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Abstract: Fertilization is an important part of citrus crop management. However, limited details
are available about the fertilization approach on citrus plant development. A pot experiment for
the fertilization approaches and fertigation levels were conducted in this study. Four fertilization
approaches, namely, drip fertigation (DF), broadcast fertilization (CK+), hole fertilization (HF) and
pour fertilization (PF) were tested. The fertigation level treatment included 100% (DF-337.5), 80% (DF-
270), 60% (DF-202.5) and 40% (DF-135) fertilizer supply with DF, and the 100% fertilizer supply with
broadcast fertilization were served as control (CK). The results showed that DF not only increased
the absorptions of nitrogen (N), phosphorus (P) and potassium (K) but also promoted citrus plant
height, stem diameter and dry weight. In fruit quality, DF had the highest fruit total soluble solid
(TSS) and titratable acidity (TA) contents. For fertilizer loss, DF had the lowest N and K leaching
losses of 9.26% and 4.05%, respectively, and the lowest N and K runoff losses among the approaches.
Isotopic tracing with 15N indicated that DF had the highest fertilizer use efficiency. Based on the
analysis of fertigation levels, DF approach with 60% fertilizer reduction could improve citrus plant
development. Therefore, DF promoted citrus plant growth and fruit quality by accelerating fertilizer
utilization and impairing fertilizer loss. The fertilizer amount in citrus production could be reduced
significantly using DF.

Keywords: citrus; fertigation; plant development; fruit quality; fertilizer use efficiency (FUE);
fertilizer loss

1. Introduction

Citrus is a major global fruit crop [1,2]. In 2019, China had a total citrus yield of
45.84 million tons and plantation area of 2.61 million ha (http://data.stats.gov.cn/index.
htm, accessed on 5 August 2022). Water and fertilizer are crucial for citrus growth and fruit
yield. The amount of fertilizer in citrus management is associated with production cost
and environmental problems. Most citrus-producing areas around the world recommend
fertilizer amounts of 200–350 kg/ha N, 100–200 kg/ha P and 150–450 kg/ha K. In Florida,
the optimum N amount in orange is 260 kg/ha [3]. As determined through years of
trials in Iran, the appropriate amounts of N, P and K for orange are 150–250, 100–150 and
150–200 kg/ha, respectively [4]. In China, a survey of fertilizer application through the main
citrus-producing provinces revealed that the annual amounts of N, P and K in citrus are
485, 198 and 254 kg/ha, respectively [5]. Excessive fertilizer application results in fertilizer
wastes and environmental problems. N and P fertilizers running off with rainwater pollute
surface water and cause water eutrophication. In Tulare County in the U.S., statistical data
indicates that elevated nitrate level in domestic well water is strongly associated with the
management of citrus orchards [6]. The agricultural discharges of N and P cause water
eutrophication, thus disrupting the normal supply of drinking water in shore cities [7].
Additionally, salt ions in fertilizer could be trapped in the soil, and then the excess salt
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ions cause soil salinization and poison crops [8]. In the past decades, broadcast, hole and
pour fertilization approaches were used mainly in most Chinese citrus orchards, and a
series of problems were exposed also. In combination with the increment of labor cost, drip
fertigation instead of conventional approaches is becoming mainstream.

Drip fertigation is an effective technology for both irrigation and fertilization. It was
first developed and applied in Israel in 1960s, and then rapidly spread to the other places
of the world. Drip fertigation technology results in the infiltration of soluble fertilizer
into the crop root area and maintains an appropriate water and fertilizer supplies [9]. In
comparison with conventional fertilization approaches, drip fertigation has the advantages
in promoting the use efficiencies of water and fertilizer and improving crop yield and
quality [9,10]. Drip fertigation increases the leaf N and stem diameter of peach trees with a
N fertilizer saving for 25% to 50% [11]. Drip fertigation of potato fields reduces NO3

−-N
leaching [12]. In the citrus orchards of Florida, drip fertigation reached 7% of fertilizer
savings but 9% and 8% increases in yield and fruit total soluble solid (TSS) [13]. Drip
fertigation on tomatoes could increase P and K transport and reduce NO3

−-N leaching
from soil [14]. Drip fertigation can effectively improve crop yield and quality. In comparison
with the conventional approaches, drip fertigation increases the yield of apple by 29.2%,
titratable acidity (TA) by 4.9% and TSS by 5.3% [15]. It also promotes date palm yield by
41% and saves 66% of fertilizers [16].

Citrus in China is mainly planted in the hills, where water and fertilizer retain poorly.
With the increment of labor force cost, drip fertigation in citrus industry is becoming more
popular, but its specific affection has not been fully quantified. In the present study, the
effects of four fertilization approaches, including drip fertigation, on fertilizer use efficiency,
citrus plant growth and fruit quality were studied in detail. The results of this study provide
a guide for suitable fertilization and irrigation in China’s citrus industry.

This study evaluated the advantages of DF in citrus production comprehensively. The
data quantified that DF was economical and effective to plant development and fruit quality
formation relative to the conventional fertilization approaches. DF not only impaired the
leaching and runoff losses of fertilizers but also improved FUE significantly. In DF approach,
approximate 60% fertilizer reduction was possible in citrus production.

2. Results
2.1. Effects of Fertilization Approaches on Citrus Plant Growth and Fruit Quality

Fertigation improved the vegetative growth of citrus plant. drip fertigation (DF)
and pour fertilization (PF) approaches had significantly higher stem diameter than the
other fertilization approaches (Figure 1A). However, plant height showed no significant
difference among the approaches (Figure 1B). Among the treatments, DF had the highest
plant dry weight, in which stem and fruit dry weights were significantly higher than
those in other approaches. Among the approaches, hole fertilization (HF) and without
fertilization (CK−) had the lowest dry matters of root, fruit and total plant dry weight
(Figure 1C).

In plant nutrient, plants with DF had the most NPK accumulations. Among the
fertilization approaches, DF made the highest NPK contents in stem and fruit, while
broadcast fertilization (CK+) had the highest NPK contents in leaf. In each fertilization
approach, N accumulated most in the root, while enrichment in fruit was the lowest. K
accumulated mainly in fruit and leaf, but only 30% was observed in the stem and root.
All plant tissues had low P content. Overall, the N:P:K ratio in the whole citrus plant
was close to 1:0.06:0.14 (Table 1). DF promoted medium- and micro-nutrients absorptions.
For Ca, Zn and B, the contents in DF approach reached two-fold in other fertilization
approaches. Plant Mg and Mn in DF treatment were also remarkably higher than those
in other fertilization approaches. However, these medium- and micro-nutrients showed
no difference among CK+, HF and PF approaches. Some nutrients were even lower than
plants with CK− (Figure 1D).
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Figure 1. Growth of citrus plants under different fertilization approaches: (A) Stem diameter, (B) tree
height, (C) dry matter and (D) medium- and micro- nutrients. The data are presented as mean ± SD,
n = 3.Different letters indicate significant differences at p < 0.05, Duncan’s test.

Table 1. NPK contents in plant tissues under different fertilization approaches.

Treatment Root (g/Plant) Stem (g/Plant) Leaf (g/Plant) Fruit (g/Plant) Total (g/Plant)

N

CK+ 9.10 ± 1.11 a 3.49 ± 0.37 b 5.97 ± 0.59 a 3.75 ± 0.29 ab 20.02 ± 4.13 b

DF 10.22 ± 0.55 a 6.26 ± 0.23 a 5.12 ± 0.60 a 4.43 ± 0.55 a 27.18 ± 2.29 a

HF 7.09 ± 0.53 b 3.28 ± 0.26 b 3.83 ± 0.21 b 2.98 ± 0.16 b 18.18 ± 1.12 b

PF 10.08 ± 0.60 a 4.33 ± 1.52 b 5.29 ± 0.35 a 3.85 ± 0.93 ab 20.21 ± 0.47 b

CK− 1.94 ± 0.18 c 0.98 ± 0.06 c 0.92 ± 0.18 c 1.46 ± 0.40 c 6.67 ± 0.17 c

P

CK+ 0.44 ± 0.12 a 0.24 ± 0.02 bc 0.28 ± 0.02 a 0.38 ± 0.04 b 1.47 ± 0.02 ab

DF 0.44 ± 0.07 a 0.47 ± 0.03 a 0.23 ± 0.02 b 0.53 ± 0.07 a 1.66 ± 0.19 a

HF 0.46 ± 0.07 a 0.22 ± 0.003 c 0.18 ± 0.02 c 0.29 ± 0.07 bc 1.16 ± 0.01 b

PF 0.47 ± 0.05 a 0.36 ± 0.10 ab 0.25 ± 0.02 ab 0.30 ± 0.07 bc 1.18 ± 0.06 b

CK− 0.22 ± 0.06 b 0.16 ± 0.03 c 0.08 ± 0.01 d 0.24 ± 0.03 c 0.70 ± 0.14 c

K

CK+ 0.81 ± 0.21 b 0.88 ± 0.18 ab 4.16 ± 0.26 a 3.05 ± 0.09 b 8.53 ± 1.80 ab

DF 1.68 ± 0.25 a 1.83 ± 0.70 a 2.40 ± 0.30 bc 4.20 ± 0.58 a 10.85 ± 2.17 a

HF 0.78 ± 0.13 b 0.79 ± 0.001 b 1.97 ± 0.47 c 3.16 ± 0.41 b 7.26 ± 0.64 b

PF 2.03 ± 0.48 a 1.54 ± 0.03 ab 2.90 ± 0.28 b 3.20 ± 0.32 b 9.15 ± 0.01 ab

CK− 0.33 ± 0.09 b 0.77 ± 0.07 b 0.73 ± 0.06 d 1.76 ± 0.35 c 3.37 ± 0.79 c

Different letters between treatments of one tissue indicate significant differences at p < 0.05.

Relative to conventional fertilization approaches, DF remarkably improved fruit qual-
ity. Totally, fruits in water-soluble fertilization approaches (DF and PF) exposed higher TSS
than non-water-soluble approaches (CK+ and HF). Fruits in DF showed the highest TSS
and TA. Except for CK−, fruits with DF had higher VC than those in other fertilization
approaches (Figure 2). Among the approaches, fruits in HF had the lowest TSS and VC.
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Figure 2. Effects of fertilization approaches on citrus fruit quality. (A) TSS, (B) TA and (C) VC
contents. The data are presented as mean ± SD, n = 3. Different letters indicate significant differences
at p < 0.05, Duncan’s test.

2.2. Effects of Fertilization Approaches on NPK Leaching and Runoff Losses

DF approach had 9.26% leaching loss of N and 4.05% leaching loss of K, while leaching
loss in HF reached 15.17%. Unlike NK leaching, soil P had the minimum leaching loss in
CK+ approach and the maximum leaching loss in PF approach. Although leaching loss
differed across the fertilization approaches, the approximate leaching loss rates of NPK
were 11.16%, 0.04%, and 4.61%, respectively. Relative to leaching loss, less runoff loss was
observed in all fertilization approaches. Among the approaches, HF exhibited the lowest
runoff loss in NPK. Approximately, the runoff loss rates of NPK were 0.29%, 0.01%, and
0.05% (Table 2). Overall, soil N had the highest loss, but P had the lowest loss in either
leaching or runoff losses.

Table 2. NPK leaching and runoff losses in different fertilization approaches.

Treatment Total Leaching Loss in Yield
Cycle (mg) leaching Loss Efficiency (%) (1) Total Runoff Loss in Yield

Cycle (mg) Runoff Loss Efficiency (%) (1)

N

CK+ 94.19 × 102 ± 4.74 × 102 b 10.38 ± 0.63 b 7.26 × 102 ± 0.81 × 102 a 0.28 ± 0.11 a

DF 85.73 × 102 ± 1.44 × 102 b 9.26 ± 0.19 b 7.03 × 102 ± 0.08 × 102 a 0.25 ± 0.01 a

HF 130.09 × 102 ± 12.45 × 102 a 15.17 ± 1.66 a 7.06 × 102 ± 0.22 × 102 a 0.26 ± 0.03 a

PF 89.88 × 102 ± 2.14 × 102 b 9.81 ± 0.29 b 8.26 × 102 ± 0.48 × 102 a 0.42 ± 0.06 a

CK− 16.28 × 102 ± 1.70 × 102 c 5.13 × 102 ± 0.46 × 102 b

P

CK+ 20.17 ± 1.92 d 1.80 × 10−2 ± 0.30 × 10−2 c 9.24 ± 0.45 b 0.90 × 10−2 ± 0.10 × 10−2 b

DF 31.00 ± 0.47 c 3.20 × 10−2 ± 0.10 × 10−2 b 18.69 ± 1.38 a 2.20 × 10−2 ± 0.20 × 10−2 a

HF 50.59 ± 4.88 b 5.90 × 10−2 ± 0.70 × 10−2 a 2.26 ± 0.08 c -
PF 58.91 ± 6.31 a 7.00 × 10−2 ± 0.80 × 10−2 a 18.19 ± 3.00 a 2.10 × 10−2 ± 0.40 × 10−2 a

CK− 6.51 ± 0.63 e 2.49 ± 0.30 c

K

CK+ 33.06 × 102 ± 1.40 × 102 c 4.22 ± 0.19 c 54.48 ± 5.89 a 6.90 × 10−2 ± 0.80 × 10−2 a

DF 31.83 × 102 ± 1.84 × 102 c 4.05 ± 0.25 c 31.26 ± 4.51 c 3.80 × 10−2 ± 0.60 × 10−2 b

HF 42.60 × 102 ± 2.17 × 102 a 5.49 ± 0.29 a 25.14 ± 4.55 c 3.00 × 10−2 ± 0.60 × 10−2 b

PF 36.58 × 102 ± 0.59 × 102 b 4.69 ± 0.08 b 45.81 ± 3.55 b 5.80 × 10−2 ± 0.50 × 10−2 a

CK− 1.42 × 102 ± 0.14 × 102 d 2.61 ± 0.37 d

Different letters between treatments of one element indicate significant differences at p < 0.05. (1) NPK leach-
ing/runoff loss efficiency (%) = (Total NPK leaching or runoff loss in each treatment − Total leaching or runoff
loss in CK−)/NPK application amount.

2.3. Soil N Mobility under Different Fertilization Approaches

Through 15N isotopic tracing, a soil depth of 30 cm was crucial for N absorption, and
DF approaches promoted N enrichment at this depth. At the fruit enlargement stage, CK+

approach resulted in 15N enrichment at a soil depth of 30 to 50 cm. CK+ and DF approaches
had significantly higher 15N content at a soil depth of 30 cm than that in 10 and 50 cm
(Figure 3A). In all approaches, 15N was concentrated mainly in 30 cm depth soil. At the



Plants 2022, 11, 2547 5 of 12

soil depth of 50 cm, DF approach exhibited the lowest 15N content, while CK+ approach
enriched most. HF approach made 15N retained most at a soil depth of 10 cm. At the fruit
maturity stage, soil 15N declined to 50% of that at development stage in all layers. The
content of 15N increased overall along with soil deepening. At the soil depth of 10 and
30 cm, HF approach had the highest 15N content, but it remarkably declined at the maturity
stage. At the soil depth of 50 cm, no15N difference was observed among the approaches
(Figure 3B).

Figure 3. Enrichment of 15N in different soil depth at (A) citrus fruit enlargement and (B) fruit
maturity stages. The data are presented as mean ± SD n = 3. Different letters indicate significant
differences at p < 0.05, Duncan’s test.

2.4. Nitrogen Use Efficiency in Citrus Plant with Different Fertilization Approaches

Ndff% reflects the transportation and utilization of N in plant. Among the approaches,
Ndff% increased progressively from roots to stems and then to leaves. The fruit exhibited
the highest Ndff%. Ndff% also indicated the use efficiency of N fertilizer. Among the
approaches, DF had the highest use efficiency of 15N, reaching 13.61%. The 15N use
efficiency of DF was mainly contributed by the fruit, and the value was remarkably higher
than that of other approaches. PF made the highest 15N content in plant stems and leaves
(Table 3).

Table 3. N use efficiency under different fertilization approaches.

Root Ndff% 1 Stem Ndff% Leaf Ndff% Fruit Ndff%
15 N Content

(g/Plant)
15 N Use

Efficiency (%) 2

CK+ 19.00 × 10−2 ± 1.10 × 10−2 a 21.20 × 10−2 ± 1.50 × 10−2 ab 26.00 × 10−2 ± 1.00 × 10−2 ab 32.80 × 10−2 ± 1.60 × 10−2 b 5.60 × 10−2 ± 1.70 × 10−2 ab 11.29 ± 3.40 ab

DF 18.70 × 10−2 ± 0.80 × 10−2 a 19.80 × 10−2 ± 0.80 × 10−2 b 24.50 × 10−2 ± 0.30 × 10−2 b 35.70 × 10−2 ± 0.50 × 10−2 a 6.80 × 10−2 ± 0.20 × 10−2 a 13.61 ± 0.43 a

HF 17.40 × 10−2 ± 0.50 × 10−2 a 21.50 × 10−2 ± 0.60 × 10−2 ab 22.00 × 10−2 ± 0.80 × 10−2 c 25.80 × 10−2 ± 0.20 × 10−2 c 3.80 × 10−2 ± 0.30 × 10−2 b 7.64 ± 0.61 b
PF 19.40 × 10−2 ± 0.10 × 10−2 a 23.30 × 10−2 ± 0.50 × 10−2 a 26.90 × 10−2 ± 1.00 × 10−2 a 32.40 × 10−2 ± 01.70 × 10−2 b 5.90 × 10−2 ± 0.60 × 10−2 ab 11.79 ± 1.23 ab

Different letters between treatments indicate significant differences at p < 0.05. 1 Ndff (%) = (15N atom% in plant
sample − 15N atom% in the nature)/(15N atom% in fertilizer − 15N atom% in the nature) × 100; 15N atom%
in the original medium is 0.366% in this study. 2 15N use efficiency (%) = [Ndff% × total nitrogen in organs
(g)]/fertilization amount (g) × 100.

2.5. Effects of Reducing Fertilizer on Citrus Plant Development

Chemical fertilizer application can be reducible for citrus plant growth. Among the
treatments, DF-337.5 and CK+ had the lowest plant dry weight, but the highest plant dry
weight was observed in DF-135 treatment. Shoot numbers had no difference between
treatments in spring, summer and autumns, but the diameter differed depending on
treatment. Stem diameter and dry weight increased with the decrease in fertilizer amount
in each season. In autumn, DF-135 treatment had the maximum shoot diameter (Table 4).
Within a range, NPK absorptions increased with the decrease in fertilizer amount. DF-135
had the highest plant NPK content and relative increment. By contrast, DF-337.5 had the
lowest plant NPK contents (Figure 4).
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Table 4. Citrus plant growth with reducing fertilization amount using fertigation.

Plant Height
(cm)

Stem Diameter
(mm)

Plant
Dry Weight (g)

Spring
Shoot

Number
Summer Shoot

Number
Autumn

Shoot
Number

Spring
Shoot Stem
Diameter

Summer
Shoot Stem
Diameter

Autumn Shoot
Stem Diameter

DF-337.5 105.23 ± 15.04 a 13.06 ± 1.05 b 177.66 ± 37.00 c 21.60 ± 9.07 a 16.60 ± 5.85 a 18.50 ± 10.52 a 2.64 ± 0.21 b 2.82 ± 0.35 ab 3.22 ± 0.51 ab

DF-270 115.53 ± 4.35 a 13.63 ± 0.62 b 202.45 ± 37.08 bc 20.40 ± 8.33 a 18.80 ± 9.09 a 18.75 ± 8.79 a 3.02 ± 0.34 a 2.84 ± 0.25 ab 3.66 ± 1.40 ab

DF-202.5 117.43 ± 6.01 a 12.74 ± 0.47 b 254.28 ± 36.14 b 29.20 ± 16.38 a 25.00 ± 10.02 a 29.00 ± 7.35 a 2.75 ± 0.25 ab 3.02 ± 0.22 a 3.31 ± 0.25 ab

DF-135 125.60 ± 11.79 a 15.07 ± 0.50 a 377.43 ± 23.79 a 13.80 ± 9.91 a 17.40 ± 4.03 a 20.80 ± 3.97 a 2.71 ± 0.15 ab 2.90 ± 0.29 ab 4.02 ± 0.29 a

CK+ 107.60 ± 7.93 a 12.95 ± 0.23 b 183.43 ± 21.37 c 24.40 ± 16.62 a 7.40 ± 7.17 b 20.75 ± 13.92 a 2.53 ± 0.15 b 2.59 ± 0.15 b 2.76 ± 0.40 b

Different letters between treatments indicate significant differences at p < 0.05.

Figure 4. NPK absorptions in citrus plant under fertigation levels. (A) Total nutrient content
and (B) nutrient increment in different fertigation levels. The data are presented as mean ± SD
n = 3. Different letters between treatments indicate significant differences at p < 0.05. NPK incre-
ment = NPK contents of plants after test − NPK contents of plants before test.

3. Discussion

Citrus is generally planted in south of China, which is characterized by rolling terrain.
With the changes in industrial environment, citrus production in China is facing problems,
including fertilization difficulty, increasing fertilizer and labor cost, and higher fertilizer
loss. Accordingly, fertigation has become increasingly popular, and it can be an effective
solution. In the present work, fertigation and conventional fertilization approaches were
compared in terms of fertilizer utilization and citrus plant development.

3.1. Citrus Growth, Mineral Nutrition and Fruit Quality

Water and fertilizer are crucial for plant growth, development, yield, and fruit quality. A
good supply of water and fertilizer will make plant vigorous and fruiting well [17]. Different
combinations of fertilization and irrigation affect citrus growth [18]. In comparison with fur-
row irrigation, drip fertigation increases the stem volume and biological yield of poplars [19].
Drip fertigation results in higher maize production than conventional fertilization [20]. Sim-
ilar results were found in the present study, in which DF approach significantly increased
citrus plant stem diameter and plant dry weight (Figure 1A,C). The advantage in nutrient
supplies by DF may play an important role in plant development [21,22]. In comparison with
manual fertilization and surface irrigation, drip fertigation in tomato increases the N and K
content by 45.6% and 45.3%, respectively [23]. In comparison with chemical fertilizers to soil,
water and fertilizer coupling promotes soil fertility, in which drip fertigation is much better
than pour fertilization [22,24]. Sufficient nutrition from DF accelerates plant growth in terms
of the trunk diameter and dry matter [25]. In the present work, DF fertilization helped the
plant accumulate more NPK in the root, stem, fruit or total plant (Table 1).DF also promoted
the absorptions of medium- and micro-nutrients in citrus plant (Figure 1D). Therefore, DF
promoted citrus plant and fruit development in terms of the increased efficiency of nutrient
supply. In combination with the soil condition of rolling terrain in south of China, DF is
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really a good option for citrus crops. In addition, the N:P:K ratio in citrus plants was close to
1:0.06:0.14 in all fertilization approaches, indicating a specific NPK pattern in citrus plants.
The ratio may provide a guideline for NPK supplies to citrus plants.

Fruit quality is an important concern for citrus fruit, especially for fresh citrus fruit
consumption in many countries. Fertilization approaches are important options for fruit
quality improvement [26,27]. In comparison with conventional fertilization approaches,
fertigation increased the fruit sugar content by 7.3% in apple [28]. Fertigation also improved
fruit TSS and juice percent of citrus [29]. In the present study, fruit TSS, TA and VC contents
with DF increased by 13.4%, 17.6% and 27.5%, respectively, compared with CK+ (Figure 2).
With the increases of fruit quality components, NPK accumulated more in fruit (Table 1).
The results indicated that N promoted the synthesis and accumulation of sugars through
the intensity of photosynthesis, while P and K were involved fruit sugar or sugar-acid
ratio [30]. Therefore, DF approach improves citrus fruit quality through the enhancement
of plant NPK absorptions.

3.2. Fertilizer Loss

Fertilizer spreads via leaching and runoff cause pollution of groundwater, rivers, lakes
and other water sources [31,32]. Fertigation could reduce the leaching of soil NO3−-N [12],
reduce leaching loss of nitrate nitrogen, and improve FUE of citrus [18] and tomato [14].
In fertigation, the fertilizer mainly penetrates the soil layers at the depth of 0 to 30 cm [9],
where the citrus roots are distributed mainly. Leaching and runoff fertilizer losses are the
main fertilizer loss ways in citrus crop production, and fertigation minimizes fertilizer loss.
In the present study, DF approach had the lowest leaching loss, implying higher fertilizer
use (Table 2).

3.3. Nitrogen Use Efficiency

N is important for tree development, fruit yield and quality [3,33]. During plant
growth, N in stems and leaves is gradually transferred to storage organs such as cotyledons
and fruits, resulting in the highest N in matured fruit. By contrast, plant root absorbs the
least N because of transportations to the aboveground tissues [34]. Fertigation helps N
movement and use in fruit crops. With drip fertigation, nitrogen use efficiency (NUE)
increases by 24.7% in citrus [35]. In comparison with furrow fertilization, drip fertigation
increases NUE by 94.7% in tomato [10]. As N pool of plant, fruit enriches a large amount
of N through plant absorption, and the increment of N in fruits promotes NUE in drip
fertigation [35]. In isotope tracing assay, DF resulted in the highest fruit Ndff% in all
fertilization approaches, thus promoting NUE in citrus directly (Table 3). In soil, N was
remarkably enriched at a soil depth of 30 cm in all fertilization approaches, where citrus
roots grow mainly (Figure 3A), and this part could be used well during plant development
(Figure 3B). These results indicated that DF improved N enrichment at the soil depth
of 30 cm and N transfer efficiency from soil to plant, in which fruit N accumulation
contribute greatly.

3.4. Fertilizer Amount

By using drip fertigation, tomato yield increased after 25% reduction of fertilizer
supply [14]. In comparison with conventional fertilization, fertigation in citrus could
reduce fertilizer by 25%, and it will increase FUE by 119% and fruit yield by 64% [29]. In
eggplant, drip fertigation reduced fertilization by 20% without change of plant growth,
but the fruit yield and plant FUE were improved well [36]. In the present study, DF-135
treatment with 60% fertilizer reduction exposed the highest stem diameter, dry weight,
plant NPK contents (Table 4) and the highest plant NPK absorptions (Figure 4). These
results indicated that the decrease in fertilizer amount was available in improvements of
citrus plant growth and FUE by using fertigation approach.
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4. Materials and Methods
4.1. Material and Plant Growth Conditions

In fertilization approach treatment, four-year-old ‘Succari’ sweet orange (Citrus.sinennsis L.
Osbeck) trees grafting on trifoliate orange (Poncirus trifoliata L. Raf.) rootstock were used at
Changsha (28◦ 10′ 47” N, 113◦ 4′ 37” E), Hunan Province, China. The actual mean maximum
temperature ranged from 28◦C to 35◦C, and the mean minimum temperature in growing months
varied from 5◦C to 12◦C. Stainless steel barrels with height of 60 cm and diameter of 40 cm were
ordered specifically for this investigation. Due to the roots of citrus plant enrich in 20 to 40 cm
soil depth generally, so the barrel depth was sufficient for plant growth. A leaching outlet with
diameter of 5 cm was designed at the bottom of the barrel and a runoff outlet with diameter
of 3 cm was designed at the soil surface of the barrel. Liquid from bottom and top outlets was
collected as leaching and runoff water, respectively. The planting medium in the barrel was
composed of 70% yellow clay, 15% organic matter and 15% sawdust. Urea labeled with 15N
was obtained from Shanghai Research Institute of Chemical Industry (Shanghai, China).

Three-year-old ‘Juxiangzao’ Satsuma mandarin (Citrus unshiu Marc.) trees were used
in fertilizer amount reduction experiment. Citrus tree was planted in a plastic pot with
a top diameter of 35 cm, bottom diameter of 27 cm and height of 27 cm. Water-soluble
fertilizer (Stanley, China) containing 20% N, 20% P, 20% K, 0.1% Fe, 0.05% Zn, 0.05% Mn,
0.01% Mo and 0.05% B was used in all experiments.

4.2. Experimental Design for Fertilization Approach Experiment and Isotopic Experiment

Four fertilization approaches including CK+, DF, HF and PF were studied, and the
set-up without fertilization was named CK−. This experiment was conducted in open air
with rainfall. In CK+, fertilizers were spread evenly on the soil surface in planting bucket.
DF was performed in a fertigation system (insert the dripping arrow into the soil) with
water-soluble fertilizer supply. For HF, three holes with depth of 15 cm were made in
an equilateral triangle, and fertilizers were buried into the holes. In PF, fertilizers were
dissolved in water and poured evenly into the soil. The recommended dose of fertilizers
(75:75:75 g NPK/tree/year) were supplied in each approach treatment, except for CK−.
Through a year, 30%, 20% and 50% of fertilizers were applied at the shooting, fruit set and
fruit enlargement stage, respectively. At the plant shooting stage, fertilizers were supplied
in early March and mid-April. At the fruit set stage, fertilizers were applied in mid-May
and mid-June. At the fruit enlargement stage, fertilizers were supplied in early July, early
August and early September. Leaching water and runoff water were collected, and all
mineral nutrients were measured throughout the year. After the experiment, all plants
were excavated and divided into root, stem, leave, and fruit for dry weight, nutrient and
fruit quality measurements. At fruit maturity, fruits were collected from the periphery of
the canopy, and five fruits were selected for fruit quality analysis. Five replicates were
employed for each approach, and one tree was selected for each replicate.

Isotope was used to test nutrient movement from soil to plant here. A half gram 15N
urea per plant was added in each fertilization approach described above. Soil samples
were collected at 10, 30 and 50 cm depths in middle July and early December. Each
barrel was sampled with two holes, and then the samples were dried, crushed and sieved
through 80 mesh. In December, all plants were excavated and divided into tissues for 15N
measurement. The abundances of 15N in soil and plant were determined using isotope
mass spectrometry [37]. Ndff (%) = (15N atom% in plant sample − 15N atom% in the
nature)/(15N atom% in fertilizer − 15N atom% in the nature) × 100; 15N atom% in the
original medium is 0.366% in this study. 15N use efficiency (%) = [Ndff% × total nitrogen
in organs (g)]/fertilization amount (g) × 100.

4.3. Experimental Designs for Fertilizer Reducing Experiment

In the fertilizer reduction experiment, 337.5 g water-soluble fertilizer (DF-337.5, con-
taining 67.5: 67.5: 67.5 g NPK) was supplied initially to ‘Juxiangzao’ over a year depending
on citrus plant requirement [38]. Then, 20% fertilizer application reduction was set as a
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gradient, including 80% fertilizer supply (DF-270), 60% fertilizer supply (DF-202.5) and 40%
fertilizer supply (DF-135). The control was involved in broadcast fertilization of 337.5 g
fertilizer around a year. This experiment was conducted in a greenhouse, and all plants
were irrigated every 3 to 7 days depending on temperature and rainfall. Three replicates
were employed for each approach, in which one tree was selected for each replicate.

4.4. Determinations of Mineral Nutrition and Fruit Quality

Alkaline N was determined using the alkaline hydrolysis diffusion absorption
method [39]. Available P was extracted using sodium bicarbonate and measured by
Molybdenum-Antimony anti-spectrophotometry method [40]. Available K was extracted
with ammonium acetate [39], and it was measured by inductively coupled plasma mass
spectrometry (ICP-MS) [41].

Plant samples were washed with deionized water and inactivated by heating to 105 ◦C
for 15 min. The inactivated samples were dried at 65◦C in a forced-air oven to constant
weight, ground manually, and stored for further analysis. Plant samples were digested
using hydrogen peroxide and sulfuric acid for NPK determinations [42]. N was determined
using the Kjeldahl method [43]. P was extracted and determined spectrophotometrically
as blue molybdate-phosphate complexes [44], and K was measured via flame photometry.
NPK increment = NPK contents of plants after test−NPK contents of plants before test. For
Ca, Mg, Mn, Cu, Zn and B assays, plant samples were digested using dry ash method [45]
and determined via ICP-MS [41].

Total N in water was determined by alkaline potassium persulfate digestion-UV
spectrophotometry [46]. Total P in water was determined by sulfuric acid-hydrogen
peroxide elimination-vanadium-molybdenum yellow colorimetric method [46]. Total K in
water was determined by sulfuric acid-hydrogen peroxide elimination-flame photometric
method [47]. NPK leaching/runoff loss efficiency (%) = (total NPK leaching or runoff loss
in each treatment − total leaching or runoff loss in CK−)/NPK application amount.

Fruit quality, including TSS, TA and vitamin C (VC) were immediately assayed after
sampling. Fruit TSS was measured using the juice with a refractometer (PAL-BX, ATAGO).
Fruit TA was determined by titration with an aliquot of juice against 0.1 M NaOH [48]. VC
content was determined using iodometric method [49].

4.5. Statistical Analysis

Values are presented as mean ± SD. Data were subjected to analysis of variance
(ANOVA) in IBM SPSS Statistics 23.0. Different letters indicate significant differences at
p < 0.05 (Duncan’s test).

5. Conclusions

In comparison with conventional fertilization, DF promoted the absorptions of N, P, K,
Ca, Mg, Zn and B in citrus plant. Through the increased efficiency of nutrient supply, plant
development and fruit quality were improved in DF approach. Furthermore, the N:P:K
ratio in the whole citrus plant was close to 1:0.06:0.14. DF promoted the enrichment of
N fertilizer at the soil depth of 30 cm and increased the efficiency of nitrogen utilization.
The approximate leaching loss rates of NPK were 11.16%, 0.04% and 4.61% respectively,
while the runoff loss rates of NPK were 0.29%, 0.01% and 0.05% respectively. Relative to
conventional fertilization, 60% fertilizer amount reduction with DF approach was available
to improve citrus plant growth and FUE. Basing on what we obtained in this study, the
more economical and effective fertilization strategies for citrus crop would be made in the
future. Subsequently, we are more interested in knowing how drip fertigation running over
years affects the plant development and the physicochemical properties of orchard soil.
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N nitrogen
P phosphorus
K potassium
Ca calcium
Mg magnesium
Fe iron
Mn manganese
Cu copper
Zn zinc
B boron
DF drip fertigation
HF hole fertilization
PF pour fertilization
CK+ broadcast fertilization
CK− Without fertilization
FUE fertilizer use efficiency
NUE nitrogen use efficiency
TSS total soluble solids
TA titratable acidity
Ndff nitrogen derived from fertilizer
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