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ABSTRACT

Regardless of the advent of high-throughput
sequencing, microarrays remain central in current
biomedical research. Conventional microarray
analysis pipelines apply data reduction before the
estimation of differential expression, which is likely
to render the estimates susceptible to noise from
signal summarization and reduce statistical power.
We present a probe-level framework, which capital-
izes on the high number of concurrent measurements
to provide more robust differential expression esti-
mates. The framework naturally extends to various
experimental designs and target categories (e.g. tran-
scripts, genes, genomic regions) as well as small
sample sizes. Benchmarking in relation to popular
microarray and RNA-sequencing data-analysis pipe-
lines indicated high and stable performance on the
Microarray Quality Control dataset and in a cell-
culture model of hypoxia. Experimental-data-
exhibiting long-range epigenetic silencing of gene
expression was used to demonstrate the efficacy of
detecting differential expression of genomic regions,
a level of analysis not embraced by conventional
workflows. Finally, we designed and conducted an ex-
periment to identify hypothermia-responsive genes in
terms of monotonic time-response. As a novel insight,
hypothermia-dependent up-regulation of multiple
genes of two major antioxidant pathways was
identified and verified by quantitative real-time PCR.

INTRODUCTION

Regardless of the advent of high-throughput sequencing,
microarrays remain central in current biomedical research,

as their maturity arguably enables more accurate tran-
scriptional profiling in some situations (1,2) and facilitated
analysis due to lower data volume. As microarrays
continue to be a cost-effective tool for probing large-
scale gene expression, they are likely to remain the
method of choice in focused clinical and diagnostic
settings not seeking to identify novel sequence variants.
Moreover, public databases such as ArrayExpress and
Gene Expression Omnibus (3,4) contain microarray data
from tens of thousands of experiments and this vast data
source will remain uncontested by sequencing datasets in
the coming years. State-of-the-art high-density micro-
arrays such as Affymetrix Gene� and Exon� arrays
produce millions of probe-level signals representing most
of the transcriptome. Although it is desirable to make
optimal use of this rich information, the appearance of
modern high-density microarrays has not led to the estab-
lishment of dedicated analysis methodologies. On one
hand, thousands of genes are interrogated simultaneously
making it possible to ‘borrow’ information across genes
when estimating differential expression (DE) (5). On the
other hand, as each gene is interrogated dozens of times
replicated measurements can be integrated to yield a more
robust DE estimate. As a rule, however, probe-level infor-
mation is summarized into probe-set values precluding its
use directly in computing DE estimates (6). Such practice
is not optimal as the number of variables available for
inferring DE is reduced, which, in turn, can lead to the
reduction in statistical power. This issue can become
critical when the number of replicates per treatment is
small as in most microarray experiments.
Here, we introduce a novel DE analysis methodology

designed to take advantage of the high number of concur-
rent measurements provided by high-density microarrays.
The estimation of DE is central to the study of gene
expression and, usually, the term is used to refer to a
statistically significant difference in the experimentally
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determined abundance of an mRNA species between two
treatments (7,8). We propose a generalized framework,
which naturally extends to many target categories (e.g.
transcripts, genes, genomic regions, etc.) with DE
referring to any statistically significant response of
interest. We demonstrate that the proposed methodology
is robust and versatile in terms of handling small sample
sizes and different experimental designs.
Given multiple probes per target, an intuitively appeal-

ing approach would be to treat probes as voters. As a
result, each target can receive between ni and 0 votes in
favor of DE, where ni is the number of probes specific to
target i. As ni varies substantially, a practical measure of

DE would be ri ¼
Xi

ni
, where Xi is the number of differen-

tially expressed probes specific to target i. Testing for the

alternative hypothesis ri > rreference where rreference ¼
X�Xi

n�ni

with X and n representing the total number of differen-
tially expressed probes and the total number of probes on
the array, respectively, involves the pooling of information
from all probes to produce a target-specific estimate of
DE. A test for the enrichment of target i-specific differen-
tially expressed probes in relation to the reference can be
formulated in terms of the hypergeometric distribution
yielding the probability of the null-hypothesis

P ri � rreferenceð Þ ¼
Xni
a¼Xi

a+b
a

� �
c+d
c

� �

n
a+c

� �

where b=X – Xi, c=ni – Xi, d= n – ni – (X – Xi). The
equation corresponds to the Fisher’s exact test with the
alternative hypothesis ri > rreference:
In the present context, an important aspect of the test

is that its power to reject the null hypothesis is dependent
on ni: As demonstrated by power simulations based
on realistic figures (Figure 1A), targets with ni � 3 have
an �60% chance of being detected as differentially
expressed even if the enrichment is substantial
(ri ¼ 0:8 versus rreference ¼ 0:1Þ: As the proportion of
such targets on modern high-density microarrays is
<5% (Figure 1B), it does not represent a major
drawback for transcriptome analysis. On the other hand,
the power to detect small differences in proportions
(ri ¼ 0:3 versus rreference ¼ 0:1Þ is high for ni > 40: It
might appear counterintuitive at first, but very high sensi-
tivity can be potentially harmful as ri ¼ 0:3, for example,
contains substantially more evidence against the DE of
target i even if significantly different from the reference
rate. The question of a biologically meaningful difference
between ri and rreference is related to the issue of meaningful
fold-change (9,10) and there might not exist a single sat-
isfactory solution. With that in mind, we propose an
optional upper limit u for ni: Censoring ni to u and adjust-
ing X̂i ¼ Xi �

u
ni
limits sensitivity when testing targets with

ni> u thereby reducing the likelihood of falsely rejecting
the null hypothesis. Based on our experience, a suitable
value for u is �30, which is close to the median of gene-
specific probes on high-density microarrays produced by
Affymetrix. The fact that the significance of ri is

determined relative to the background rate of differen-
tially expressed probes, yields an interesting property of
DEMI getting increasingly sensitive as the global signal
profiles converge between samples. This feature is rather
practical as the user is more likely to be interested in small
differences when comparing inherently similar samples. Of
note, as DEMI was designed specifically for estimating
DE, currently, the accompanying software does not
produce target-specific estimates of expression level.

MATERIALS AND METHODS

DEMI software

The accompanying software is available at http://biit.cs.
ut.ee/demi.

DEMI algorithm

DEMI is a probe-level framework to test for DE in micro-
array data. By design, it takes advantage of the fact that
on modern high-density microarray platforms each target
sequence is interrogated by many complementary probe
sequences. The workflow consists of three-steps: (i) nor-
malization of raw signal intensities, (ii) evaluation of
probe-level signal dynamics and (iii) estimation of DE of
the target in question. Normalization is necessary to
render the signal distributions of individual arrays com-
parable and there are several ways to do it (e.g. ranking
procedures, quantile normalization, etc.). Here, we have
used relative ranking, because it provides an intuitive
measure of gene expression by referring to its magnitude
in relation to all other signals on the array (e.g. with 0 and
100 corresponding the weakest and strongest signals, re-
spectively). In the second step, the evaluation of probe
signal will establish whether the effect of the experimental
treatment(s) is statistically significant on the probe level.
Naturally, the choice of the test depends on the experi-
mental design and the research question. In this study, for
example, we have used Wilcoxon–Mann–Whitney test to
establish DE between two experimental conditions and
Kendall’s tau statistic to evaluate the departure of
temporal expression dynamics from monotonicity. The
final step, estimation of DE on the target level, is based
on the hypergeometric probability for the enrichment of
differentially expressed probes among target-specific
probes (referred to as on-target probes) relative to the
complement (i.e. off-target probes). Fundamentally, in-
stances of different target categories such as exons, tran-
scripts, genes and genomic regions are represented by
proper subsets of the probes included on the array.
Consequently, testing for the enrichment of differentially
expressed probes among on-target probes as opposed to
the off-target probes will correspond to the degree of DE
of the target in question.

As an example of how the framework can be applied to
the study of differential gene expression we present a non-
parametric workflow identifying differentially expressed
targets between a test sample (TEST) and a reference
sample (REFERENCE). Given a dataset of m TEST
and n REFERENCE individuals, each represented by an
array of q independent gene-expression measurements
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(m, n> 0; q � 0; m, n, q2N) an input matrix X ¼ ðxijÞ is
constructed where i ¼ 1 . . . q and j ¼ 1:::m+n: The rows of
X correspond to independent measurements (equivalent to
oligonucleotide probes on the array) and the columns cor-
respond to individuals. In the first step, a normalizing
transformation is applied column-wise to X whereby the
signal distribution in each individual is normalized by con-
verting the q signals into relative ranks

Xnorm ¼
1

q
� R�1jjR�2jj . . . jjR�m+nð Þ � 100 ð1Þ

where Xnorm is the normalized input matrix, R�i is a vector
of ranks corresponding to column i of the input matrix
and jj is the concatenation operator for column vectors.

Relative ranking was chosen as the preferred method over
other popular normalizing transformations such as
quantile normalization and absolute ranking, because we
find relative ranks to be intuitively easier to interpret and,
hence, more meaningful to the end-user. Unlike quantile-
normalized signals, the median relative rank is independ-
ent of the median signal intensity (it is always located �50)
and, unlike absolute ranks, relative ranks are independent
of the number of probes q (the normalized signal is always
located between 0 and 100). For example, a relative rank
of 25 indicates an expression level coinciding with the first
quartile of the observed intensities.
In the second step, a statistical test is applied row-

wise to Xnorm in order to classify probes as expressed
higher or lower in TEST in relation to REFERENCE.
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Figure 1. (A) Power analysis of Fisher’s exact test. For each combination of input parameters, the average of 1000 simulations is plotted.
(B) Distribution of gene-specific probe counts. (C) Performance analysis based on DE estimates from simulated gene-expression data. For each
combination of analysis parameters the average of 100 simulations is plotted.
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Wilcoxon–Mann–Whitney rank sum test was chosen as
the method, because it makes fewer assumptions about
the signal distribution than t-test and it is less sensitive
to outliers. Given the set of probes Q={q1, . . . ,qq},

vectors of equivalent normalized measurements Xnorm
i

and the sets M={m1, . . . ,mm}, O={o1, . . . ,on} of
column indices corresponding to TEST and
REFERENCE individuals, respectively, we will define
the set of up-regulated probes H and the set of down-
regulated probes L. For m, n >3, the sets are defined as

H ¼ qi : if Phigher rið Þ < 0:05
� �

ð2Þ

L ¼ qi : if Plower rið Þ < 0:05
� �

ð3Þ

where ri is a vector of ranks corresponding to row i of the
normalized input matrix and Phigher and Plower correspond
to the h0 probability of obtaining a sum of ranks equal to
and higher or lower, respectively, than the observed rank
sum of TEST. In situations where m � 3 or n � 3, the fol-
lowing heuristic was used:

H ¼ qi : if rij > rik
� �

ð4Þ

L ¼ qi : if rij < rik
� �

ð5Þ

where ri� is a vector of ranks corresponding to row i of
the normalized input matrix, j 2M and k 2 O:
Accordingly, when one of the sample sizes was �3, a
probe was labeled as differentially expressed only if all
TEST ranks were either lower or higher than
REFERENCE ranks. The heuristic is useful in situ-
ations where a P-value below 0.05 is theoretically unob-

tainable ðe:g: m!�n!
ðm+nÞ! � 0:05Þ and a probe is to be classified

as higher or lower in TEST if the sum of ranks in TEST
individuals equals the maximum or the minimum,
respectively.
Finally, in step 3, our aim is to identify the targets ex-

pressed higher or lower in TEST in relation to
REFERENCE. Here, the targets refer to genes, tran-
scripts or genomic regions. Following the core principle
of oligonucleotide microarray design, the t targets
(0	 t	 q; t2N) were related to the q independent expres-
sion measurements by a 100% identity between the
nucleotide sequences of the probe and the target. Given
a set of targets T={t1, t2, . . . , tt} with target ti relating to a
predetermined subset of probes Qti 2 Q based on
sequence identity and given sets of distinct probe expres-
sion profiles H,L 2 Q two complementary DE estimates
can be obtained for each target. Since the situation can
be conceptualized as a sampling without replacement
problem, the hypergeometric probability distribution was
used to obtain estimates under the null hypothesis of
making jQti j draws randomly:

Phigher tið Þ ¼
XjQti

j

k¼jQti
\Hj

Phg k,jHj,jQnHj,jQti j
� �

ð6Þ

Plower tið Þ ¼
XjQti

j

k¼jQti
\ Lj

Phg k,jLj,jQnLj,jQti j
� �

ð7Þ

where Phg is the hypergeometric distribution function.
When targets are exons in the context of a gene, the
formulas above are modified to yield the following:

Phigher tið Þ ¼
XjQti

j

k¼jQti
\Hj

Phg k,jGti \Hj,jGtinHj,jQti j
� �

ð8Þ

Plower tið Þ ¼
XjQti

j

k¼jQti
\Lj

Phg k,jGti \Lj,jGtinLj,jQti j
� �

ð9Þ

where Gti is the set of probes targeting the gene corres-
ponding to target ti. Of note, there is no need to calculate
Phigher for ti if jQti \Hj ¼ 0 and the same applies for Plower

if jQti \ Lj ¼ 0 as the result is by Definition (1). If Q is
taken to represent the set of genes targeted by the array
with H and L being the up- and down-regulated genes,
respectively, and T is a collection of gene ontologies each
represented by a gene set Qti then Equations (6) and (7)
yield gene ontology (GO)-level DE estimates. This meth-
odology is well known and it belongs among the Class 1
gene-category tests defined in (11) which have been
criticized for the increased incidence of Type I errors
due to correlations between gene-expression profiles
(12,13). However, this problem can be ameliorated by
using a more stringent FDR procedure, which is the
solution opted below. Furthermore, in the context of func-
tional annotation analysis, Type II errors have much more
serious consequences (e.g. failure to detect a differentially
expressed pathway) than labeling a fraction of negatives as
positives.

After adjusting the P-values for multiple hypotheses
testing by the FDR procedure (14), the resulting estimates
<0.05 were considered statistically significant. For target
categories where a substantial overlap of targets in terms
of on-target probes is anticipated (transcripts, genomic
regions and functional categories) a modified version of
the FDR procedure under dependency (15) is used to
control Type I error rate.

Microarray and Taqman� datasets

Datasets based on MicroArray Quality Control (MAQC)
project’s samples of Human Brain Reference RNA, HBR
(Ambion) and Universal Human Reference RNA, UHR
(Stratagene) were obtained for the following platforms:
GeneChip� Human Genome U133 Plus 2.0
(Affymetrix), GeneChip� Human Gene 1.0 ST Array
(Affymetrix), GeneChip� Human Exon 1.0 ST
(Affymetrix), Taqman� (Applied Biosystems) (Table 1).
Four technical replicates were used for the subsequent
analysis in all platforms.

Analysis of RNA-seq datasets

Two different RNA-seq datasets (Table 2) based on HBR
and UHR samples were obtained from the NCBI’s Gene
Expression Omnibus database (GSE12946, GSE24283).
The reads were mapped with TopHat (19) (version 1.3.3)
that uses Bowtie (20) (version 0.12.7) to obtain the align-
ments. Annotation information and the indices were built
on the data downloaded from the Ensembl database
(build GRCh37.p12). The mapped reads were used to
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estimate differential gene expression between HBR and
UHR samples using three state-of-the-art methods:
EdgeR (21) (R package, version 3.0.8), DESeq (22) (R
package, version 1.10.1) and Cuffdiff2 (23) (stand-alone,
version 2.0.2). EdgeR and DESeq estimates were based on
gene-level read counts produced by HTSeq (http://www-
huber.embl.de/users/anders/HTSeq/) version 0.5.3p9,
using flags ‘–stranded=no –mode=union –type=exon’.

Sequence retrieval and annotation

Probe sequences of Affymetrix gene-expression arrays
were downloaded from the company’s website (www.
affymetrix.com). Genome and transcriptome sequences
corresponding to release 73 of Ensembl were downloaded
from Ensembl’s public FTP site (ftp.ensembl.org), anno-
tation tables for matching identifiers were downloaded
from Ensembl’s BioMart using biomaRt package (http://
www.bioconductor.org/packages/release/bioc/html/bioma
Rt.html).

Genomic karyotype information was obtained from
Ensembl databases using bioperl-1.2.3 (http://www.
bioperl.org) and Ensembl Perl API (http://www.ensembl.
org/info/data/api.html).

Probe sequence alignment

Probe sequences were aligned to the genome, transcrip-
tome and exome using the Blat application (24). An un-
gapped alignment of at least 23 nucleotides was required
to produce a hit. Probe annotations are summarized in
Supplementary Table S1.

Processing of microarray data

To compare DEMI with state-of-the-art workflows for
DE analysis four different probe set summarization
methods were used: RMA (25), FARMS (26), DFW (27)
and PLIER (http://media.affymetrix.com/support/tech
nical/technotes/plier_technote.pdf). RMA, FARMS and
DFW were applied using the implementation provided
in the xps package (http://www.bioconductor.org/pack

ages/devel/bioc/html/xps.html) and PLIER was applied
using Affymetrix Power Tools (http://www.affymetrix.
com/estore/partners_programs/programs/developer/tools/
powertools.affx). All methods were applied with default
parameters. Probe sets were mapped to the corresponding
Ensembl gene ID’s based on annotation data downloaded
from Ensembl’s BioMart.

DE estimates from Taqman� assays in MAQC data

Gene-expression data from Taqman� assays pertaining to
Human Brain Reference RNA and Universal Human
Reference RNA samples was retrieved from Gene
Expression Omnibus (GEO:GSE5350). In the dataset,
normalized gene expression levels were obtained by the
MAQC consortium using the formula 2CTPOLR2A�CTi

where CTi refers to the cycle threshold of the gene of
interest and POLR2A gene is the reference. We estimated
DE between the two RNA samples by comparing
normalized expression values from replicate assays using
Student’s t-test followed by Bonferroni correction using R
software (www.r-project.org). Genes with adjusted
P-value< 0.05 were labeled as differentially expressed.
The list of differentially expressed genes based on
Taqman assays was used as the reference during
benchmarking.

Performance evaluation of DE estimation in MAQC data

DE estimates from microarray data were obtained by
Limma (28), RankProd (29,30) and DEMI while the esti-
mates from Taqman� assays were used as the reference
when evaluating performance. The number of true posi-
tives (TP), false positives (FP), true negatives (TN) and
false negatives (FN) were calculated on the intersection of
gene identifiers in the prediction and reference datasets. A
prediction was labeled as TP if the corresponding adjusted
P-values were significant in both datasets and there was an
agreement in the direction of DE (i.e. higher/lower expres-
sion in the Human Brain Reference RNA when compared
to Universal Human Reference RNA in both datasets). A
prediction was labeled TN if the corresponding adjusted
P-values were insignificant in both datasets. A prediction
was labeled FP if the corresponding adjusted P-value was
significant in the prediction dataset, but not in the refer-
ence dataset. Finally, a prediction was labeled FN if the
corresponding adjusted P-value was insignificant in the
prediction dataset, but significant in the reference
dataset. The number of true positives, false positives,
true negatives, false negatives and the MCC were
calculated using the ROCR package in R (http://cran.
r-project.org/web/packages/ROCR/).

Analysis of array permutations

For comprehensive testing of performance on sample sizes
n 2 f3,2g, all m by n permutations of the m=4 original
arrays were created. Each permutation of the test sample
was compared against all permutations of the reference.
For each comparison, the performance indicators were
obtained by calculating the mean value across the
selected FDR cutoffs. The performance indicator for
each analysis workflow was obtained by averaging

Table 1. Microarray and Taqman� datasets representing MAQC

reference samples in this article

Platform Accession Reference

Human Genome U133 Plus 2.0 GEO:GSE9819 (16)
Human Gene 1.0 ST GEO:GSE9819 (16)
Human Exon 1.0 ST GEO:GSE13069 (17)
Taqman� GEO:GSE5350 (18)

Table 2. Number of spots per sample for RNA-seq datasets repre-

senting MAQC reference samples in this article

Dataset HBR UHR

GEO:GSE12946 17246957 8069964
GEO:GSE24283 53238798 59461348
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across all comparisons. Significance analysis of MCC
values obtained for various workflows under identical
conditions was performed using paired t-test.

Retrieval of GO information

The child categories of all GO terms were retrieved using
Ensembl Perl API. Ensembl gene identifiers corresponding
to each GO category were downloaded using biomaRt
package providing programmatic access to the
Ensembl’s Biomart database. Gene list corresponding to
a GO category was compiled from gene identifiers
associated with the category and its children.

Analysis of long-range epigenetic silencing data

The dataset (GEO:GSE19726) contained two replicate
gene-expression measurements by Human Gene 1.0 ST
array (Affymetrix) of normal prostate epithelial cells
(PrEC) and the prostate cancer cell line LNCaP. A list
of putative candidate regions subject to long-range epigen-
etic silencing (LRES) in prostate cancer was obtained
from Table 1 of the original study (31). DEMI was used
to estimate DE in 0.5-Mbp genomic windows overlapping
by 50%. The original comparison and the two null per-
mutations of the arrays were analyzed. Due to overlap in
the genomic windows, P-values were adjusted for multiple
testing using the method by Benjamini and Yekutieli (15),
a default setting in DEMI when genome is the target.
Adjusted P-values< 0.05 were considered statistically sig-
nificant. Minimally, a 0.25-Mbp overlap between a down-
regulated genomic window and a candidate LRES locus
was required to label the LRES locus as detected by
DEMI.

Enrichment analysis of differential epigenetic modification

The ChIP-chip data from (31) (MAT scores from two
arrays per cell line and histone modification type) repre-
senting H3K9 acetylation and H3K27 tri-methylation in
LNCaP and PrEC cells were downloaded from Gene
Expression Omnibus (accession no. GSE19726). Before
statistical testing, the MAT scores were quantile
normalized in R (package preprocessCore) to ensure com-
parable signal distributions between the arrays.
Differential chromatin modification was estimated in the
same genomic regions as analysed for DE by DEMI. All
probes mapping to the genomic region of interest were
included in the analysis. Differential chromatin modifica-
tion of a genomic region was estimated using probe-wise
paired t-test between LNCaP and PrEC arrays followed
by Bonferroni correction. Enrichment of regions exhibit-
ing differential chromatin modification was estimated
among differentially expressed genomic regions using the
hypergeometric probability distribution.

Primary cell culture model of hypoxia

Around 1 million primary mouse embryonic fibroblasts
(Millipore) were seeded onto 100-mm culture dishes and
were grown in DMEM (high glucose 4.5 g/l, supplemented
with 10% FBS and L-glutamine, PAA) in normal condi-
tions (atmospheric oxygen, 5% CO2 at 37
C) until

60–70% confluent. Hypoxia was initiated by lowering
the oxygen concentration to 1% in a multi-gas incubator
(Sanyo). The experiment was carried out in five biological
replicates per experimental condition. After 24 h, RNA
was extracted from the hypoxic and normoxic cells by
Trizol� (Life) followed by large scale gene expression
profiling with Mouse Exon 1.0 ST array (Affymetrix) ac-
cording to manufacturer’s protocols. Briefly, 50 ng of total
RNA from each sample was amplified using the Ovation
Pico WTA system V2 (Nugene). Fragmentation and biotin
labeling was done using the Encore-Ovation cDNA Biotin
Module (Nugene). The labeled samples were hybridized to
the Mouse Exon 1.0 ST array (Affymetrix). The arrays
were washed and stained with phycoerytrin conjugated
streptavidin (SAPE) using the Affymetrix Fluidics
Station� 450, and the arrays were scanned in the
Affymetrix GeneArray� 3000 scanner to generate fluores-
cent images, as described in the Affymetrix GeneChip�

protocol. Cell-intensity (CEL) files were generated in the
GeneChip� Command Console� Software (AGCC)
(Affymetrix).

Primary cell-culture model of hypothermia

Around 1 million primary mouse embryonic fibroblasts
(Millipore) were seeded onto 100-mm culture dishes and
were grown in DMEM (high glucose 4.5 g/l, supplemented
with 10% FBS and L-glutamine, PAA) in normal condi-
tions (atmospheric oxygen, 5% CO2 at 37
C) until
60–70% confluent. Hypothermia was initiated by
lowering the temperature of the cell culture incubator to
32
C. The control arm of the experiment was incubated at
37
C. Three dishes per group were incubated for various
durations (0, 0.5, 1, 2, 4, 8, 18 h) followed by extraction of
RNA with Trizol (Life). Pooled RNA from the three rep-
licates was subjected to large-scale gene-expression
profiling on the Mouse Gene 1.0 ST array (Affymetrix)
according to manufacturer’s protocols. RNA was
amplified and labeled using the Ambion WT Expression
Kit (Applied Biosystems) according to manufactures in-
structions. As input, 250 ng total RNA was used. The
labeled samples were hybridized to the Mouse Gene 1.0
ST GeneChip� array (Affymetrix). The arrays were
washed and stained with phycoerytrin conjugated
streptavidin (SAPE) using the Affymetrix Fluidics
Station� 450, and the arrays were scanned in the
Affymetrix GeneArray� 3000 scanner to generate fluores-
cent images, as described in the Affymetrix GeneChip�

protocol. CEL files were generated in the GeneChip�

Command Console� Software (AGCC) (Affymetrix).

Quantitative real-time PCR

Total RNA was extracted from cells using Trizol�

Reagent (Invitrogen, USA) according to the manufac-
turer’s protocol. First-strand cDNA was synthesized
with random hexamers (Invitrogen, USA) and
SuperScriptTM III Reverse Transcriptase (Invitrogen,
USA). The following Taqman� (Applied Biosystems)
assays with FAM-labeled probes were used in the study:
Mm00483336_g1 (Cirbp), Mm01253561_m1 (Nqo1),
Mm00515065_m1 (Gss), Mm00443675_m1 (Txnrd1),
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Mm01609819_g1 (Rbm3), Mm00802655_m1 (Gclc),
Mm00769566_m1 (Srxn1), Mm01281449_m1 (Vegfa).
Assay Mm01158416_g1 (Ywhaz) with VIC-labeled probe
was used as reference. qPCR reactions were run on the
ABI PRISM 7900HT Fast Real-Time PCR System equip-
ment (PE Applied Biosystems, USA) and quantified with
the ABI PRISM 7900 SDS 2.2.2 software. For each assay,
an average of four technical replicates was used as the
endpoint.

Enrichment analysis of HIF-1- and HIF-2-binding sites in
hypoxia-induced genes

Lists of high-stringency HIF-1- and HIF-2-binding sites
were obtained from the Supplementary Material of
Schödel et al. (32). Annotation table linking human gene
identifiers (RefSeq) to corresponding mouse orthologs
(Ensembl) was downloaded from Ensembl using R
(package biomaRt). As some of the human gene identifiers
did not map to a mouse orthologue we were able to
identify 295 mouse orthologs of HIF-1 targets and 245
orthologs of HIF-2 targets. Enrichment of putative Hif-1
and Hif-2 target genes was estimated among significantly
up-regulated genes using the hypergeometric probability
distribution.

RESULTS

Computer simulations

To test the reasoning above, we performed 100 simula-
tions of microarray experiments with two groups
(N=4) involving 45 000 genes and around 1.3 million
probes. Up- and down-regulation of randomly picked
1000 genes was simulated by adding a fold-change of 2
or �2 to the log2-transformed intensities of 80% of target-
specific probes ði:e: ri ¼ 0:8Þ: Noise was added by
applying the same fold-change to a randomly chosen
10% of the remaining probes ði:e: rreference � 0:1Þ: False
discovery rates and Matthews correlation coefficient
(MCC) were studied after adjusting two limiting values,
u (the maximum number of probes matching to a target)
and t (the maximum number of distinct targets matching
to a single probe). In the baseline setting, both u and t
were not in effect. Setting t to 1 caused a considerable
reduction in the number of false positives, which was
expected as differentially expressed probes mapping to
multiple targets affect multiple ri� s (Figure 1C). Setting
u to 30 had a less pronounced albeit still beneficial effect
on the false positive rate (FPR). On average, only two
false positives were found when both of the parameters
were in effect. Taken together, the simulations suggest
that on artificial data DEMI produces highly accurate
results when t=1 and u=30.

MAQC data

To benchmark DEMI in relation to established methods
of high-throughput gene-expression analysis, the most
comprehensively characterized dataset, the MAQC refer-
ence samples (18), was studied. The dataset included three
microarray platforms (Table 1) and high-throughput

RNA-sequencing data (RNA-seq) from independent
sources (Table 2). Microarray data was analyzed by
DEMI and eight conventional DE analysis workflows.
Performance was evaluated at different sample sizes
(N={4 . . . 2}) using numerous well-established metrics
including area under receiver-operator curve (AUC),
MCC, true positive rate (TPR), FPR, true negative rate
(TNR) and false negative rate (FNR). Cutoff-dependent
metrics (MCC, TPR, FPR, TNR, FNR) were summarized
as the average of two FDR cutoffs (0.05, 0.01). For com-
parison, two RNA-seq datasets representing the MAQC
samples were analyzed by three state-of-the-art methods
(Cuffdiff 2.0, DESeq, edgeR).
To offer a better overview of the benchmarking

endpoints, appropriate performance indicators were
juxtaposed on radial plots, which we refer to as ‘balanced
performance plots’ (Figure 2). Perfect performance is rep-
resented on these plots by a colored plane occupying most
of the upper semicircle while the lower semicircle remains
blank. The benchmarking results are also available in nu-
merical form (Supplementary Material, file 2). Overall,
DEMI exhibited most stable performance across the
tested microarrays and sample sizes (Figure 2A).
RankProd appeared to lack power at the given FDR
cutoffs as indicated by a relatively lower TPR, higher
FNR and a larger difference between AUC and MCC.
Limma was the most sensitive method at N={4, 3} in
terms of the TPR, but it exhibited a relatively higher
FPR and, consequently, similar MCC to DEMI.
Performance plots of PLIER appeared less consistent
between the arrays than was the case for the other nor-
malization methods. Significance analysis of MCC values
obtained for various workflows indicated small, but
mostly significant differences under otherwise identical
conditions (Supplementary Material, file 3). We conclude
that the performance of DEMI is comparable to the best-
performing workflows, but it is more stable across arrays
and sample sizes. Benchmarking of the RNA-seq data
analysis pipelines revealed somewhat lower MCC in
relation to the best-performing microarray analysis
methods (Figure 2B). While DESeq and edgeR displayed
higher TPR than array analysis methods, it came at the
expence of a notably higher FPR resulting in MCC values
�0.3. Cuffdiff 2.0 was the most conservative of the three
with substantially lower TPR, a very low FPR and an
MCC slightly inferior to the other RNA-seq analysis
methods.

Cell culture model of hypoxia

In order to benchmark DEMI in experimental settings, we
sought to set up and validate a novel in vitro model of
hypoxia using a primary cell culture of mouse embryonic
fibroblasts. The fact that the transcriptional mechanisms
of hypoxia response have been extensively studied enabled
us to validate the cell model and the analysis
methodologies in relation to established knowledge in
the field (33,34). The cells were subjected either to 24 h
of 1% O2 or atmospheric oxygen followed by large-scale
gene-expression profiling using the Mouse Exon 1.0 ST
array (Affymetrix). Differential gene-expression estimates
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Figure 2. Performance analysis of DE analysis pipelines on the MAQC data. Performance of each pipeline is presented as a radial plot,
which includes results from three microarrays (A) or two distinct RNA-seq datasets (B) based on six complementary performance indicators.
Abbreviations: AUC, MCC, TPR, FPR, TNR and FNR.
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from eight workflows were submitted to functional
category analysis in g:Profiler (35) while the built-in
analysis was used in DEMI (Supplementary Material,
files 4–5). We looked for the up-regulation of the GO
categories ‘cellular response to hypoxia’ (GO:0071456)
and ‘glycolysis’ (GO:0006096) as indicators of the
hypoxia response (36). Nearly all workflows displayed
perfect pathway detection rate when N � 3 whereas only
DEMI had perfect detection rate at N ¼ 2 indicating that
both pathways were detected as significantly upregulated
in all 2-element subsets of the original samples with N=4
(Figure 3). To provide an additional measure of accuracy
the enrichment of mouse orthologs of HIF-1 targets
among hypoxia-induced genes was studied (Table 3).
Most methods produced a highly significant enrichment
of putative Hif-1 target genes among up-regulated genes
when N� 3. DEMI was least affected by the reduction in
sample size as indicated by a robust enrichment of
putative Hif1-target genes when N=2. Essentially
similar results were obtained for putative Hif-2 targets
(Supplementary Table S2).

LRES

To demonstrate that DEMI can evaluate the expression of
unconventional target categories, such as genomic regions,
it was applied to gene-expression data related to LRES.
LRES refers to the suppression of gene expression from
large chromosomal regions and it might be related to
cancer progression (37). The original study used several
independent lines of evidence to identify putative
epigenetically silenced genomic regions in prostate
cancer (31). Here, we used DEMI to identify down-
regulated genomic regions in prostate cancer cell line
LNCaP in relation to normal prostate epithelial cells
from two replicate gene-expression array measurements
per cell line as provided by the original study. DEMI
identified 2242 of the 22 630 genomic regions (each
region spanning 0.5 Mbp) as down regulated
(Supplementary Material, file 6). In array permutations
corresponding to the null hypothesis the fraction was an
order of magnitude smaller (222 and 201). In total, 38 out
of the 47 putative LRES loci identified in the original
study were found to be significantly down-regulated
(81%). Furthermore, the enrichment of putative LRES
loci among down-regulated regions was highly significant
(p=3.04e-13, Fisher’s Exact Test). The enrichment was
not apparent in array permutations corresponding to the
null hypothesis (pP1=0.961; pP2=1, Fisher’s Exact Test).
To confirm that differentially expressed genomic regions
are associated with altered chromatin modification
between LNCaP and PrEC cells we compared the levels
of H3K27 tri-methylation and H3K9 acetylation based on
ChIP-chip data from the original study. Similarly to the
original study it was confirmed that the down-regulation
of H3K9ac is associated with silenced genomic regions
(p=5.400E-22, hypergeometric probability distribution)
while the up-regulation of H3K9ac is prevalent among
up-regulated regions (p=7.990E-05, hypergeometric
probability distribution) in LNCaP cells when compared
to PrEC (Table 4). No significant association between

H3K27me3 and DE was found. Taken together, present
results indicate that DEMI accurately identifies genomic
regions that are candidates for long-range epigenetic
modification of gene expression.

Cell culture model of hypothermia

Finally, we devised a strategy to demonstrate that DEMI
can handle novel experimental designs unrelated to group-
wise comparisons. Therapeutic hypothermia is a clinically
effective treatment for various hypoxic and ischemic con-
ditions (38–40), but the associated molecular mechanisms
remain unclear. To gain insight into hypothermia-induced
transcriptional response, mouse embryonic fibroblasts
were exposed to mild hypothermia (32
C) or
normothermia (37
C) for increasing time periods. We
aimed to identify genes with temporally near-monotonic
response as the most obvious candidates for mediating the
therapeutic effects of hypothermia. Monotonicity is char-
acteristic of many physiological responses (including the
activation of transcription) as demonstrated by the wide
applicability of the Michaelis–Menten kinetics and the
Hill equation, which describe nonlinear and saturable
mechanisms (41). We reasoned that a near-monotonic
temporal relation between gene expression and hypother-
mia is a more selective indicator of a causal relation than
the comparison of treatment to control at any single point
in time. Importantly, the experimental design required
only 13 arrays to study hypothermic and normothermic
response at seven time points. The departure of probe-
level responses from monotonicity was evaluated using
Kendall’s tau statistic, a measure of rank correlation.

DEMI

RMA

DFW

PLIER

RMA

DFW

FARMS

PLIER

0.0 0.2 0.4 0.6 0.8 1.0
Detection rate

N = 2N = 3N = 4

RankProd

Limma

FARMS

Figure 3. Performance analysis of DE-analysis pipelines on data from
mouse embryonic fibroblasts exposed to 1% O2 for 24 h. The plot
depicts the combined detection rate of GO categories ‘cellular
response to hypoxia’ (GO:0071456) and ‘glycolysis’ (GO:0006096) as
indicators of hypoxia response. The data is plotted as mean±standard
error of all possible comparisons between subsets of size N of the
hypoxic and normoxic groups (original N=4).
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We identified 1750 and 274 genes with significantly
monotonic-like temporal response to hypothermia and
normothermia, respectively (Supplementary Material,
files 7 and 8). The previously established hypothermia-
responsive gene Cold inducible RNA-binding protein,
Cirbp (42,43) was found among the top-five of up-
regulated genes with 24 probes out of 25 exhibiting a stat-
istically significant monotonic-like response (Figure 4A).
In contrast, none of the Cirbp-specific probes displayed a
significant response when incubated at 37
C (Figure 4B)
validating both the experimental design and our analysis
strategy. As a novel insight, we identified time-dependent
increase in the expression of multiple genes related to the
two major antioxidant pathways, the glutathione and
thioredoxin systems (Table 5). Results from the micro-
array study were confirmed by qPCR (Figure 5). To our
knowledge, this is the first study to report coordinated up-
regulation of antioxidant gene expression by hypothermia.

DISCUSSION

DEMI makes a notable departure from the conventional
methods of DE analysis (5,6,44) in a couple of respects.
First, a variety of statistical tests can be used to evaluate

DE on probe level. Such flexibility can be used to adapt
the method to a variety of experimental designs. Here we
have demonstrated the use of Wilcoxon–Mann–Whitney
test and Kendall’s tau to calculate probe-level statistics for
two-group comparisons and time-series, respectively.
Similarly, it should be possible to adapt DEMI to factorial
designs (using probe-level ANOVA) and to identifying re-
lationships between covariates (ANCOVA), for example.
Second, DEMI summarizes probe-level responses after
testing for DE, whereas conventionally, probe signals
are summarized before testing. Our results suggest that
having more data points at disposal enables more robust
evaluation of DE by compensating for the loss of statis-
tical power when N is very small. Finally, it seems likely
that DEMI can be adapted to the analysis of RNA
sequencing and proteomic data as well. Fundamentally,
both RNA-seq and proteomic analysis of tryptic
peptides estimate the abundance of the target by concur-
rent quantification of its numerous fragments. As there are
a number of practical issues, which need to be addressed, a
thorough discussion is currently out of scope.

In the present article, several unrelated datasets were
used to evaluate the performance of DEMI. The datasets
were chosen carefully to include different application
domains (e.g. gene versus genomic region-expression
analysis), experimental designs (comparison of two
groups versus time-series experiment), and to enable com-
prehensive bechmarking (MAQC data, evaluation of
hypoxia response). First, twelve DE estimation workflows
were benchmarked on the MAQC reference samples
including data from three microarray platforms and two
RNAseq studies. While it can be argued that the average
gene expression study might not be faithfully represented
by the MAQC reference samples (differences between the
Human Brain RNA and Universal Human RNA samples
appear to be uncommonly large and there is a lack of
biological variation between replicates) the fact that the
samples have been thoroughly characterized by various
gene-expression assays makes it an attractive dataset for
benchmarking. In the present article, an indicator of
major differences between the MAQC reference samples

Table 3. Enrichment of mouse orthologs of HIF-1 targets among significantly up-regulated genes in mouse embryonic fibroblasts exposed to

1% O2 for 24 h

Normalization DE N=4 N=3 N=2

Mean SEM Mean SEM Mean SEM

Relative ranking DEMI 3.0E-25 NA 4.3E-22 2.4E-22 6.0E-19 5.4E-19
DFW Limma 1.4E-28 NA 3.5E-23 2.2E-23 0.617 0.081
DFW RankProd 1.4E-30 NA 2.2E-23 1.5E-23 8.2E-08 4.8E-08
FARMS Limma 9.5E-22 NA 2.5E-21 1.9E-21 0.457 0.082
FARMS RankProd 6.8E-20 NA 3.1E-10 2.1E-10 0.037 0.011
PLIER Limma 9.4E-10 NA 0.9 0.1 1 0
PLIER RankProd 3.5E-01 NA 1 0 1 0
RMA Limma 6.0E-19 NA 1.7E-14 1.5E-14 0.481 0.083
RMA RankProd 1.4E-18 NA 4.3E-13 2.1E-13 0.001 4.6E-04

Differential gene expression was estimated by nine pipelines including various normalization and DE-analysis methods. The data is presented as
mean and standard error of hypergeometric P-values from all possible comparisons between subsets of size N of the hypoxic and normoxic groups
(original N=4). N, sample size; SEM, standard error of mean; NA, not available.

Table 4. Enrichment of regions exhibiting differential epigenetic

modification among differentially expressed genomic regions between

LNCaP and PrEC cell lines

Higher
modification
level in LNCaP

Lower
modification
level in LNCaP

Modification

Higher expression
level in LNCaP

0.998 0.266 H3K27me3
7.990E-05 1 H3K9ac

Lower expression
level in LNCaP

0.102 1 H3K27me3
1 5.400E-22 H3K9ac

Significant P-values (hypergeometric probability distribution) indicate
that down-regulation of H3K9ac is associated with silenced genomic
regions while up-regulation of H3K9ac is prevalent among up-regulated
regions in LNCaP cells when compared to PrEC. No significant asso-
ciation was found between DE and H3K27me3.
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was the considerably higher rate of differentially expressed
probes in the MAQC data when compared to the tissue
culture model of hypoxia (38% in MAQC samples versus
11% in hypoxia). Our argument is substantiated by the
consensus that hypoxia exerts wide-spread effects on gene
expression (36,45).

In order to evaluate DE workflows in a more natural
context, we devised and conducted an experiment
comparing the transcriptomes of hypoxic and

normoxic mouse embryonic fibroblasts. Our choice was
motivated by the facts that the molecular mechanisms of
hypoxia response have been extensively characterized
and relevant pathways are included in the GO
database. Accordingly, we were able to evaluate the
accuracy of pathway-level DE predictions based on the
detection rate of pathways linked to the experimental
response by definition. We believe that this approach
has high validity and it should be preferred over
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Figure 4. Large-scale analysis of temporal dynamics of transcription in mouse embryonic fibroblasts exposed to mild hypothermia. (A and B)
Temporal profiles of probe expression levels of selected genes during mild hypothermia (A) and normothermia (B). The solid blue line indicates a
linear fit to the data points and the gray shadowing represents standard error of the fit.

Table 5. Genes responding to increasing durations of hypothermia with significantly monotonic increase in expression and relating to the antioxi-

dant system

Gene ID Symbol P-value FDR System

ENSMUSG00000003849 Nqo1 9.04E-35 4.72E-30 Quinone detoxification
ENSMUSG00000032802 Srxn1 1.23E-19 2.14E-16 Glutathione
ENSMUSG00000027610 Gss 1.08E-13 4.74E-11 Glutathione
ENSMUSG00000020250 Txnrd1 4.29E-11 9.83E-09 Thioredoxin
ENSMUSG00000032350 Gclc 4.29E-11 9.83E-09 Glutathione
ENSMUSG00000000811 Txnrd3 9.85E-09 1.19E-06 Thioredoxin
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computer simulations, which are unlikely to capture the
probe- and target-level correlations arising from biolo-
gical and technical causes in natural datasets (12,46,47).
Next, the dataset of Coolen et al. (31) was used to dem-

onstrate the efficacy of DEMI in detecting DE on the
genomic level, a level of analysis rarely approached by
traditional DE workflows. As epigenetic modification of
chromatin can have widespread effects on DNA expres-
sion, we expect this type of analysis to be of great rele-
vance. Finally, we devised and validated a novel method
for detecting temporally near-monotonic expression
patterns to demonstrate that DEMI is extendable
beyond two-group comparisons. In consequence, we
identified hypothermia-dependent up-regulation of genes
encoding for major constituents of the antioxidant
response as a possibly novel route for the therapeutic
effects of hypothermia.
As endorsed by the MAQC consortium (48), we used

MCC (49) as the indicator for benchmarking performance

on the MAQC reference samples, because it is informative
when the distribution of the two classes in a dataset is
skewed. Based on the Taqman� assays, the numbers of
positive and negative findings was 569 and 298, respect-
ively, substantiating the choice of MCC as a primary per-
formance indicator. For an even more comprehensive
view, a number of related performance indicators, such
as AUC, TPR, FPR, TNR and FNR, were included in a
single radial plot we termed as a balanced performance
plot. Although related, MCC and AUC represent different
approaches to performance as the former is cutoff-
dependent while the latter is not. As statistical reasoning
is usually based on a predetermined significance level (e.g.
P< 0.05), there are potentially many cases where AUC
might not yield meaningful results. For example, given
vector pi (i=1 . . . n) of n P-values the AUC is calculated
by integrating the ROC curve over the range of pi whereas
in the context of statistical testing cutoff t is used for re-
jecting the null hypothesis. As AUC is cutoff-independent,
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Figure 5. Temporal expression profiles of selected genes during mild hypothermia (32
C) and normothermia (37
C) as reported by quantitative real-
time PCR. Expression level of Ywhaz was used as reference. The mean of three replicates and standard error has been plotted.
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an estimator with pi > t can still yield excellent AUC
values even though TPR and FPR at t are 0 in which
case MCC is 0. Using MCC and AUC simultaneously
has the benefit of identifying cases where the predictions
are accurate (based on AUC), but the method lacks stat-
istical power at the given cutoff (indicated by MCC) as
was the case with RankProd in the current study.

In parallel with the increasing popularity of high-
throughput sequencing platforms, there have been
numerous claims that studying gene expression by
RNA-seq technology is superior to microarray analysis
(23,50–53). Of the aforementioned publications, two
studies (23,50) compared the performance of RNA-seq
and microarrays in terms of DE-detection accuracy. For
a number of reasons, the studies do not provide substan-
tial evidence for the increased accuracy of RNA-seq-based
estimates. For example, the dataset used by Marioni et al.
(50) lacked extensive quantitative PCR (qPCR) data
(expression levels of only 11 genes were available)
making it clearly inferior to the MAQC dataset used
here. Second, an outdated array platform (HG-U133
Plus 2.0, Affymetrix) was used with approximately five-
times lower coverage of targets in terms of total probe hits
than the Human Exon 1.0 ST array. Most importantly,
neither AUC nor MCC was used as a performance indi-
cator in the study. The more recent study by Trapnell et al.
(23) used the MAQC data, but the performance of RNA-
seq based estimates was not evaluated in relation to the
available microarray data. In addition, the performance
was evaluated against fold-change estimates from the
qPCR whereby genes with a log2-fold change of >2.0
were declared DE. Such practice has been deemed unsat-
isfactory by the microarray community due to fold-change
not being an inferential statistic as it does not produce
known and controllable long-range error rates (44).

On the other hand, we are aware of at least two studies
suggesting that high-sequencing depth is critical for differ-
ential analysis of transcripts present at low abundance
(2,23). Accordingly, a comparison of RNA-seq with a
high-density microarray platform indicated higher sensi-
tivity of the latter in detecting DE for low abundance
genes (2). Similarly, several studies have reported a high
variation (i.e. unreliable detection) in the expression level
of targets with low read counts (1,50,54). Furthermore,
DE-detection sensitivity is lower for shorter exons when
compared to the microarray (55). These biases are consist-
ent with a uniform sampling hypothesis whereby less
abundant and shorter nucleic acid molecules yield fewer
fragments and, consequently, less reads to base the esti-
mates on. To illustrate, Labaj et al. (54) have estimated
that 75% of the RNA-seq’s measurement power is spent
on only 7% of the known transcriptome. In addition, it
was estimated that �30% of the transcriptome might
exhibit read counts too low for accurate prediction of
DE. Our extensive analysis including three microarray
platforms, >10 analysis pipelines and various sample
sizes indicate that the accuracy of DE estimates obtained
from the RNA-seq data available on the MAQC reference
samples is slightly lower than for the tested microarray
platforms.

In conclusion, we have presented a statistical frame-
work and implementing software for DE analysis of
microarray data suggesting that it surpasses conventional
workflows in terms of robustness and application range.
In addition, many studies are expected to benefit from the
cost-saving measure of accurate DE analysis from a small
number of replicates (e.g. pilot studies), especially if the
pooling of samples is feasible. The accompanying
software, available at http://biit.cs.ut.ee/demi/, contains
largely automated workflows that will facilitate the
analysis of large-scale gene-expression data.
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