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Background: Originally designed for computerized image analysis, ThinPrep is underutilized in that role outside gyne-
cological cytology. It can be used to address the inter/intra-observer variability in the evaluation of thyroid fine needle
aspiration (TFNA) biopsy and help pathologists to gain additional insight into thyroid cytomorphology.
Methods:We designed and validated a feature engineering and supervised machine learning-based digital image anal-
ysis method using ImageJ and Python scikit-learn. The method was trained and validated from 400 low power (100x)
and 400 high power (400x) images generated from 40 TFNA cases.
Result: The area under the curve (AUC) for receiver operating characteristics (ROC) is 0.75 (0.74–0.82) for model
based from low-power images and 0.74 (0.69–0.79) for the model based from high-power images. Cytomorphologic
features were synthesized using feature engineering and when performed in isolation, they achieved AUC of 0.71
(0.64–0.77) for chromatin, 0.70 (0.64–0.73) for cellularity, 0.65 (0.60–0.69) for cytoarchitecture, 0.57 (0.51–0.61)
for nuclear size, and 0.63 (0.57–0.68) for nuclear shape.
Conclusion: Our study proves that ThinPrep is an excellent preparation method for digital image analysis of thyroid
cytomorphology. It can be used to quantitatively harvest morphologic information for diagnostic purpose.
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UC
 Area under the curve

US
 Atypia of undetermined significance

IA
 Digital image analysis

TC
 Extra tree classifier

US
 Follicular lesion of undetermined significance

A
 Fine needle aspiration
BC
 Gradient boost classifier

OC
 Receiver operating characteristics

L
 Structured query language
FNA
 Thyroid fine needle aspiration
T
Introduction

As one of themore accessible organs for fine needle aspiration (FNA) bi-
opsy, thyroid nodules are frequently evaluated for cytologic diagnosis to de-
termine surgical versus conservative management. While a subset of thyroid
rmatics and Data Science, FLASH BUIL
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FNA (T-FNA) contains clear cytomorphologic features of neoplastic lesions
that can be definitively and reliably diagnosed amongst cytopathologists,
up to 21% of cases within some institutions can display cellular and architec-
tural atypia insufficient for definitive diagnosis, leaving a significant element
of uncertainty of appropriate management for clinicians to pursue.1,2 Many
indeterminate results due to architectural atypia identified within T-FNAs
are reported by pathologists as “atypia of undetermined significance/follicu-
lar lesion of undetermined significance (AUS/FLUS)” (Bethesda category III)
in the Bethesda System for Reporting Thyroid Cytopathology TBSRTC.While
TBSRTC recommends molecular assays for both categories to guide
management,3 many clinicians are seeking lower cost options to enhance
the diagnostic accuracy of the existing cytological material, particularly in
the indeterminate diagnostic categories.

In our current study, we evaluated an alternative pathway to an objective,
reproducible diagnosis by utilizing an existing cytologic preparation tech-
nique optimized for digital pathology and machine learning algorithms.4,5

The use of this technology can provide a substitute pathway to resolve inde-
terminate diagnostic categories through digital evaluation and classification
of cytomorphologic features (follicular group architecture, smear cellularity,
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amount of colloid, and cytologic atypia) associated with follicular
neoplasms.6 To our best knowledge to date, ThinPrep® is underutilized in
this regard but is widely used by many institutions for the evaluation of thy-
roid aspirate material. ThinPrep® is conveniently primed for digital image
analysis (DIA), as it is created to reduce the variability of stains and was orig-
inally developed for the ThinPrep Imaging System.7 In this study, we aim to
evaluate the feasibility of applying DIA on T-FNA material prepared by the
ThinPrep® procedure and use it to gainmore insight to improve the diagnos-
tic accuracy of thyroid aspiration cytology.

Method

Case Collection and Image Capture

To reduce the complexity of the study, we decided to focus on the mor-
phologic difference between surgically verified benign thyroid vs. thyroid
with follicular adenoma, as the extent and degree of morphologic criteria
are more subjective rendering less reproducible diagnoses in comparison
to other thyroid lesions with cytologic (nuclear) atypia such as papillary
thyroid lesions.

From our laboratory information system (LIS), we performed a struc-
tured query language (SQL) search for all surgical resection cases diagnosed
as follicular adenoma or thyroid with nodular hyperplasia. Cross
referencing the prior T-FNAs, we identified 20 T-FNAs diagnosed as AUS/
FLUS, with subsequent diagnoses of follicular adenoma on surgical resec-
tions and 20 T-FNAs with subsequent diagnoses of benign thyroid nodules
on surgical resections. Digital images of 10 mid-power (100x) and 10 high-
power (400x) fields on the ThinPrep material were obtained using a DP71
camera (3500 Corporate Parkway, Center Valley, PA 18034, Olympus,
USA) on an Olympus BX51 microscope with CellSens Entry v1.12 (Olym-
pus, USA). The mid-power fields were randomly taken to evaluate overall
specimen cellularity while the high-power fields captured follicular cells.
All images associated with each case were grouped together and further re-
viewed by a board-certified cytopathologist (ML) to evaluate for adequate
cellularity and to render a diagnosis within the Bethesda classification sys-
tem. Unsatisfactory cases with insufficient cellularity were removed from
the study. In total, we curated 800 images through the above process.
Figure 1. The segmentation and feature extraction of each image (A) starts with backgro
only) through color deconvolution (C), automatic threshold segmentation, and finally
“gated” (high-power only) using size and circularity to separate out individual nuclei fr
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Image Analysis

To maximize the use of the images, a custom image analysis algorithm
was developed based on cytomorphology feature engineering and super-
vised machine learning.

Cytomorphology Feature Engineering

We used ImageJ v1.51p (NIH, USA) to develop cytomorphology feature
engineering. The process consists of image segmentation followed by fea-
ture extraction (Fig. 1). For image segmentation, we started with prepro-
cessing of the images by substracting the background, followed by
red‑green‑blue color channel separation. We only extracted the green chan-
nels and created masks for all nuclei using an automatic threshold method.
The feature extraction processed focused on the nuclei which were treated
as individual “particles” with low-level features. The low-level features are
selectively grouped together based on the authors’ cytomorphology knowl-
edge to form medium and high level features (Table 1). For example, a me-
dium level feature, nuclear size, or simply size, is composed of mean and
standard deviation of nuclear area, which are low level features. Cytology,
a high-level feature, is composed of three medium level features, chroma-
tin, shape, and size. For the high-power images, the “particles”werefiltered
by some low level features such as size and circularity to remove back-
ground noise. These low level features were also used to distinguish or
“gate” individual nuclei from closely grouped clusters to detect crowding
of follicular cells. The “cellularity” high level features were extracted only
from the mid-power images. Altogether, we have a total of 86 low level nu-
clear features used to construct three medium level feature models (chro-
matin, shape, and size), three high level feature models (cellularity,
architecture, and cytology), and two models based on magnification (low
and high power).

Supervised Machine Learning

Supervisedmachine learningmethods aim to automatically create algo-
rithms based on known paired input (e.g., features) and expected output
(e.g., ground truth) data. Training data are used to optimize the weights
und subtraction (B), followed by conversion to 8-bit grayscale image (green channel
a mask (red) for the nuclear features (D). The extracted nuclei features are further
om closely grouped clusters.



Table 1
Details of the predictive models and features performance.

Magnification1 High2 Medium3 Low4 Gate5 Mean/StdDv6 Feature importance7 FA value8 B9 value9 T-test score10

Mid-power Cellularity N/A CountI None Mean 0.143 268.57 164.31 0.000
Mid-power Cellularity N/A Total AreaII None Mean 0.104 41191.52 24885.81 0.001
Mid-power N/A N/A AreaIII None Mean 0.060 153.44 129.37 0.122
Mid-power N/A N/A CircIV None Mean 0.083 0.90 0.90 0.832
Mid-power N/A N/A MaxFeretV None Mean 0.067 12.84 12.27 0.248
Mid-power N/A N/A IntDenVI None Mean 0.056 25581.13 21781.70 0.175
Mid-power N/A N/A KurtVII None Mean 0.066 -1.03 -1.02 0.586
Mid-power N/A N/A MeanVIII None Mean 0.061 174.81 177.03 0.263
Mid-power N/A N/A MedianIX None Mean 0.057 176.21 178.17 0.329
Mid-power N/A N/A MinFeretX None Mean 0.067 8.59 8.25 0.258
Mid-power N/A N/A ModeXI None Mean 0.061 177.56 179.19 0.465
Mid-power N/A N/A PerimXII None Mean 0.062 35.12 33.14 0.180
Mid-power N/A N/A SkewXIII None Mean 0.055 -0.28 -0.26 0.050
Mid-power N/A N/A SolidityXIV None Mean 0.058 0.89 0.89 0.519
High-power Architecture N/A ARXV Cluster StdDv 0.010 0.38 0.30 0.017
High-power Architecture N/A AR Cluster Mean 0.009 1.74 1.46 0.001
High-power Architecture N/A Area Cluster Mean 0.014 5711.59 2252.09 0.000
High-power Architecture N/A Area Cluster StdDv 0.009 4731.23 1443.71 0.000
High-power Architecture N/A Circ Cluster StdDv 0.014 0.11 0.07 0.000
High-power Architecture N/A Circ Cluster Mean 0.009 0.32 0.27 0.003
High-power Architecture N/A MaxFeret Cluster Mean 0.016 98.85 67.44 0.000
High-power Architecture N/A MaxFeret Cluster StdDv 0.009 40.91 18.64 0.000
High-power Architecture N/A MinFeret Cluster Mean 0.011 60.02 40.96 0.000
High-power Architecture N/A MinFeret Cluster StdDv 0.009 25.45 11.62 0.000
High-power Architecture N/A Perim Cluster Mean 0.015 432.76 264.52 0.000
High-power Architecture N/A Perim Cluster StdDv 0.010 274.11 108.59 0.000
High-power Architecture N/A Round Cluster Mean 0.012 0.52 0.44 0.001
High-power Architecture N/A Round Cluster StdDv 0.008 0.11 0.09 0.004
High-power Architecture N/A Solidity Cluster Mean 0.015 0.69 0.57 0.000
High-power Architecture N/A Solidity Cluster StdDv 0.012 0.06 0.04 0.000
High-power Cytology Chromatin IntDen Single StdDv 0.020 17007.18 12785.69 0.000
High-power Cytology Chromatin IntDen Cluster Mean 0.016 478875.76 169419.42 0.000
High-power Cytology Chromatin IntDen Single Mean 0.016 40865.41 34437.49 0.000
High-power Cytology Chromatin IntDen Cluster StdDv 0.010 395319.99 139400.12 0.004
High-power Cytology Chromatin Kurt Single StdDv 0.013 0.47 0.43 0.121
High-power Cytology Chromatin Kurt Cluster Mean 0.013 -0.48 -0.38 0.046
High-power Cytology Chromatin Kurt Single Mean 0.012 -0.51 -0.46 0.079
High-power Cytology Chromatin Kurt Cluster StdDv 0.008 0.38 0.30 0.126
High-power Cytology Chromatin MaxXVI Single StdDv 0.028 4.55 2.96 0.000
High-power Cytology Chromatin Max Single Mean 0.020 127.32 115.62 0.001
High-power Cytology Chromatin Max Cluster Mean 0.015 132.70 99.76 0.000
High-power Cytology Chromatin Max Cluster StdDv 0.008 11.49 7.99 0.010
High-power Cytology Chromatin Mean Cluster Mean 0.018 76.34 56.04 0.000
High-power Cytology Chromatin Mean Cluster StdDv 0.016 6.67 3.76 0.000
High-power Cytology Chromatin Mean Single StdDv 0.014 11.75 9.78 0.000
High-power Cytology Chromatin Mean Single Mean 0.012 82.00 73.23 0.001
High-power Cytology Chromatin MedianXVII Cluster StdDv 0.019 8.29 4.69 0.000
High-power Cytology Chromatin Median Cluster Mean 0.015 75.08 54.08 0.000
High-power Cytology Chromatin Median Single StdDv 0.015 14.33 11.99 0.000
High-power Cytology Chromatin Median Single Mean 0.013 78.86 69.88 0.001
High-power Cytology Chromatin MinXVIII Single StdDv 0.015 14.14 11.14 0.001
High-power Cytology Chromatin Min Single Mean 0.014 43.59 40.29 0.108
High-power Cytology Chromatin Min Cluster Mean 0.012 28.39 22.31 0.001
High-power Cytology Chromatin Min Cluster StdDv 0.009 7.88 4.86 0.000
High-power Cytology Chromatin ModeXIX Cluster Mean 0.019 70.14 47.87 0.000
High-power Cytology Chromatin Mode Cluster StdDv 0.018 14.81 9.01 0.000
High-power Cytology Chromatin Mode Single StdDv 0.014 20.49 16.81 0.000
High-power Cytology Chromatin Mode Single Mean 0.012 71.10 62.52 0.001
High-power Cytology Chromatin RawIntDen Single Mean 0.018 40865.41 34437.49 0.000
High-power Cytology Chromatin RawIntDen Single StdDv 0.016 17007.18 12785.69 0.000
High-power Cytology Chromatin RawIntDen Cluster Mean 0.015 478875.76 169419.42 0.000
High-power Cytology Chromatin RawIntDen Cluster StdDv 0.009 395319.99 139400.12 0.004
High-power Cytology Chromatin Skew Single Mean 0.021 0.34 0.47 0.000
High-power Cytology Chromatin Skew Cluster Mean 0.015 0.14 0.25 0.006
High-power Cytology Chromatin Skew Single StdDv 0.010 0.39 0.37 0.089
High-power Cytology Chromatin Skew Cluster StdDv 0.010 0.26 0.17 0.000
High-power Cytology Chromatin StdDev Single Mean 0.023 20.07 18.20 0.002
High-power Cytology Chromatin StdDev Single StdDv 0.012 4.58 3.49 0.000
High-power Cytology Chromatin StdDev Cluster Mean 0.011 21.90 16.84 0.000
High-power Cytology Chromatin StdDev Cluster StdDv 0.011 2.88 1.91 0.000
High-power Cytology Shape AR Single Mean 0.017 1.31 1.34 0.038
High-power Cytology Shape AR Single StdDv 0.012 0.27 0.28 0.163
High-power Cytology Shape Circ Single Mean 0.022 0.73 0.76 0.004
High-power Cytology Shape Circ Single StdDv 0.012 0.10 0.09 0.405

(continued on next page)
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Table 1 (continued)

Magnification1 High2 Medium3 Low4 Gate5 Mean/StdDv6 Feature importance7 FA value8 B9 value9 T-test score10

High-power Cytology Shape MaxFeret Single Mean 0.016 29.13 29.01 0.804
High-power Cytology Shape MaxFeret Single StdDv 0.012 6.20 5.77 0.064
High-power Cytology Shape MinFeret Single Mean 0.016 22.33 21.77 0.127
High-power Cytology Shape MinFeret Single StdDv 0.013 4.28 3.76 0.001
High-power Cytology Shape Perim Single Mean 0.018 87.90 85.51 0.108
High-power Cytology Shape Perim Single StdDv 0.011 19.23 17.45 0.010
High-power Cytology Shape Round Single Mean 0.019 0.77 0.76 0.230
High-power Cytology Shape Round Single StdDv 0.009 0.13 0.13 0.995
High-power Cytology Shape Solidity Single Mean 0.019 0.89 0.90 0.265
High-power Cytology Shape Solidity Single StdDv 0.011 0.03 0.03 0.371
High-power Cytology Size Area Single Mean 0.016 482.09 461.70 0.100
High-power Cytology Size Area Single StdDv 0.011 183.26 157.58 0.000

1. Themagnificationmodels are consisted ofmid-power (100x) and high-power (400x) models. 2.High=high level features; 3.Medium=medium level features; 4. Low
=low level features. 5. The “gate” filters follicular cell nuclei into single vs overlapping clusters based on: single nuclei have areas (III) between 100 and 1200 pixels and circ
(IV) between 0.5 and 1.0; overlapping clusters have areas (III) between 1200 to infinite pixels and circularity between 0.0 and 1.0. 6. Values collected asmean vs standard
deviation. 7. Feature importance dictates contribution (in percentage) of each feature to the predictive accuracy of the model. 8. Average value collected from follicular
adenoma images. 9. Average value collected from benign (B9) thyroid images. 10. Student’s T-test P values of each feature based on comparing values from follicular
adenoma vs benign thyroid.
Count (I) - Number of separated nuclei, including both single and clustered nuclei; Total area (II) - Total area of the image occupied by nuclei in pixels; each pixel corre-
sponds to an area of 0.064 μM2 for the high-power model and 0.016 μM2 for the mid-power model; Area (III) - Area of region of individual nuclei in square pixels; Circ
(IV) - 4 π (Area/Perimeter2); 1.0 is a perfect circle; the value approaches 0 as the shape elongates; MaxFeret (V) - Feret's diameter: Maximum caliper; conversion factor
0.08 μM for high-power model and 0.04 μM for mid-power model; IntDen (VI) - Integrated density: area times mean gray value; Kurt (VII) - Kurtosis: The fourth-order mo-
ment about themean;Mean (VIII) - Average gray value of the pixels in each nucleus/cluster of nuclei; The values range from 0 to 255;Medium (IX) - Themedian gray value
of the pixels in the entire image;MinFeret (X) - Minmum Feret's diameter: minimum caliper; conversion factor 0.08 μM for high-power model and 0.04 μM for mid-power
model; Mode (XI) - Most frequently occurring gray value of the pixels in each nucleus/cluster of nuclei; Perim (XII) - The length of the outside boundary of each nucleus/
cluster of nuclei; multiple the value by 0.08 to get a measurement in μM for the high-power model and 0.04 for the mid-power model; Skew (XIII) - The third-order moment
about themean; Solidity (XIV) - Area/Convex Area;AR (XV) - Aspect ratio:Major axis/Minor axis;Max (XVI) - Maximum gray values of the pixels in each nucleus/cluster of
nuclei; value range from 0 to 255;Median (XVII) - The median value of the pixels in the entire image; values range from 0 to 255;Min (XVIII) - Minimum gray values of the
pixels in each nucleus/cluster of nuclei; values range from 0 to 255;Mode (XIX) - Most frequently occurring gray value of the pixels in each nucleus/cluster of nuclei; values
range from 0 to 255.
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and parameters of the algorithms while the validation data were used to
validate the generalizability and performance of the trained algorithm.
Utilizing the above rules, the various combination of features based on
the models were utilized as the input and surgical report (Follicular ad-
enoma vs benign thyroid) of the T-FNA were the expected output. Fol-
licular adenoma was considered as a positive result. Using Python
sklearn library, we used gradient boost classifier (GBC) and extra tree
classifier (ETC) as our supervised machine learning methods. The train-
ing and validation data were randomly split 1:1 from the collected data
using a data splitting algorithm. The process was also repeated three
times to further ensure generalization and to prevent overfitting. We
also used extra tree classifier to evaluate the importance of low level
features using all available data.

Result

The measure of a predictive test performance calls for measurement in
accuracy, the closeness of the measurements to a specific value; precision,
also known as positive-predictive value; recall, sensitivity. Since all features
were used between the high and low power models, their performances are
the direct measurement of the DIA algorithm design. Using validation data
only, the mid-power model achieved an average accuracy of 0.71 (0.70–
0.74), precision 0.72 (0.69–0.74), and recall 0.71 (0.64–0.75); the high-
power model achieved an average accuracy of 0.67 (0.63–0.72), precision
of 0.67 (0.62–0.74), and recall 0.69 (0.60–0.74). By direct comparison,
the cytopathologist who reviewed all the images achieved an accuracy of
0.625, precision 0.57, and recall 0.95.

Receiver operating characteristics (ROC) is also used to evaluate the di-
agnostic ability of a test as its discrimination threshold is changed. Using
validation data only, the AUCs are 0.75 (0.74–0.82) for mid-power magni-
fication model and 0.74 (0.69–0.79) for high-power magnification model.
For high level features models, AUCs are 0.70 (0.64–0.73) for cellularity,
0.65 (0.60–0.69) for architecture, and 0.74 (0.69–0.80) for cytology. The
AUC for ROC for medium level features are 0.57 (0.51–0.61) for nuclear
size, 0.63 (0.57–0.68) for nuclear shape, and 0.71 (0.64–0.77) for nuclear
4

chromatin (Fig. 2). Table 1 gives additional details on the breakdown of
prediction accuracy contribution and statistical analyses of all features.

Since the high- and medium-power magnification models have reason-
able performance base on the validation results, the high andmedium level
features models can be considered as statistical hypothesis tests to evaluate
the importance of each group of features and their contribution to the accu-
racy of the models. Based on this method, all three high level features, cel-
lularity, architecture, and cytology appear to contribute significantly. For
the medium level features, nuclear chromatin appears to be the strongest
contributor while nuclear shape is a distant second. The nuclei size, on
the other hand, appears to be non-contributory, a finding collaborated by
statistical analysis (P=0.10) of the size variation between T-FNA from fol-
licular adenoma and benign thyroid (Table 1).

The minimal presence of colloid material in ThinPrep combined with
technical limitations prevented the incorporation of these morphologic fea-
tures into our models.

Discussion

The current evaluation of T-FNA relies on manual visual evaluation by
cytopathologists. It is known that while the human visual system is excel-
lent at recognizing patterns, it performs poorly on quantitative tasks and
is susceptible to optical illusions.8 Most suspicious or malignant (Bethesda
category IV toVI) T-FNA cases showhigher rates of diagnostic reproducibil-
ity among cytopathologists as they present withmore pronounced architec-
tural and cytologic features. In these cases, there is little need for repeated
T-FNA or ancillary molecular tests for further characterization as the evi-
dence for surgical management is well established. However, for Bethesda
category III, the degree of cytologic and architectural atypia may be subtle
and variable, which explains the high degree of inter-observer variability.9

Furthermore, the Bethesda criteria for this diagnostic category, whether ar-
chitectural or cytologic atypia, are not defined in quantifiable methods and
therefore are fundamentally subjective.

Our study shows that while looking at the exact same set of images,
board-certified cytopathologistsmay err on the side of caution and sacrifice



Figure 2. The predictive performance evaluation of mid-power (A) and high-power (B) models, high level features (A-1, B-1, B-2), and medium level features (B-3, B-4, B-5)
using receiver operating characteristics (ROC) and quantified by area under the curve (AUC); ETC = extra tree classifier; GBC = gradient boost classifier.
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overall accuracy. While molecular testing provides an alternative to repeat
T-FNA, it comes at a cost of additional needle passes and the assay itself.10

Additionally, their exact predictive performance for entities like follicular
adenoma remains controversial based on existing published data.11 Our re-
sults show that routine T-FNA augmented by DIA using ThinPrep material
can produce predictions with the pre-existing diagnostic material with
increased overall accuracy by quantitatively evaluating morphologic fea-
tures. Therefore, concurrent evaluation of preliminarily indeterminate T-
FNA with DIA may present as a more cost-effective method for evaluating
thyroid nodules without additional biopies or molecular studies. Addition-
ally, as a liquid-based cytology preparation that uses standardized instru-
ments to produce monolayers of well-stained and well-preserved cells,
ThinPrep may be further explored for further non-gynecologic image anal-
ysis applications.

Our DIA design also examines the morphologic difference between T-
FNA from follicular adenoma and benign thyroid. The performances of
the high level feature models show cellularity, architecture, and cytology
appear to contribute to the accuracy of the models (Table 1 and Fig. 2).
ThinPrep material from follicular adenoma has a higher degree of cellular-
ity, greater follicular cell crowding, and quantifiable nuclear difference
than benign thyroid (Table 1 and Fig. 2). Further characterization of
the nuclear morphology profiles using the medium level features
shows nuclear chromatin appears to be the strongest contributor to ac-
curacy while the nuclear shape is a distant second. The nuclear size
was not a discriminating feature (with AUC close to 0.5) and this finding
5

is further supported by the student T-test (P > 0.05) for nuclear size
(Table 1). Characterization of the nuclear chromatin profile and shape
difference beyond the listed performance and statistical metrics is sub-
optimal due to limitations of sample size and technical limitations
(Table 1). However, the above findings reaffirm that cellularity, chro-
matin texture, and architectural features are diagnostically important
in ThinPrep-based T-FNA for follicular adenoma.

To the best of our knowledge, this is the first attempt to apply DIA to si-
multaneously build predictive models to better separate indeterminate thy-
roid diagnostic categories (Bethesda III) and to investigate T-FNA
cytomorphology in ThinPrep material. While T-FNA cytomorphology is
well studied on manually made smears, the decades of utilization in com-
puter image analysis assisted diagnosis for gynecologic cytology
(e.g., ThinPrep Imaging System) and the recent advances in digital image
analysis merit a second look for expanded applications for liquid-based
preparation such as ThinPrep.12

Limitations of our current study include the low number of cases in the
dataset and comparing DIA against a single cytopathologist. The scope of
the DIA algorithm is currently limited to T-FNA of follicular adenoma or be-
nign thyroid nodule with ThinPrepmaterial. Awhole slide imagingmethod
was not used due to limited development time.We do believe that mid- and
high-power models can sufficiently capture the vast majority of the mor-
phologic features and thus this study can serve as proof-of-concept and
pave ways for more advanced future studies to build DIA-based decision-
support tools for T-FNA.
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