic fashion with the UK’s “Care.data”
initiative) [94] and illustrates the need to build a more
reasonable path toward ethical data sharing and more
stringent processes surrounding model development and
validation.
Although no FDA guidance is yet available specific to

ML in clinical research, guidance on ML in clinical care
and commentary from FDA representatives suggest sev-
eral possible features of a regulatory approach to ML in
clinical research. For instance, the FDA’s proposed ML-
specific modifications to the “Software as a Medical De-
vice” Regulations (SaMD) draw a distinction between
fixed algorithms that were trained using ML techniques
but frozen prior to deployment and those that continue
to learn “in the wild.” These latter algorithms may more
powerfully take advantage of the large amounts of data
afforded by ongoing use but also pose additional risks of
model drift with the potential need for iterative updates
to the algorithm. In particular, model drift should often
be expected because models that are incorporated into
the decision-making process will inherently change the
data they are exposed to in the future. The proposed
ML-specific modifications to SaMD guidance outline an
institution or organization-level approval pathway that
would facilitate these ongoing algorithm updates within
pre-approved boundaries (Fig. 3).
The optimal frequency of model re-evaluation by the

FDA has yet to be determined (and may vary based off
the model type, training set, and intended use), but
clearly some form of recurrent review will be needed,
prompted either by a certain time period, certain events
(for instance, a global pandemic), or both. Discussion
with representatives from the FDA indicates that ML in
clinical research is viewed as a potentially high-risk use
case due to the potential to propagate errors or biases
through the algorithm into research studies; however, its
potential opportunities were widely appreciated. Until
formalized guidance about ML in clinical research is re-
leased, the FDA has clearly stated a willingness to work
with sponsors and stakeholders on a case-by-case basis
to determine the appropriate role of ML in research
intended to support a regulatory application. However,
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this regulatory uncertainty could potentially stifle spon-
sors’ and stakeholders’ willingness to invest in ML for
clinical research until guidance is drafted. This, in turn,
may require additional work at a legislative level to pro-
vide a framework for further FDA guidance.
Concerns of bias are central to clinical research even

when ML is not involved: clinical research and care have
long histories of gender, racial, and socioeconomic bias
[95, 96]. The ability of ML to potentiate and perpetuate
bias in clinical research, possibly without study teams’
awareness, must be actively managed. To the extent that
bias can be identified, it can often be addressed and re-
duced; a worst-case scenario is application of a model
with unknown bias in a new cohort with high-stakes re-
sults. As with much of ML in clinical research, data
quality and quantity are critical in combating bias. No
single perfect dataset exists, especially as models trained
on real-world data will replicate the intentional or unin-
tentional biases of the clinicians and researchers who
generated those data [97]. Therefore, training models on
more independent and diverse datasets decreases the
likelihood of occult bias [98]. Additionally, bias reduc-
tion can be approached through the model construction
itself, such as by de-biasing word embeddings and using
counterfactual fairness [99–102]. Clinical research teams
may pre-specify certain subgroups of interest in which
the algorithm must perform equally well [103]. Finally,
while ML raises the specter of reinforcing and more effi-
ciently operationalizing historical discrimination, ML
may help us de-bias clinical research and care by

monitoring and drawing attention to bias [98]. Bias re-
duction is an area of ML in clinical research in which
multi-disciplinary collaboration is especially vital and
powerful: clinical scientists may be able to share per-
spective on long-standing biases in their domains of ex-
pertise, while more diverse teams may offer innovative
insights into de-biasing ML models.

Conclusion
While traditional double-blinded, randomized, con-
trolled clinical trials with their associated statistical
methodologies remain the gold standard for biomedical
evidence generation, augmentation with ML techniques
offers the potential to improve the success and efficiency
of clinical research, increasing its positive impact for all
stakeholders. To the extent that ML-enabled clinical re-
search can improve the efficiency and quality of biomed-
ical evidence, it may save human lives and reduce
human suffering, introducing an ethical imperative to
explore this possibility. Realizing this potential will re-
quire overcoming issues with data structure and access,
definitions of outcomes, transparency of development
and validation processes, objectivity of certification, and
the possibility of bias. The potential applications of ML
to clinical research currently outstrip its actual use, both
because few prospective studies are available about the
relative effectiveness of ML versus traditional approaches
and because change requires time, energy, and cooper-
ation. Stakeholder willingness to integrate ML into clin-
ical research relies in part on robust responses to issues

Fig. 3 FDA-proposed workflow to regulate machine learning algorithms under the Software as a Medical Device framework. From: Proposed
regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)-based software as a medical device: Discussion paper
and request for feedback. https://www.fda.gov/media/122535/download. Accessed 17 May 2020
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of data provenance, bias, and validation as well as confi-
dence in the regulatory structure surrounding ML in
clinical research. The use of ML algorithms whose devel-
opment has been opaque and without peer-reviewed
publication must be addressed. The attendees of the
January 2020 conference on ML in clinical research rep-
resent a broad swath of stakeholders with differing prior-
ities and clinical research–related challenges, but all in
attendance agreed that communication and collabor-
ation are essential to implementation of this promising
technology. Transparent discussion about the potential
benefits and drawbacks of ML for clinical research and
the sharing of best practices must continue not only in
the academic community but in the lay press and gov-
ernment as well to ensure that ML in clinical research is
applied in a fair, ethical, and open manner that is accept-
able to all.
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