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abstract

PURPOSEDeep learning (DL), a class of approaches involving self-learned discriminative features, is increasingly
being applied to digital pathology (DP) images for tasks such as disease identification and segmentation of tissue
primitives (eg, nuclei, glands, lymphocytes). One application of DP is in telepathology, which involves digitally
transmitting DP slides over the Internet for secondary diagnosis by an expert at a remote location. Unfortunately,
the places benefiting most from telepathology often have poor Internet quality, resulting in prohibitive trans-
mission times of DP images. Image compression may help, but the degree to which image compression affects
performance of DL algorithms has been largely unexplored.

METHODSWe investigated the effects of image compression on the performance of DL strategies in the context of
3 representative use cases involving segmentation of nuclei (n = 137), segmentation of lymph node metastasis
(n = 380), and lymphocyte detection (n = 100). For each use case, test images at various levels of compression
(JPEG compression quality score ranging from 1-100 and JPEG2000 compression peak signal-to-noise ratio
ranging from 18-100 dB) were evaluated by a DL classifier. Performance metrics including F1 score and area
under the receiver operating characteristic curve were computed at the various compression levels.

RESULTSOur results suggest that DP images can be compressed by 85%while still maintaining the performance
of the DL algorithms at 95% of what is achievable without any compression. Interestingly, the maximum
compression level sustainable by DL algorithms is similar to where pathologists also reported difficulties in
providing accurate interpretations.

CONCLUSION Our findings seem to suggest that in low-resource settings, DP images can be significantly
compressed before transmission for DL-based telepathology applications.
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INTRODUCTION

The advent of whole-slide scanners has enabled high-
throughput digitization of routine glass pathology tissue
slides. The digitization of glass slides, or digital pa-
thology (DP), has in turn also enabled digital trans-
mission of DP slides over the Internet for secondary
diagnosis, a practice termed telepathology (TP).1,2 TP
has been implemented in a variety of applications in-
cluding primary histopathology diagnoses,3 second
opinions, subspecialty consultations, and intraoperative
frozen section services.1 TP systems require hardware
for slide digitization (eg, slide scanner or microscope
camera) linked to a computer with Internet access,4

which enables a pathologist at a remote location to
then view and interpret the digitized slide image.

DP slides can also be analyzed by deep learning (DL),
a machine learning approach that recognizes patterns
in DP images through a network of connected artificial
neurons. One of the most popular DL network types is
the convolutional neural network (CNN).5,6 Through an
iterative examination of a labeled data set, CNNs at-
tempt to learn increasingly higher levels of data ab-
stractions from the original data. This process, which
involves minimizing the error between the model pre-
diction and ground truth data labels, allows for learning
the most discriminating representations between cate-
gories of interest. CNNs have been proposed to increase
the efficiency of tasks such as segmentation of histologic
primitives (eg, nuclei segmentation5 and epithelium
segmentation7), detection (eg, mitotic events8), disease
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identification/localization (eg, cancerous v noncancerous),1 and
disease diagnosis.2 Recently, DL approaches have been
used to identify tissue primitives such as nuclei and tubules
from which morphologic features (eg, shape, texture, ar-
rangement) can be extracted and further associated with
disease prognosis, outcome, and treatment response.9,10

Although there has recently been a great deal of interest in
developing and applying DL approaches in DP, the
question of the effect of image compression on DL algo-
rithms has been largely unexplored.11 Compression tech-
nologies are especially important in countries with poor
quality Internet access, where sending and receiving large
DP image files can be challenging.12,13 For instance, a single
prostate biopsy slide digitized at 40× can easily result in. 5
gigabytes of data, with a typical pathology workflow requiring
approximately 12 slides. To help alleviate the storage and
transmission burdens in TP, image compression seems to be
the logical solution to reduce the size of DP files.

Previous work has focused on assessing the effects of
common lossy image compression algorithms on DL
performance.14,15 On the basis of a similar experimental
methodology, we sought to evaluate how different degrees
of image compression affect CNNs in the use cases of
nuclei (n = 137) and lymph node metastasis segmentation
(n = 380) and lymphocyte detection (n = 100). Our ap-
proach involved training DL networks using high-fidelity
images and subsequently evaluating model performance
using held-out test sets subjected to increasing levels of
either JPEG or JPEG2000 compression. Additionally, at-
tempts were made to identify the maximum compression
level beyond which the CNN, and pathologist, interpre-
tations began to substantially degrade. We also sought to
evaluate the changes in nuclei-derived image features
(eg, cell distribution graph) as a function of DL perfor-
mance over different compression levels. CNNs were
chosen for this study because they currently represent the
most popular DL approach in the DP space. The selected
use cases were chosen because of their similarity to
commonly performed DP tasks.5

METHODS

Experimental Pipeline

In this work, we sought to quantitatively evaluate the effect
of different degrees of compression on DL classifiers via 3
use cases: nuclei segmentation, lymph node metastasis
segmentation, and lymphocyte detection. Each use case
followed the pipeline illustrated in Figure 1. Briefly, for each
use case, an AlexNet16 (ie, a type of CNN) was trained using
high-fidelity regions of interest (ROIs) cropped from whole-
slide images (WSIs) generated by Aperio scanners (Leica
Biosystems, Nussloch, Germany) using default settings.
During training, data set augmentation was enacted by
random rotations of {0, 90, 180, 270}, along with random
mirroring (details regarding training of each classifier can
be found in the Appendix). Subsequently, held-out test

images were subjected to increasing levels of compres-
sion, and the relationship between compression level and
a number of quantitative performance metrics (eg, pixel-
level F1 score, object detection F1 score, and pixel-level
area under the receiver operating characteristic curve
[AUC]) was studied.

Quantitative metrics for evaluating DL performance. The
nuclei segmentation and lymphocyte detection use cases
used the F1 score5 (or F score), where 0 indicates worst
performance and 1 indicates best performance for the
classifier. For lymph node metastasis segmentation, pixel-
level AUC1 was used. Image degradation was measured
using the peak signal-to-noise ratio (PSNR).17 This study
examined ranges of PSNR from 18 to 100 dB, with 18 dB
being the lowest computable by the OpenJPEG library
(version 2.3.1)18 resulting inmaximal compression and 100
being lossless. Intuitively, strong negative correlation exists
between PSNR and the compressed image size.19

Evaluation of feature stability from nuclear segmentations.
Graph, nuclear, and subgraph features were derived from
the nuclear segmentation output. A total of 77 first-order
summary statistics were subsequently computed and their
stability in the presence of compression evaluated. The
graph features aim to model global cellular spatial distri-
bution via various algorithms (eg, Voronoi diagram,
Delaunay triangulation, minimum spanning tree). Nuclear
features pertaining to spatial distribution as well as mor-
phologic appearance (eg, size, eccentricity, nearest
neighbor properties) were also calculated. Finally, sub-
graph features reflecting local cellular distribution of cells
via clustering algorithms (eg, connected components) were
also calculated. These features have been shown to hold
diagnostic and prognostic value in the context of various
diseases.

Pathologist evaluation of compressed images. We also
sought to evaluate the degree of image compression that
a pathologist could tolerate in performing the same 3 use
cases: segmentation of nuclei and lymph node metastasis
and detection of lymphocytes. Toward this end, 3 pathol-
ogists were asked to examine 10 randomly chosen test
images per use case at each level of compression. They
subsequently reported the highest compressed level for
which they would feel comfortable performing the assigned
segmentation/detection task (ie, tracing nuclear bound-
aries, identifying lymphocytes, or delineating cancerous
regions). Each pathologist involved in this study was tasked
with the review of a single use case.

Image Compression Approaches

JPEG and JPEG200020 lossy compression approaches
were used in this study because they are most commonly
used by scanner manufacturers and WSI formats.19 JPEG
allows the user to specify the desired level of compression
via a quality score associated with the quantization of
frequencies in the image. When employing JPEG2000, the
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user specifies a PSNR value, which results in the truncation
of certain frequencies after a wavelet transformation. These
lossy compression algorithms achieve their reduction
performance by eliminating high-frequency image features
(eg, noise, subtle textures), which tends to result in blurring
and distortion at higher compression levels. In all cases,
JPEG2000 demonstrated superior performance and ad-
ditionally allowed for a lossless 40% to 70% reduction in file
size depending on the image content. Details regarding
JPEG/JPEG2000 can be found in the Appendix.

RESULTS

Use Case 1: Nuclei Detection and Segmentation

Data set description. WSIs of 137 patients with estrogen
receptor (ER) –positive breast cancer were scanned at 40×
using an Aperio whole-slide scanner and saved using the
scanner default quality score of 70%. From this cohort,
143 2,000 × 2,000 ROIs containing cancer were extracted.
From these regions, approximately 12,000 nuclei were
manually annotated and confirmed by a pathologist. Pa-
tients were randomly assigned to training and testing
groups at a ratio of 8:2.

Compression experiment results. DL results. The DL model
was trained at 10×magnification and produced a pixel-level

F score of 0.83 on the uncompressed held-out test images.
Although increasing compression (PSNR from 100 to 18 dB)
resulted in decreases in segmentation performance, this
decrease was notably small until the compression ratio fell
below 5% (Figs 2A and 2B). Below this level, the seg-
mentation performance dropped dramatically (an expo-
nential drop from 0.83 to 0.3 in F score). As the compression
ratio progressed from 53% (lossless compression) to 3%, the
overall average segmentation results only deteriorated by
3.5% (ie, F score decreased from 0.83 to 0.80; Fig 2B).

Pathologist evaluation of compressed images. Interestingly,
the pathologists identified a PSNR of 30 dB as the maxi-
mum compression level they would feel comfortable per-
forming the same segmentation task. This corresponds to
a compression ratio of 3% and is close to the point at which
performance of the DL classifier starts to degrade dra-
matically (Fig 2B). Higher compression levels resulted in
ambiguous nuclear boundaries and thus would have
prevented accurate annotation.

Evaluating variability in extracted nuclear features as
function of compression levels. A set of well-documented
features used in DP image analysis21 were next employed.
These included cellular graph features (eg, Voronoi diagram,
Delaunay triangulation, minimum spanning tree, cell cluster
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FIG 1. Flowchart illustrating the experimental design for segmentation of (1) nuclei (n = 137) and (2) lymph node metastasis (n = 380), and (3)
detection of lymphocytes (n=100). For each use case, images were divided into training and testing sets. High-quality tissue images cropped from
whole-slide images were used for deep learning (DL) classifier training. Varying levels of lossy compression were applied to test images for evaluation.
For each use case, deep learning performance on the compressed test images across various compression ratios was quantitatively evaluated. For the
nuclei segmentation use case, primitive derived image features (eg, features relating to spatial arrangement of nuclei) were extracted and assessed for
stability across compression levels. CNN, convolutional neural network.
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subgraph), which focus on capturing global and local spatial
cellular architecture, as well as nuclear features, which focus
on nuclear morphology (eg, shape and texture). Our hy-
pothesis stated that increasing levels of compression may
cause the DL model to potentially miss or incorrectly identify
the boundaries of nuclei, thus imparting variability during
feature computation.

Figure 3 illustrates that the global graph feature22,23 family,
which contains features such as Voronoi diagram, mini-
mum spanning tree, and nuclear distribution, stayed rel-
atively stable when the PSNR is. 40 dB. Conversely, most
of the subgraph features seemed unstable in the presence
of compression artifacts. A reference table of each feature
can be found in the Appendix.

Use Case 2: Breast LymphNodeMetastasis Segmentation

Data set description. To aid in appreciating how com-
pression may affect popular challenge data sets, the
publicly available Camelyon1624 data set was used. This
data set comprises 400 WSIs at 40×magnification, in TIFF
format, divided into 270 images for training/validation and
130 for testing.

Compression experiment results. DL results. The DL model
was trained at 5× magnification and demonstrated a pixel-
level AUC of 0.92 in the validation cohort and 0.81 in the
test cohort. These results are comparable to other state-
of-the-art breast lymph node metastasis segmentation
approaches.25,26 Although increasing compression (PSNR
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FIG 2. (A) Graph showing the strong negative relation between peak signal-to-noise ratio (PSNR) and compression ratio (compressed size divided by
original file size) for different types of compression (JPEG and JPEG2000). JPEG2000 appears to show superiority over the JPEG compression format in
terms of compression efficiency. (B) Graph showing degradation of F-score for test images against compression ratio for different types of compression.
(C) An image subjected to varying levels of compression (PSNR= 20, 22, 25, 30, 35, 40, 90, and lossless) with the resulting DL output overlaid in green.
The nuclear segmentation results appear to notably degrade when the PSNR is , 30 (highlighted in red arrow).
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from 100 to 18 dB) resulted in decreases in segmentation
performance, this decrease was notably small until the
compression ratio fell below 4% (Figs 4A and 5B). Below
this level, the segmentation performance exponentially
dropped from 0.8 to 0.4 in pixel-level AUC. As the com-
pression ratio progressed from 33% (lossless compression)
to 4%, the overall average segmentation results only de-
teriorated by 2% (ie, AUC decreased from 0.81 to 0.79;
Fig 5).

The relationship between compression ratio and PSNR was
similar to that of the other use cases (Figs 4A and 4B). In
contrast, a maximum total difference of 0.4 AUC was
demonstrated between the highest and lowest levels of
compression, with a slower drop in model performance at
the intermediate compression levels (2%-35% compres-
sion ratio) compared with both the nuclear and lymphocyte
use cases, suggesting this use case was the least affected
by higher compression levels.

Pathologist evaluation of compressed images. The pa-
thologists reported a PSNR of 22 dB (corresponds to
a compression ratio of 1%) as the maximal compression
level that would allow them to confidently segment the
regions of lymph node metastasis. Similar to the nuclear
segmentation use case, any PSNR lower than this value
induced too much uncertainty in identifying the cancer
boundary. This PSNR level is lower than that for acceptable
DL performance (pixel-level AUC of 0.79 at 4% com-
pression ratio) but still within a comparable range.

Use Case 3: Lymphocyte Detection

Data set description. The lymphocyte detection data set
consisted of 100 ER-positive breast cancer images (100 ×
100) cropped from WSIs scanned at 20× and saved using
the scanner default quality score of 70%. The centers of
3,064 lymphocytes were identified and labeled on the
images by a pathologist.5 The data set was divided into
training and testing sets at a ratio of 8:2.

Compression experiment results. DL results. The DL model
was trained at 20× magnification and produced a cellular-
level detection F score of 0.896 on the uncompressed held-
out test images. Similar behavior with other use cases
between compression ratio and both PSNR and F score
was observed (Figs 5A and 5B). The decrease in F score
was notably small until the compression ratio fell below 5%.
Below this level, the detection performance experienced
an exponential drop from 0.89 to 0.2 in F score. As the
compression ratio progressed from 49% (lossless com-
pression) to 5%, the overall average detection results only
deteriorated by, 0.5%, indicating the high tolerance of the
model to JPEG2000 compression artifacts. The model
maintained an F score . 0.8 even when images were
compressed to 3% of their original size.

Pathologist evaluation of compressed images. The pa-
thologists reported a PSNR of 30 dB (corresponds to
a compression ratio of 7%) as the maximum compression
level that would allow them to confidently differentiate
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FIG 3. Heat map, grouped by feature families, showing the relative difference (0,1) of each feature (x-axis, feature names in the Appendix) at different levels
(peak signal-to-noise ratio = 18 dB-100 dB) of compression (y-axis) as compared to values derived from the original images. The higher the relative
difference, the more the feature appears to be sensitive to image compression. It was observed that some first-order statistical features (eg, standard
deviation, min, max) do not deviate in a monotonic fashion as a function of image compression. a, Voronoi feature; b, Delaunay triangulation; c, minimum
spanning tree; d, nuclear feature; e, cell cluster subgraph feature.

Compression Effects on Deep Learning in Digital Pathology Images

JCO Clinical Cancer Informatics 225



lymphocytes from other types of cells. Any PSNR lower
than this value could cause false identification, likely as
a result of color and edge distortions. This PSNR level is
higher than that for acceptable DL performance (detection
F score of 0.89 at 5% compression ratio) but still within
a comparable range.

DISCUSSION

Uncompressed, a typical WSI of 200,000 × 200,000 would
require . 120 gigabytes of storage. Furthermore, a single
intervention may result in multiple slides being generated
(eg, prostate biopsy procedures routinely result in up to 12
different tissue slides being prepared and interrogated).
Taken together, it is likely that these images will need to
undergo significant compression for both transmission and
storage. This will be especially critical in the context of TP
applications in countries with limited Internet infrastructure
and bandwidth.1-3,27,28 These facilities also tend to lack
sufficient computational resources to autonomously de-
velop and deploy DL approaches. With a sufficient re-
duction in transmission overhead, however, it may be

possible to more routinely use TP as a service. This would
see expert centers developing computational approaches
and providing associated infrastructure so that others may
leverage those models via the uploading of their WSIs. To
minimize the storage and transfer burdens associated with
these DP images, one would ideally like to identify the
maximal level of compression possible while not sacrificing
diagnostic performance, both from the context of human
diagnostic and machine learning perspectives.

DL is becoming increasingly popular in the context of DP.5

Although recent research has investigated the effects of
compression on DL performance in natural images,15 rel-
atively little study has taken place in dp-based image
analysis tasks.11,29 We aimed to address that need by
studying the inverse relationship between compression and
performance of DL algorithms in DP images.

This work examined the effects of compression on DL in 3
representative use cases: nuclei segmentation (n = 137),
lymph node metastasis segmentation (n = 380), and
lymphocyte detection (n = 100). In all evaluated use cases,
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divided by original file size) for JPEG2000 compression. (B) Graph showing degradation of pixel-based area under the curve for test images with various
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Chen, Janowczyk, and Madabhushi

226 © 2020 by American Society of Clinical Oncology



our results suggest that JPEG2000 is superior to JPEG for
DP images. With JPEG2000 compression, file size could be
reduced by. 80% with almost no loss in DL or pathologist
performance irrespective of use case. Furthermore, files
could be compressed by 95% with , 2% loss in seg-
mentation and detection performance. In particular, im-
ages containing large homogeneous areas (ie, background)
exhibited higher compression ratios with less performance
loss. Features extracted from nuclei became significantly
compromised when the PSNR dropped below 40 dB, likely
because of changes in tissue texture and ambiguity in
nuclear morphology imparted by higher levels of com-
pression. Global graph features showed the most resilience
to compression as a result of their overall robustness to
incorrect nuclei detection. In general, the features that were
least stable to compression tended to model small areas of
tissue. Similarly, less dramatic performance degradation
was observed during the metastasis segmentation use

case, potentially as a result of the lower 5× magnification
being used. At this magnification, more resilient higher-
level image features (eg, entropy, texture, color) are more
prevalent rather than detailed properties derived from
cellular morphology, which tend to degrade quickly at
higher levels of compression.

In general, there is a careful balance to be found between
the quality and size of DP images when employing com-
pression. Our experiments show a PSNR of 40 dB (ap-
proximately 1:10 compression ratio based on the image)
results in almost no loss in DL performance. With task-
specific validation, a PSNR of 35 dB (approximately 1:20
compression ratio based on the image) may still allow ro-
bust DL performance with notably smaller file sizes. In-
terestingly, the pathologists’ minimum-needed compression
level for a confident read was concordant with the level
beyond which DL model performance deteriorated sig-
nificantly. Last, augmenting the training set with a range
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of compressed images did not seem to improve DL per-
formance on images compressed within the range of 30 to
40 db (F score of +.01), moderately improved DL per-
formance on more heavily compressed images (F score of
+0.05 to 0.093 in PSNR range 21-27 dB), and resulted in
minor improvement on intensely compressed images (F score
of +0.005 to 0.039 in PSNR range 18-20 dB; Appendix).

A recent study by Zanjani et al11 evaluated the impact of
JPEG2000 compression on a DL model for slide-based
breast lymph node metastasis detection. Our study con-
firms their findings: their DLmodels seemed to be robust up
to a compression ratio of 1:24 (96% reduction in size).
Another related study by Doyle et al29 evaluated both the
performance of the pathologist and that of a machine
classifier to detect prostate cancer on JPEG2000 com-
pressed DP images, although the machine classifier was
not a DL approach. Our study confirmed the conclusion
from their reader inspection experiments: the compression
threshold reported by their pathologist was in line with the
threshold reported by our pathologists (99.2% reduction in
size through JPEG2000 compression in metastatic cancer
segmentation in our study v 98.5% reduction in prostate
cancer diagnosis reported by Doyle et al29).

Our approach in this study differed from that of Zanjani
et al11 and Doyle et al29 in the following 2 ways. Firstly, our
study and that by Zanjani et al11 assessed the impact of
lossy compression on DL, whereas Doyle et al29 explored
the impact of JPEG2000 compression on a handcrafted
machine learning approach. Compared with the work of
Doyle et al29, the DL models were shown to be less robust to
compression artifacts than their CAD system. In both our
study and the Zanjani et al11 study, the maximum com-
pression allowed for confident performance (, 3% loss in
accuracy) from DL models was marginally smaller than that
reported by Doyle et al29 (99.6% v , 97% reduction in
size). An explanation for this performance discrepancy may
be that the machine classifier used by Doyle et al29 per-
formed cancer classification based solely on larger histo-
logic primitives, such as the size and location of gland
lumen. These high-level features tend to be robust under
heavy JPEG2000 compression, even though minute tissue
details (eg, textural features) are severely compromised.
Secondly, our study had a wider scope, because it explored
3 of the most common distinct DL-based use cases in
DP, covering both segmentation as well as detection tasks.

Real-world implementations of compression will need to
address the unique properties of each task.

Experiments were conducted using a NVidia Titan X GPU
(Santa Clara, CA). For use cases 1 and 3, model training
required approximately 3 hours, with output generation per
test image taking approximately 1 second. For use case 2,
because of the larger data set, 6 hours were required to
train the model, with approximately 1 minute needed to
generate output for each patient.

Our study did have limitations. Firstly, it is evident that DL
performance in the presence of compression artifacts is task
specific. Although the 3 use cases studied here are repre-
sentative of many DP tasks, they are by no means ex-
haustive, because there are many other DP applications of
DL, including tissue classification, outcome prediction, and
treatment response prediction. On the basis of the results of
this study, we recommend that in all cases, a compression
level resulting in a PSNR , 40 dB be evaluated carefully.
Secondly, only JPEG and JPEG2000 compression algo-
rithms were considered for evaluation in our study. To our
knowledge, most WSI slide-scanner manufactures use 1 of
these 2 approaches as the backbone of their proprietary
formats.19,30,31 As a result, their study is most likely to be
relevant in the storage and transmission of WSI images. That
said, as more powerful novel compression schemes are
introduced,32 tested, and routinely used in practice, future
work will be required to evaluate their respective com-
pression artifacts. Last, in our pathologist evaluation study,
each pathologist was tasked with visual assessment of
1 single use case. This is potentially a limitation of our
study. However, it seems in experimental results that
compression artifacts are subtly added to an image as
compression levels are increased until they reach a break-
ing point, after which the changes are abruptly severe. This
abrupt change in image quality may potentially explain the
low interexperiment variability observed in both patholo-
gists and DL models, suggesting low subjectivity in human
reader judgments.

In spite of these limitations, our study is the first compre-
hensive attempt to our knowledge to quantitatively evaluate
the effects of image compression on DL algorithms across
a variety of different use cases in the DP domain. It is our
hope that the findings in this study can serve as a guide to
identifying the appropriate degree of image compression for
both DP image analysis and TP-specific tasks.
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APPENDIX

Details of JPEG and JPEG2000 Compression

Peak signal-to-noise ratio. The peak signal-to-noise ratio (PSNR)
was used to quantify image fidelity loss in the presence of compression
artifacts. PSNR was calculated as described by Equations 1 and 2,
where the mean squared error (MSE) was computed between the
noise-free original m × n image I and its compressed approximation Î
according to:

MSE �
1
mn �

m−1

i�0
�
n−1

j�0

h
I
�
i, j

�
− Î

�
i, j

�i2
. (1)

PSNR is then defined as:

PSNR � 10log10
�
peakval2

�
MSE

�
, (2)

where peakval is the maximum pixel value possible depending on the
data type. In this case, it would be the highest value (pixel intensity)
presented on the image.

Image compression. Images were compressed at increasing levels
and saved into 2 common lossy formats, JPEG and JPEG2000.
JPEG2000 images were encoded from original TIFF images for all use
cases via the OpenJPEG library. The quality of the output was de-
termined by specifying the desired PSNR. Additionally, JPEG2000
compression algorithm supports tile-based compression, wherein
small blocks of the images are individually compressed and stitched
together. We applied various tile sizes for JPEG2000 compression for
the experiments pertaining to the first use case: tiles of 64 × 64, 128 ×
128, 256 × 256, and 512 × 512 were evaluated via deep learning (DL).
The trends in performance of the DL approach were consistent, al-
though minor differences across tile size were observed. The optimal
tile size observed was 256 × 256, which yielded the highest F score in
nuclei segmentation (, 1% difference compared with other tile sizes).
Interestingly, 256 × 256 was also the same tile size used in the original
TIFF images before our experiment.

JPEG images were compressed with open source software Image-
Magick, with the quality specified by the ImageMagick JPEG com-
pression algorithm ranging from an effective range of 1 to 95. Any
quality score . 95 shows little difference compared with 95. JPEG
compression does not support lossless compression, which means
that even if the quality score is set to 100, the compressed image
cannot be reconstructed into the original image, whereas JPEG2000
compression supports lossless encoding.

Training of Convolutional Neural Networks

All 3 of DL models were trained using a fixed batch size of 64. A typical
DL training scheme was then used: mean corrected batches were
introduced into the network, an error derivative was calculated, and
this was back-propagated through the network by updating the net-
work weights. During training, data set augmentation was enacted
by random rotations of {0, 90, 180, 270}, along with randommirroring.
All models were trained for 30 epochs using an exponentially
annealed learning rate. The final classifier was used for generating
the output masks.

Use case 2 (breast lymph nodemetastasis) saw the application of stain
normalization to the input images before training to help address the
large heterogeneity in stain presentation unique to that use case. To
improve classifier performance, false positive/negative sampling was
performed via the hypersampling of these regions from probability
masks generated from training data.

Details of Image Quality at Threshold Compression Level

for Acceptable Performance

The goal of this study was to find operating point extrema for both DL
approaches and pathologists, not to suggest that those extrema be

used in practice. Given the high image degradation at these extremes,
in practice one would instead aim to operate at a level where sufficient
detail is consistently present. An important takeaway from this study is
that given the robust performance of both humans and DL in the
context of visually appreciable compression artifacts, there is flexibility
in the selection of a practical compression level without fear of a sharp
drop in performance. That said, when comparing at high magnification
the difference between the original image (PSNR, 90 dB) and an image
at an 80% compression ratio (PSNR, 40 dB), only subtle differences
could be noted. However, when pushing toward 95% compression
ratio (PSNR, 30 dB), as the reviewer suggests, notable artifacts are
introduced (Appendix Fig A1). The figure shows that the low-
compression image has low-magnitude differences homogenously
dispersed through the image, whereas the high-compression image
has high-magnitude differences, often localized around regions of
higher complexity. From our observation of DL results, as well pa-
thologists’ rationales in picking out the threshold compression levels,
these changes are the changes on which both systems rely. Perfor-
mance drops significantly as a result of ambiguity after hitting these
threshold levels. As such, we believe the evidence suggests that higher
compression ratios than those currently used may potentially be used
without significant modifications to the image.

Improvement of DL Performance by Using Lossy

Compression As Form of Augmentation

An experiment was performed to explore whether using lossy com-
pression as a form of augmentation could improve the performance of
the DL models. The nuclei segmentation model in use case 1 was
retrained with lossy compression added to the data set augmentation,
where every single batch, before being passed to training, was
compressed with JPEG2000 with a PSNR setting from 18 to 40 dB (the
same levels the previous experiments used). This gave us a training
database 24 times as large as the original, which also resulted in
a significantly extended training time (approximately 20 times longer).
The results are shown in Appendix Figures A2 and A3. Interestingly,
a slight improvement (0.0073) in the F score of model performance on
uncompressed testing data was observed. Moreover, marginal (,
0.015) improvement in F score was observed for images compressed
with PSNR between 30 and 100 dB. Minor to significant improvement
(0.005-0.093) in F score was observed on more heavily compressed
images using a PSNR setting of 18 to 29 dB. This improvement was
observed to be within a normal distribution across the PSNR levels,
where most improvement (0.093) was observed at a compression level
of PSNR of 24 dB.

We believe the reason behind this observation is because compression
artifacts becomemore apparent and obvious as PSNR decreased until
the point at which (PSNR, 30 dB) the textural and gradient attributes of
the image (eg, edges, color, lines) are significantly obfuscated. Adding
compression noise to the training images slightly increased the gen-
eralizability of the model, which in turn resulted in a minor improve-
ment of model performance on uncompressed testing data. However,
images compressed with PSNR within the range of 23 to 30 dB
suffered from compression artifacts such as ringing, blocking, and
color distortion. These artifacts abruptly altered the shape, texture, and
edge attributes of the tissue images. However, the nuclear boundaries
were still detectable for this range of compression. As a result,
compression levels of 22 to 30 dB benefited the most from com-
pression-based augmentation. Finally, images that were compressed
with PSNR from 18 to 21 dB underwent a more dramatic image al-
teration to the point where the individual nuclei were barely visible.
Thus, little meaningful information was left to support the DL networks,
and little gain in performance was observed from compression
augmentation.

Even though there were significant improvements in DL performance
on more heavily compressed images, the added value behind using
lossy compression as a form of augmentation does not seem to be
significant. As discussed previously, compression operations with
PSNR below 30 dB are not recommended. Such lossy compression
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resulted in strong compression artifacts and substantial distortion to
original image. Additionally,, 5% compression ratios were achievable
by invoking a compression PSNR of 30 to 25 dB.

Additional DL parameters used: number of parameters, 16,777,216;
base learning rate, 0.01; solver type, SGD; batch size, 64; training
epochs, 30.

Features Derived From Nuclei Segmentation

Features derived from nuclei segmentation were as follows: area
standard deviation, area average, area minimum/maximum, area
disorder, perimeter standard deviation, perimeter average, perimeter
minimum/maximum, perimeter disorder, chord standard deviation,
chord average, chord minimum/maximum, chord disorder, side length
minimum/maximum, side length standard deviation, side length av-
erage, side length disorder, triangle area minimum/maximum, triangle
area standard deviation, triangle area average, triangle area disorder,
MST edge length average, MST edge length standard deviation, MST
edge length minimum/maximum, MST edge length disorder, area of
segmentation, number of nuclei, density of nuclei, average distance to
3 nearest neighbors, average distance to 5 nearest neighbors, average
distance to 7 nearest neighbors, average nearest neighbors in

a 10-pixel radius, average nearest neighbors in a 20-pixel radius,
average nearest neighbors in a 30-pixel radius, average nearest
neighbors in a 40-pixel radius, average nearest neighbors in a 50-pixel
radius, standard deviation nearest neighbors in a 10-pixel radius,
standard deviation nearest neighbors in a 20-pixel radius, standard
deviation nearest neighbors in a 30-pixel radius, standard deviation
nearest neighbors in a 40-pixel radius, standard deviation nearest
neighbors in a 50-pixel radius, disorder of nearest neighbors in a 10-
pixel radius, disorder of nearest neighbors in a 20-pixel radius, disorder
of nearest neighbors in a 30-pixel radius, disorder of nearest neighbors
in a 40-pixel radius, disorder of nearest neighbors in a 50-pixel radius,
number of nodes, number of edges, average degree, everage ec-
centricity, diameter, radius, average eccentricity 90%, diameter 90%,
radius 90%, average path length, clustering coefficient C, clustering
coefficient D, clustering coefficient E, number of connected compo-
nents, giant connected component ratio, average connected com-
ponent size, number of isolated nodes, percentage of isolated nodes,
number of end points, percentage of end points, mean edge length,
standard deviation of edge length, skewness of edge length, and
kurtosis of edge length.
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FIG A1. An illustration of the compression artifacts introduced into the original image at (top row) peak signal-to-noise ratio (PSNR) of 30 dB and
(bottom row) PSNR of 40 dB. The left column shows the uncompressed input image, the middle column shows the associated compressed image,
and the final column shows the difference between the original and compressed images after conversion to grayscale. The difference map is shown
using a divergent isoluminant blue-white-red (BWR) color map for easier visualization. As can be observed, difference between PSNR of 40 and 30
dB is even greater than the difference between PSNR of 40 dB and the original image. When comparedwith the original image, the image of PSNR of
40 dB showed only little compression noise of 0 to 4 difference in pixel value of 255 maximum in unit8. However, when the image is compressed to
a PSNR of 30 dB, much more intense compression artifacts can be observed on nonwhite regions.
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FIG A2. Segmentation F score of nuclei segmentation (use case 1)
models trained with and without using JPEG2000 compression as
a form of augmentation plotted on the same coordinate. As can be
observed, a minor improvement in F score was achieved for lightly
compressed images, whereas a more significant improvement in F
score was observed for more heavily compressed images.
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FIG A3. The improvement of F score using lossy compression as
a form of augmentation plot for different compression peak signal-to-
noise ratios (PSNRs) explored. As observed, lossy compression
augmentation improved the segmentation performance marginally
(, 0.015) on lightly compressed images with PSNR between 30 and
100 dB, whereas an improvement of 0.005 to 0.093 in normal
distribution was observed for images compressed with PSNR be-
tween 18 and 29 dB.
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