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Abstract: A novel carbazole-containing diamine (M-2,7-CPDA) isomer of our previously reported
diamine 2,7-CPDA, has been synthesized using a two-step synthesis. Compared with 2,7-CPDA,
the substituted position of amino is changed from para to meta for M-2,7-CPDA. The two diamines
were polymerized with pyromellitic dianhydride (PMDA) to prepare two isomeric polyimides (M-
2,7-CPPI and 2,7-CPPI), respectively. The effects of para/meta isomerism on microstructures and gas
barrier performances of the two isomeric polyimides were studied by positron annihilation test, X-ray
diffraction and molecular simulation. The results display that meta-connected M-2,7-CPPI has less
ordered chain structure and weaker hydrogen bonding than para-connected 2,7-CPPI, which leads
to loose chain stacking and thereby increased free volumes of M-2,7-CPPI. The higher free volumes
promote the solubility and diffusivity of gas in M-2,7-CPPI. As a result, the meta-linked M-2,7-CPPI
shows a lower gas barrier than its para-linked analog. The work provides guidance for the design
and synthesis of high-performance barrier polymers.

Keywords: polyimide; isomerism; structure-property relationship; molecular simulations; barrier properties

1. Introduction

Barrier polymeric materials have widespread applications for the packaging of food,
medicine, cosmetics, solar cells and flexible electronics display [1–3]. During usage, the
barrier polymers can prevent oxygen, water vapor and other gases from penetrating into the
package, thus extending the lifetime of products. Nowadays, with the rapid development of
flexible electronic devices, there is an increasing demand for flexible polymer substrates with
outstanding barriers as well as high heat resistance [4–6]. For instance, in the manufacturing
of solar cells and active matrix organic light-emitting display devices (AMOLED), the polymer
substrates are required to withstand a temperature higher than 400 ◦C [7–9]. At present,
the most used barrier polymers include poly(ethylene terephthalate) (PET), polyethylene
naphthalate (PEN), poly(vinylidene chloride) (PVDC), polyamide (PA), ethylene-vinyl alcohol
copolymers (EVOH) and so on. However, these conventional barrier polymers have low
thermostability and are usually used below 200 ◦C [10–14], which makes their application in
flexible substrates difficult.

Aromatic polyimides (PIs) possess exceptional heat resistance, good mechanical and
chemical performances, and have become an important material for flexible device sub-
strates [15,16]. Most PIs exhibit a glass transition temperature (Tg) higher than 350 ◦C.
However, conventional PIs possess poor barrier performances, which make it difficult for
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them to meet the packaging requirements of electronic products [17]. Hence, the research
on the barrier performances of PIs is of great significance for promoting their application
in flexible substrates.

Polyimides have the advantage of structural diversity. In addition, their molecular
structures possess high designability. The performances of PIs can be adjusted by structure
modification. Because the substituted positions or arrangement orders are changed, PIs
derived from isomeric monomers display different performances [18,19]. Many works have
studied the performance of PIs derived from various isomeric diamines or dianhydrides,
such as diaminodiphenyl sulfone (DDS) [20], oxydianiline (ODA) [21], bis(aminophenyl)
hexafluoropropane [22], biphenyltetracarboxylic dianhydride (BPDA) [23], diphenylsulfonete-
tracarboxylic dianhydride (DSDA) [24] and diphenylthioether dianhydride (TDPA) [25].
These studies mostly focused on the influence of structural isomerism on the thermal and
gas separation performances of PIs. However, no previous works have been conducted to
research the isomeric effect on the barrier properties of PIs.

In our previous study, a carbazole-containing diamine monomer (2,7-CPDA, see
Figure 1) was prepared and reacted with PMDA to obtain a high-barrier polyimide (2,7-
CPPI) [26]. Herein, to study the isomeric effect on the barrier performances of PIs, a new
diamine (M-2,7-CPDA, see Figure 1) was designed and synthesized. M-2,7-CPDA is an
isomer of 2,7-CPDA, in which the substituted position of amino is changed from para to
meta. The M-2,7-CPDA was then reacted with PMDA to prepare polyimide film (M-2,7-
CPPI). Figure 1 shows the equilibrated conformations of repeat units for M-2,7-CPPI and
2,7-CPPI. Compared with 2,7-CPPI, M-2,7-CPPI has a larger dihedral angle between imide
ring and benzene, thus leading to a more bent and distorted structure. These structural
differences will affect the microstructure and thereby the barrier performances of PIs.
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Figure 1. The chemical structures of monomers and the lowest energy conformation of M-2,7-CPPI and
2,7-CPPI repeat units.

Here, the thermal, mechanical and barrier performances of M-2,7-CPPI were investi-
gated and compared with those of 2,7-CPPI. Molecular simulation has become an important
means to study the microstructure and gas penetration of polymers at a microscale level [27].
For revealing the effect of structural isomerism on the barrier performances of PIs, molecu-
lar simulation, positron annihilation test and X-ray diffraction were adopted to analyze
the chain morphology and stacking, free volume, hydrogen bonding, permeation trajec-
tory, diffusion and adsorption behavior of PIs. This helps to understand the relationships
between structures and barrier performances and provides theoretical guidance for the
development of high-barrier polymers.
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2. Experimental Section
2.1. Experimental Materials

Experimental materials are displayed in Supplementary Materials.

2.2. Instrumentation

Characterization instruments are shown in Supplementary Materials.

2.3. Molecular Simulation

PIs models with 5 molecular chains were constructed, where each molecular chain
contains 25 repeat units. The equilibrated models were used to analyze the free volume
feature, aggregation structure, gases solubility and diffusion. The model creation and
simulation details are given in the Supplementary Materials.

2.4. Synthesis of 2,7-Bis(3-nitrophenyl)-9H-carbazole (M-2,7-CPDN)

3-Nitrophenylboronic acid (75 mmol), 2,7-dibromo-9H-carbazole (30 mmol) and THF
(400 mL) were added in a 1000 mL three-necked flask. Then, Aliquat 336 (15 drops) and 2 M
aqueous K2CO3 solution (112.5 mL) were placed and stirred for 0.5 h under argon at room
temperature. After that, (Pd [(P(C6H5)3]4) was added with stirring for 24 h at 75 ◦C. The result-
ing product was chromatographed on a column chromatography (dichloromethane/n-hexane
(v/v = 1/1)). Yield: 85%. IR (KBr, v, cm−1): 1520 (−NO2 stretching), 1262 (C−N stretching),
1086~802 (δ Ar−H). 1H NMR (400 MHz, DMSO-d6) δ 11.54 (s, 1H), 8.54 (t, J = 2.0 Hz, 2H),
8.38–8.18 (m, 6H), 7.91 (d, J = 1.2 Hz, 2H), 7.81 (t, J = 8.0 Hz, 2H), 7.62 (dd, J = 8.2, 1.6 Hz,
2H); 13C NMR (100 MHz, DMSO-d6) δ 148.95, 143.15, 141.52, 136.19, 134.04, 130.98, 122.73,
122.30, 121.79, 118.71, 110.02; EIMS m/z (%): 409 (100) [M]+, calcd for C24H15N3O4, 409.1,
Anal. Calcd for C24H15N3O4: C 70.41, H 3.69, N 10.26; found: C 70.29, H 3.72, N 10.31.

2.5. Synthesis of 3,3′-(9H-Carbazole-2,7-diyl)diamino (M-2,7-CPDA)

Ethanol (450 mL) and M-2,7-CPDN (20 mmol) were poured into a three-necked flask.
After heating to 80 ◦C, 0.5 g of 10% Pd/C catalyst and 16 mL of hydrazine monohydrate
were placed into the mixture and stirred for 24 h. Then, the catalyst was cleared away by
filtration. The product was collected by recrystallization. Yield: 93%. IR (KBr, v, cm−1): 3412
(N−H stretching), 1603 (δ N−H), 1262 (C−N stretching), 1086~802 (Ar−H stretching). 1H
NMR (400 MHz, DMSO-d6, δ): 11.32 (s, 1H, NH), 8.13 (d, J = 8.1 Hz, 2H, Ar H), 7.64 (s, 2H,
Ar H), 7.38 (dd, J = 8.2, 1.0 Hz, 2H, Ar H), 7.14 (t, J = 7.8 Hz, 2H, Ar H), 6.97 (s, 2H, Ar H),
6.89 (d, J = 7.6 Hz, 2H, Ar H), 6.59 (d, J = 7.9 Hz, 2H, Ar H), 5.18 (s, 4H, NH2); 13C NMR
(100 MHz, DMSO-d6, δ): 149.10, 141.87, 140.80, 138.75, 129.39, 121.43, 120.36, 117.86, 114.71,
112.88, 112.48, 108.53; EIMS m/z (%): calcd for C24H19N3, 349.16; Found: 349. [M]+, Anal.
Calcd for C24H19N3: C 82.49, H 5.48, N 12.03; found: C 82.17, H 5.66, N 12.49.

2.6. Synthesis of Polyimide M-2,7-CPPI

A solution of M-2,7-CPDA (12 mmol) in 18 mL of anhydrous DMF was added in a flask
under argon. Then, PMDA (12 mmol) was added. After stirring for 6 h, a viscous poly(amic
acid) (PAA) solution was formed. After that, the PAA precursor was casted onto a glass
substrate and thermally imidized at 100 ◦C, 200 ◦C, 300 ◦C, and 400 ◦C for 1 h, respectively.
The obtained polyimide membrane (M-2,7-CPPI) was then released from the substrates. IR
(KBr, v, cm−1): 1776 and 1710 (imide carbonyl stretching), 1367 (imide −C−N).

3. Results and Discussion
3.1. Synthesis and Characterizations of Monomers

The synthesis approach of M-2,7-CPDA is shown in Scheme 1. Firstly, M-2,7-CPDN was
synthesized from 2,7-dibromo-9H-carbazole and 3-nitrophenylboronic acid by Suzuki reaction.
Then, M-2,7-CPDN was reduced to diamine M-2,7-CPDA. NMR, FT-IR, elemental analyses
and mass spectra were used to confirm the chemical structure of monomers. Figure S4 and
Figure 2 present the NMR spectra of M-2,7-CPDN and M-2,7-CPDA, respectively. Figures S5
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and S6 display the mass spectra of M-2,7-CPDN and M-2,7-CPDA, respectively. The FT-IR
spectra of M-2,7-CPDN and M-2,7-CPDA are shown in Figure S7. All the above results are in
accordance with the pre-designed structures of M-2,7-CPDA and M-2,7-CPDN, certifying the
successful synthesis of the M-2,7-CPDA monomer.
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3.2. Synthesis and Characterizations of PI

The polyimide was formed by the two-step polycondensation reaction (Scheme 2). M-2,7-
CPDA was polymerized with PMDA to prepare PAA, which was thermally cyclodehydrated
to yield M-2,7-CPPI. The weight-average molecular weight (Mw) of poly(amic acid) was
6.71 × 104 and the polydispersity (PDI) was 1.95. The FT-IR spectra are displayed in Figure S7.
The M-2,7-CPDA exhibited absorption bands at 3412 cm−1 (N−H stretching) and 1603 cm−1

(δ N−H), which are disappeared in M-2,7-CPPI. In addition, M-2,7-CPPI displayed absorption
bands at 1776 and 1710 cm−1 (carbonyl stretching) and 1367 cm−1 (C−N stretching), indicating
the successful preparation of M-2,7-CPPI membranes.
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3.3. Thermal and Mechanical Performances

The thermal performances of M-2,7-CPPI are evaluated by DSC, TGA, TMA and DMA
and compared with that of our previously reported para-isomer 2,7-CPPI. The results are
shown in Figures S8–S11, and related values are summarized in Table 1. M-2,7-CPPI showed
superior thermal performances with Td5% and Td10% of 563 ◦C and 601 ◦C (Table 1), which were
comparable to that of para-based 2,7-CPPI. The thermostability of the two PIs was better than
those of most commercial and reported aromatic PIs. This was mainly because of the planar
rigid structures. From TMA and DMA curves, it can be seen that two transitions occur. The one
at high temperature corresponded to glass transition (Tg), and the one at low temperature (near
120 ◦C) corresponded to the secondary β-relaxation [28–30]. The β-relaxation is originated
from the rotational motions of local moieties [28]. Two coefficient of thermal expansion
(CTE) values of M-2,7-CPPI before and after β-relaxation were determined from 40–100 ◦C
and 150–300 ◦C, respectively. These are 6.39 ppm/K and 49.52 ppm/K, whereas para-based
2,7-CPPI exhibited a relatively low CTE of 2.89 ppm/K. The thermal expansion property of PI
membranes is strongly associated with the structural linearity/rigidity of polymer chains [31].
The bent and distorted structure of M-2,7-CPPI destroyed the chain alignment, thus leading to
a high CTE value. The 2,7-CPPI exhibited higher mechanical performances than M-2,7-CPPI.
The linear polymer backbone structure of para-linked 2,7-CPPI promoted the dense chain
packing and formation of hydrogen bonding, which in turn resulted in higher mechanical
properties and lower CTE.

Table 1. Thermal and mechanical properties of M-2,7-CPPI and 2,7-CPPI.

PI Tg
1

(◦C)
Tg

2

(◦C)
Td5%
(◦C)

Td10%
(◦C)

CTE 3

(ppm·K−1)

Tensile
Strength

(MPa)

Tensile
Modulus

(GPa)

Elongation at
Break (%)

2,7-CPPI 4 413 437 556 580 2.89 143.8 ± 3.5 4.5 ± 0.2 9.3 ± 0.4
M-2,7-CPPI 395 437 563 601 6.39, 49.52 120.0 ± 3.1 2.0 ± 0.2 7.6 ± 0.3

1 measured by DSC; 2 measured by DMA; 3 The two coefficient of thermal expansion (CTE) values of M-2,7-CPPI are determined from
40~100 ◦C and 150–300 ◦C, respectively; 4 The values are obtained from Ref. [26].

3.4. Barrier Properties

The gas barrier of M-2,7-CPPI is compared with 2,7-CPPI, as shown in Table 2. The meta-
isomer M-2,7-CPPI showed favorable barrier performances with water vapor transmission rate
(WVTR) and oxygen transmission rate (OTR) of 10.2 g·m−2·day−1 and 12.1 cm3·m−2·day−1,
respectively, which are comparable to that of conventional barrier polymers such as PET
and PA [32,33]. The para-isomer 2,7-CPPI displayed better barrier properties compared to
its meta-counterpart M-2,7-CPPI. The barrier performance difference between the two iso-
meric polyimides will be discussed in the following sections from the aspects of aggregation
structure, free volume, gas diffusion and solubility.
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Table 2. Barrier properties M-2,7-CPPI and 2,7-CPPI films.

PIs WVP (g·mil·m−2·day−1) OP (cm3·mil·m−2·day−1) WVTR (g·m−2·day−1) OTR (cm3·m−2·day−1)

2,7-CPPI 1 0.3 ± 0.02 0.5 ± 0.03 0.1 ± 0.01 0.2 ± 0.01
M-2,7-CPPI 30.3 ± 0.6 35.8 ± 0.6 10.2 ± 0.2 12.1 ± 0.2

1 The barrier properties values are obtained from Ref. [26].

3.5. Aggregation Structure Analysis

The aggregation structure of PIs was investigated with WAXD, as shown in Figure 3.
The meta-isomer M-2,7-CPPI showed a diffraction peak at 15.10◦ with d-spacing of 5.86 Å,
while in para-based 2,7-CPPI, the diffraction peak was shifted to 21.91◦ with d-spacing low
to 4.05 Å (Table 3), implying the loose molecular packing of M-2,7-CPPI. The density of
M-2,7-CPPI was smaller than that of 2,7-CPPI (Table 3). Additionally, the chain stacking
was determined by radial distribution functions (RDFs). The interchain RDFs based on
all the C atoms in the benzene ring and all N atoms in the imide ring are analyzed and
displayed in Figure S12a,b, respectively. M-2,7-CPPI demonstrated a lower g(r) value than
2,7-CPPI in Figure S12a. The chain packing difference between the two isomeric polyimides
may be a consequence of chain morphology.
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Table 3. Physical properties of the M-2,7-CPPI and 2,7-CPPI.

PI Density
(g·cm−3)

2θ
(◦)

d-Spacing
(Å)

Rg

(Å)
N 1

(H-Bonds)
CED

(J·cm−3)

2,7-CPPI 1.57 21.91 4.05 54.3 49 570
M-2,7-CPPI 1.56 15.10 5.86 47.5 38 456

1 The number of hydrogen bonds in the simulation cells.

Figure 4 illustrates the polymer chain conformation of M-2,7-CPPI and 2,7-CPPI with
25 repeat units under the lowest energy. The meta-isomer M-2,7-CPPI showed bent and
distorted chain structure, whereas that of 2,7-CPPI was linear and regular. In addition, the
radius of gyration (Rg) was studied for the two isomeric polyimides. The Rg as a function
of time for the equilibrated M-2,7-CPPI and 2,7-CPPI are illustrated in Figure S13. The
average Rg values are given in Table 3. 2,7-CPPI showed a larger Rg than M-2,7-CPPI,
indicating its more stretched chain structure [34].
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3.6. Hydrogen Bonds Analysis

Intermolecular forces also affect chain stacking. For M-2,7-CPPI and 2,7-CPPI, hydrogen
bonds can be formed between O=C− and −NH−. The radial distribution functions (gAB(r))
of O atoms in O=C− and H atoms in −HN− were determined for M-2,7-CPPI and 2,7-CPPI
to study the hydrogen bonds. The result is given in Figure 5. Hydrogen bond forces are
considered to have the distances between atoms of 2.6–3.1 Å [35]. In Figure 5, peaks were
observed in the range of 2.6–3.1 Å for the two PIs, proving that hydrogen bonds were formed.
Obviously, 2,7-CPPI displayed a larger g(r) value than M-2,7-CPPI in that range, implying
there are more hydrogen bonds in the 2,7-CPPI matrix. Figure 6 illustrates the hydrogen bonds
generated in the M-2,7-CPPI cell, verifying the presence of hydrogen bonds between O=C−
and −NH−. Statistical analysis indicated that 38 and 49 hydrogen bonds were generated in
the M-2,7-CPPI and 2,7-CPPI cells, respectively (Table 3). When the linkage was changed from
para to meta, the regularity of polymer chains in M-2,7-CPPI was decreased, and the compact
chain stacking was hampered. The less ordered and packed structure of M-2,7-CPPI hindered
the formation of hydrogen bonds, leading to a decreased number of hydrogen bonds. This
also can be revealed from the cohesive energy density (CED) results in Table 3. The CED of
2,7-CPPI was 570 J/cm3, which decreased to 456 J/cm3 for M-2,7-CPPI. The distorted chain
structure and weak hydrogen bonding gave rise to the loose chain packing of M-2,7-CPPI.
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3.7. Free Volumes Analysis
3.7.1. Positron Annihilation Test

The molecular chain morphology and aggregation structure have a substantial ef-
fect on the free volumes of PIs and thereby the barrier performances [36,37]. Positron
annihilation lifetime spectroscopy (PALS) was utilized to analyze the free volumes of PIs.
The positron lifetime plots and data are shown in Figure 7 and Table 4. Based on the
second lifetime component (τ2) and its intensity (I), the mean radius (R) and size (Vf2) of
free volume and relative fractional free volume (FFV) were determined according to our
previous study [26]. The para-isomer 2,7-CPPI showed R and FFV of 2.14 Å and 6.82%,
whereas, for meta-based M-2,7-CPPI, those were increased to 2.26 Å and 7.46%.
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Table 4. The analyzed data for the positron lifetime in the M-2,7-CPPI and 2,7-CPPI films.

PI τ1
(ns)

I1
(%)

τ2
(ns)

I2
(%)

R
(Å)

V f2

(Å3)
FFV 1

(%)
FFV 2

(O2,%)
FFV 2

(H2O,%)
FFV0 2

(%)

2,7-CPPI 3 0.17 7.4 0.34 92.4 2.14 41.03 6.82 6.29 11.51 35.33
M-2,7-CPPI 0.16 12.6 0.35 85.7 2.26 48.33 7.46 7.05 12.32 37.90

1 FFV determined by PALS. 2 Free volume parameters calculated by simulations, FFV (O2), FFV(H2O) and FFV0 based on probe radii of
1.73 Å, 1.325 Å and 0 Å, respectively. 3 The values are obtained from Ref. [26].

3.7.2. Molecular Simulations

Free volume features, including size distribution and connectivity, were considered as
key parameters determining gas transport performance [38,39]. Molecular simulations were
conducted to study the free volume. The distributions of void size were shown in Figure 8a.
Compared with para-isomer 2,7-CPPI, meta-based M-2,7-CPPI had a greater number of holes
with a radius larger than 0.8 Å, but fewer holes with a radius smaller than 0.8 Å. The kinetic
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radii of H2O and O2 are larger than 0.8 Å (O2: 1.73 Å, H2O: 1.325 Å). This suggested that M-
2,7-CPPI had more cavities for H2O and O2 permeation in comparison with 2,7-CPPI, which
led to high gas permeability and therefore decreased barrier performances of M-2,7-CPPI.
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The relationships between probe radius and FFV of the two PIs are studied and shown
in Figure 8b. With the increase of probe radius, the FFV of the two polyimides decreased. The
meta-based M-2,7-CPPI exhibited larger FFV than 2,7-CPPI in the whole radius range. The to-
tal fractional free volume (FFV0) was simulated using a probe radius of 0 Å. The FFV (O2) and
FFV (H2O) were also calculated using the kinetic radii of O2 and H2O as probe radii. Table 4
lists the FFV0, FFV (O2) and FFV (H2O) values. The meta-based M-2,7-CPPI showed higher
FFV values than 2,7-CPPI, in agreement with the PALS analysis. The accessible volume mor-
phologies of H2O and O2 in the two PIs are presented in Figure 9. The para-isomer 2,7-CPPI
possessed smaller and disconnected holes, while those in meta-based M-2,7-CPPI were bigger
and well-connected. Changing the linkage from para to meta reduced the molecular chain
order, which hindered the tight chain packing and weakened the intermolecular hydrogen
bonding. Consequently, the number and size of free volumes increased, thus bringing about
high gas permeability and thereby decreased barrier performances of M-2,7-CPPI.
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3.8. Gas Transport Behavior

From the perspectives of gas diffusion and solubility, gas transport behavior is investi-
gated to understand the barrier performance difference between the two isomeric polyimides.

3.8.1. Gas Diffusivity

The diffusivity behaviors, including trajectory and displacement of O2 and H2O in the
PI matrices, were studied and shown in Figure 10 and Figure S14, respectively. Oxygen
and water molecules had two motion statuses in the PI matrix. One was the oscillation in
the voids, and the other was occasional jumps from one void to an adjacent void [40]. As
shown in Figure 10 and Figure S14, the movement distance and frequency of oxygen and
water in para-isomer 2,7-CPPI were lower, whereas those in meta-based M-2,7-CPPI were
larger, indicating that oxygen and water had higher mobility in the M-2,7-CPPI matrix.
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The MSD vs. time plots of H2O and O2 in the two polyimides are presented in Figure 11.
According to Einstein’s equation, the diffusion coefficients (D) of O2 and H2O were determined
from normal diffusion interval, in which the plot slope was unity. The D values are shown
in Table 5. The meta-based M-2,7-CPPI displayed larger D values of H2O and O2 compared
with those of 2,7-CPPI. Changing the linkage from para to meta disrupted chain packing
and weakened intermolecular forces, thus leading to increased free volume. As a result, the
diffusion coefficients of H2O and O2 were enhanced in M-2,7-CPPI. Additionally, it can be
found that in a fixed PI matrix, the D of O2 was larger than that of H2O, even though the
kinetic radius of O2 was bigger. This was mainly owing to the high interaction between the
polar water molecule and the PI, impeding H2O diffusion [41].
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Table 5. Simulated diffusion coefficients, solubility coefficients and permeability for O2 and H2O in M-2,7-CPPI and 2,7-CPPI.

PIs
D 1 S 2 P 3

H2O O2 H2O O2 H2O O2

2,7-CPPI 3.24 6.55 0.64 0.013 2.07 0.09
M-2,7-CPPI 7.84 14.20 2.39 0.044 18.74 0.62

1 Units of (10−8cm2/s). 2 Units of (cm3(STP) cm−3·cmHg−1). 3 Units of (10−8cm2·cm3(STP)·s−1·cm−3·cmHg−1).

3.8.2. Gas Solubility

For a better understanding of gas sorption behaviors, the gas sorption isotherms of
H2O and O2 were analyzed and exhibited in Figure 12. The sorption isotherms of H2O and
O2 in the two PIs can be elucidated by a typical dual-mode sorption model [42]. When the
pressure was low, the Langmuir’s sorption dominated, which occurred in the micro-voids.
At high pressures, Henry mode sorption took place in free volume among the chains. The
obtained solubility coefficients (S) in M-2,7-CPPI and 2,7-CPPI are listed in Table 5. The
meta-based M-2,7-CPPI presented higher S values of H2O and O2 than para-based 2,7-CPPI.
In addition, the sorption sites of H2O and O2 in the two PIs are displayed in Figure 13.
M-2,7-CPPI had larger sorption loading of H2O and O2 than 2,7-CPPI. As discussed above,
meta-based M-2,7-CPPI possessed a larger number and size of free volumes, providing
more sites for gas sorption. This was the main reason for the higher S value in M-2,7-CPPI.
It is worth mentioning that the S of H2O was higher than that of O2 in a fixed PI. This was
mostly ascribed to the high affinity between PI and H2O and the smaller size and high
critical temperature of H2O [43].
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3.8.3. Gas Permeability

The permeability coefficient (P) was calculated with the equation P = D× S as elucidated
by the solution-diffusion mechanism [44] and is shown in Table 5. The simulated P of O2 and
H2O in the two isomeric polyimides displayed the same variation trend with the experimental
values, proving the viability of molecular simulation on gas permeability. Altering the
linkage from para to meta impeded the dense chain stacking and thus increased free volumes,
promoting the gases diffusivity and solubility. Consequently, the meta-based isomer M-2,7-
CPPI showed increased gas permeability and therefore reduced barrier properties.

4. Conclusions

A diamine (M-2,7-CPDA) bearing carbazole moiety was synthesized by a two-step
method. This diamine is an isomer of our previously reported diamine 2,7-CPDA, in which
the substituted position of amino is altered from para to meta. Both diamines were polymerized
with PMDA to obtain two isomeric polyimides (M-2,7-CPPI and 2,7-CPPI). The two isomeric
PIs showed comparable thermal stability. Meta-linked M-2,7-CPPI had lower mechanical
properties and higher CTE than para-linked 2,7-CPPI. Molecular simulation, PALS and WAXD
were employed to explore the effect of molecular isomerism on barrier performances of
polyimides. Compared with para-linked 2,7-CPPI, meta-linked M-2,7-CPPI displayed loose
chain stacking caused by the less ordered chain structure and weaker hydrogen bonding,
which led to higher FFV of M-2,7-CPPI. The higher free volumes benefited the gases diffusivity
and solubility in M-2,7-CPPI matrix. Consequently, the meta-linked M-2,7-CPPI displayed a
lower gas barrier than its para-linked analog. This research provides inspiration for the design
of high-performance barrier polymers.
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