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a b s t r a c t 

This paper presents real operational data collected from 

the power systems of the Spallation Neutron Source facil- 

ity, which provides the most intense neutron beam in the 

world. The authors have used a radio-frequency test facil- 

ity (RFTF) and simulated system failures in the lab without 

causing a catastrophic system failure. Waveform signals have 

been collected from the RFTF normal operation as well as 

during fault induction effort s. The dat aset provides a signif- 

icant amount of normal and faulty signals for the training 

of statistical or machine learning models. Then, the authors 

performed 21 test experiments, where the faults are slowly 

induced into the RFTF system for the purpose of testing the 

models in fault prognosis to detect and prevent impending 

faults. The test experiments include interesting combinations 

of magnetic flux compensation and start pulse width ad- 

justments, which cause gradual deterioration in the wave- 

forms (e.g., system output voltage, system output current, 

insulated-gate bipolar transistor currents, magnetic fluxes), 

which mimic the fault scenarios. Accordingly, this dataset can 

be valuable for developing models to predict impending fault 

scenarios in power systems in general and in particle accel- 

erators in specific. All experiments occurred in the Spallation 

Neutron Source facility of Oak Ridge National Laboratory in 

Oak Ridge, Tennessee of the United States in July 2022. 
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pecifications Table 

Subject Electrical and Electronic Engineering 

Specific subject area Fault prognosis, machine learning, control engineering 

Type of data Table (time series) 

How the data were acquired The radio-frequency test facility (RFTF) data acquisition system records 12 

waveforms with time length of 1.5 ms and a sampling rate of 400 ns, then 

writes them to an external hard drive. The data are structured in 3D arrays 

and saved to binary NumPy files. 

Data format Raw 

Description of data collection The raw data from the controller are reported without preprocessing. Each 

pulse in the dataset has a time length of 1.5 ms. The dataset includes a 

prognosis test set which involves a set of 21 experiments where fault 

precursors are induced into the system. Depending on the machine condition, 

the recorded pulse could be a normal or a faulty pulse. 

Data source location Facility: Spallation Neutron Source 

Institution: Oak Ridge National Laboratory 

Address: 8600 Spallation Dr, Oak Ridge, TN 37,830, United States 

Data accessibility The data are presented in a Mendeley data repository with the following 

information: 

• Title of the repository: Operational Data for Fault Prognosis in Particle 

Accelerators with Machine Learning 

• Mendeley Data: https://data.mendeley.com/datasets/9zxrt6pf2k 

• DOI: https://doi.org/10.17632/9zxrt6pf2k 

Related Research Article M. I. Radaideh, C. Pappas, M. Wezensky, P. Ramuhalli, S. Cousineau (2023). 

Early Fault Detection in Particle Accelerator Power Electronics Using Ensemble 

Learning. International Journal of Prognostics and Health Management, 14 (1), 

pp. 1–19. 

. Value of the Data 

• This dataset provides high-quality signal data from the operation of the radio-frequency test

facility in the spallation neutron source. This dataset is valuable to develop and test novel

algorithms for fault prognosis, health management, and autonomous control in complex en-

gineering systems like particle accelerators. 

• Beneficiaries of this dataset include researchers, control, electronics, and maintenance engi-

neers interested in machine learning, signal processing, predictive maintenance, and particle

accelerators. 

• This dataset can be used to design methods and algorthims to detect system faults ahead of

time allowing operator intervention and proper maintenance management. 

. Objective 

The Spallation Neutron Source (SNS) is a complex engineering system used to accelerate

harged particles. The power systems at the SNS continuously suffer from operational anomalies

nd catastrophic failures that increase facility downtime. This dataset presents real operational

ata collected from the power systems of the SNS, including waveform signals collected from a

adio-frequency test facility during normal and fault operational scenarios. The dataset provides

aluable information for training statistical or machine learning models to predict impending

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://data.mendeley.com/datasets/9zxrt6pf2k
https://doi.org/10.17632/9zxrt6pf2k
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fault scenarios in power systems. This dataset is related to the research paper published in the

International Journal of Prognostics and Health Management (see Related Research Article in

the specifications table). The article highlights using machine learning models for early fault de-

tection in particle accelerators. The study explores the performance of various machine learning

models in the same experimental setup. This data article unveils the data that were used to

train and test all models. Using this data article, the readers will be able to reproduce our re-

sults in the related research article and propose new statistical and machine learning methods

that can help in early fault detection or prognosis applications in complex engineering systems

like particle accelerators. 

3. Data Description 

High Voltage Converter Modulators (HVCM) provide power to the particle accelerator

klystrons to produce high-power radio frequency to accelerate the particles in the spallation

neutron source (SNS) [1] . HVCM systems are used to convert 3-phase 13.8 kVAC into a train of

up to 74–135 kV, 1.3 ms pulses at 60 Hz to 92 klystrons. An HVCM consists of (1) AC switch gear

and magnetics, (2) a six-pulse phase-controlled rectifier unit, (3) insulated-gate bipolar transistor

(IGBT) devices configured for a polyphase, isolated, DC-DC converter to achieve a high voltage

output, and (4) a controller rack [2] . 

Given the reliability issues and failures of the HVCM systems [3] , the SNS continues to expe-

rience a significant downtime due to these HVCM failures. This motivates the authors to collect

real-time operational data and to develop diagnosis and prognosis methods to help improving

HVCM system reliability by detecting failures ahead of time and help preventing them. HVCMs

are well instrumented to collect waveform data, and in this dataset, we established a test facil-

ity called Radio-Frequency Test Facility (RFTF) that runs in similar conditions as the linear ac-

celerator SNS modulators, making the current experimental setup similar to operational HVCM

systems at the SNS. The nature of this data is waveform/signal data collected from the RFTF and

can be valuable for fault prognosis applications since they involve real-world and real-time fault

detection scenarios. More details about the facility and the experimental setup can be found in

the next section. 

The dataset repository has a total of 48 files, classified into (1) primary files and (2) supple-

mentary files . The primary files (24 files) include the NumPy binary data files and the CSV file

that has the test labels, which are all what the user needs to proceed in the analysis. The sup-

plementary files (24 files) are only to aid in interpretation and not required for the analysis. The

supplementary files include excel files, png plots, and a Python script. It is important to note that

this classification serves as a reference and does not influence the organization of data within the

repository . In other words, both primary and supplementary files can coexist within the same

directory. The purpose of this classification is to assist users in distinguishing between files es-

sential for analysis and those provided solely to aid in interpretation. The data is structured as

follows: 

Main directory: “data”

• Subfile: “load_dataset.py ”, see Table 1 for the description of this file. 

• Subdirectory: “train ”, see Table 2 for the description of the files in this subdirectory. 

• Subdirectory: “test ”, see Table 3 for the description of the files in this subdirectory. 
Table 1 

Description of the dataset files under the main directory “data”. 

File Type Description Shape 

load_dataset.py ∗ Python script A simple python script to load and plot the dataset NA 

∗ Supplementary file. 
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Table 2 

Description of the dataset files under the subdirectory “train”. 

File Type Description Shape 

normal.npy 3D NumPy 

array (binary) 

Array of 50 0 0 normal pulses, 

each with 3753 time steps, and 

has 12 unique waveforms. 

(50 0 0, 3753, 12) 

fault.npy 3D NumPy 

array (binary) 

Array of 50 0 0 faulty pulses, 

each with 3753 time steps, and 

has 12 unique waveforms. 

(50 0 0, 3753, 12) 

sample_train_data.xlsx ∗
Excel (readable) An excel file containing 2D 

slices (readable data) to view 

from normal.npy and fault.npy 

NA 

∗ Supplementary file. 
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The primary files include waveform data in the form of NumPy binary arrays. The authors

ave decided to report the waveform data in a binary format due to their 3D shape (see Eq.1 ),

hich makes it extremely difficult and inefficient to report them in excel or CSV formats. 

The training data below the “train ” subdirectory are saved into two NumPy files: normal.npy

hich has the normal pulses, and fault.npy which has the faulty pulses. Each file has 50 0 0

ulses. The labels can be implicitly derived from the file name, where the pulses in normal.npy

ave a label of “1 ′′ , while the pulses in fault.npy have a label of “0 ′′ . These training data can be

sed to build and train the model (statistical, machine learning, etc.). The shape of the data in

oth normal.npy and fault.npy can be expressed in a general form: 

shape = 

(
N puls es × N times × N feat ures 

)
(1)

here N pulses is the number of different sam ples/pulses collected from the system, which is 50 0 0

ormal and 50 0 0 faulty pulses, N times = 3753 is the number of time steps for each pulse, and

 f eatures = 12 is the number of features or waveform types recorded for each pulse. The 12 wave-

orms ( f eatures ) reported in the dataset in order are: 

1. A + IGBT-I: The current passing through the IGBT switch of phase A + (unit: A). 

2. A + 

∗IGBT-I: The current passing through the IGBT switch of phase A + 

∗ (unit: A). 

3. B + IGBT-I: The current passing through the IGBT switch of phase B + (unit: A). 

4. B + 

∗IGBT-I: The current passing through the IGBT switch of phase B + 

∗ (unit: A). 

5. C + IGBT-I: The current passing through the IGBT switch of phase C + (unit: A). 

6. C + 

∗IGBT-I: The current passing through the IGBT switch of phase C + 

∗ (unit: A). 

7. Mod-I: Modulator current (unit: A). 

8. A-Flux: Magnetic flux density for phase A transformer (unit: -). 

9. B-Flux: Magnetic flux density for phase B transformer (unit: -). 

0. C-Flux: Magnetic flux density for phase C transformer (unit: -). 

1. Mod-V: Modulator voltage (unit: kV). 

2. CB-V: Cap bank voltage (unit: V). 

Certain waveforms (e.g., A-Flux) are scaled by the controller to offer easier manipulation

hen viewed on the screen by the operator. These waveforms are provided without a unit. How-

ver, the reader can expect the natural unit without scaling for the magnetic flux waveforms is

esla. 

Following the training of the model, the test data below the “test ” subdirectory can be used

or fault prognosis/detection analysis. The authors have performed 21 independent experiments

escribed in the next section with the 12 waveforms recorded for each experiment. The wave-

orm data are saved into the NumPy binary data: test1.npy, test2.npy, …, test21.npy . These test

les are the core of this dataset, which help in testing the trained models in detecting the

aults ahead of time. The shape of the data in these 21 test files follows the same shape as
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Table 3 

Description of the dataset files/directories under the subdirectory “test”. 

File Type Description Shape 

test1.npy 3D NumPy array (binary) Array of recorded pulses of Test 1 

that includes 125 pulses. 

(125, 3753, 12) 

test2.npy 3D NumPy array (binary) Array of recorded pulses of Test 2 

that includes 102 pulses. 

(102, 3753, 12) 

test3.npy 3D NumPy array (binary) Array of recorded pulses of Test 3 

that includes 89 pulses. 

(89, 3753, 12) 

test4.npy 3D NumPy array (binary) Array of recorded pulses of Test 4 

that includes 68 pulses. 

(68, 3753, 12) 

test5.npy 3D NumPy array (binary) Array of recorded pulses of Test 5 

that includes 84 pulses. 

(84, 3753, 12) 

test6.npy 3D NumPy array (binary) Array of recorded pulses of Test 6 

that includes 92 pulses. 

(92, 3753, 12) 

test7.npy 3D NumPy array (binary) Array of recorded pulses of Test 7 

that includes 111 pulses. 

(111, 3753, 12) 

test8.npy 3D NumPy array (binary) Array of recorded pulses of Test 8 

that includes 133 pulses. 

(133, 3753, 12) 

test9.npy 3D NumPy array (binary) Array of recorded pulses of Test 9 

that includes 125 pulses. 

(125, 3753, 12) 

test10.npy 3D NumPy array (binary) Array of recorded pulses of Test 10 

that includes 117 pulses. 

(117, 3753, 12) 

test11.npy 3D NumPy array (binary) Array of recorded pulses of Test 11 

that includes 85 pulses. 

(85, 3753, 12) 

test12.npy 3D NumPy array (binary) Array of recorded pulses of Test 12 

that includes 100 pulses. 

(100, 3753, 12) 

test13.npy 3D NumPy array (binary) Array of recorded pulses of Test 13 

that includes 133 pulses. 

(133, 3753, 12) 

test14.npy 3D NumPy array (binary) Array of recorded pulses of Test 14 

that includes 110 pulses. 

(110, 3753, 12) 

test15.npy 3D NumPy array (binary) Array of recorded pulses of Test 15 

that includes 102 pulses. 

(102, 3753, 12) 

test16.npy 3D NumPy array (binary) Array of recorded pulses of Test 16 

that includes 84 pulses. 

(84, 3753, 12) 

test17.npy 3D NumPy array (binary) Array of recorded pulses of Test 17 

that includes 91 pulses. 

(91, 3753, 12) 

test18.npy 3D NumPy array (binary) Array of recorded pulses of Test 18 

that includes 101 pulses. 

(101, 3753, 12) 

test19.npy 3D NumPy array (binary) Array of recorded pulses of Test 19 

that includes 75 pulses. 

(75, 3753, 12) 

test20.npy 3D NumPy array (binary) Array of recorded pulses of Test 20 

that includes 108 pulses. 

(108, 3753, 12) 

test21.npy 3D NumPy array (binary) Array of recorded pulses of Test 21 

that includes 77 pulses. 

(77, 3753, 12) 

tests_labels.csv CSV file (readable) 2D array of pulse labels for all 21 

tests. “1” refers to normal pulse, 

“0” refers to faulty pulse 

(133 ∗∗ , 21) 

sample_test_data.xlsx ∗ Excel file (readable) An excel file containing 2D slices 

(readable data) to view from 

test1.npy, test7.npy, and test20.npy 

NA 

Plots ∗

• test1.png ∗

• test2.png ∗

• . 

• . 

• . 

• test21.png ∗

Folder Folder containing 21 png plots of 

the first and the last pulses of Test 

1 – Test 21 for reference 

NA 

∗ Supplementary file. 
∗∗ Number of rows is set to the test with maximum number of pulses (i.e., Test 13 with 133 pulses). Other tests have 

a smaller number of pulses, e.g. Test 1 has 125 rows/labels, Test 4 has 68 rows/labels. 
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n Eq. 1 with the only difference is the value of N pulses , as these tests feature different num-

er of collected pulses. The last primary file is tests_labels.csv, which contains the labels of the

ulses in the 21 tests, with “1 ′′ represents a normal pulse, and “0 ′′ represents a faulty pulse.

ypically, for all 21 tests, the first 26 pulses (about 3 min of data collection) are normal (1)

hile every pulse afterwards is faulty (0) since it involves a system tuning. Since the labels can

e presented in a 2D array and readable form, the CSV format is used instead of the binary

ormat. See Table 3 for further descriptions of the test data. 

The supplementary files include load_dataset.py, which we recommend the users to utilize

o manipulate and view the data. Given the 3D and binary nature of the data, we report an

xcerpt of the binary data in 2D slices for the reader to have an impression of the binary data.

or example, sample_train_data.xlsx reports the A-Flux waveform (out of 12 waveforms) with

753 time steps for 200 pulses (out of 50 0 0 pulses) in the normal binary file ( normal.npy ) and

he fault binary file ( fault.npy ). Similarly, sample_test_data.xlsx reports the A-Flux waveform

ith 3753 time steps for all pulses in test1.npy, test7.npy, and test20.npy, where the remaining

ests follow the same structure. Lastly, under the “test ” subdirectory, we provide 21 png plots

 test1.png, test2.png, …, test21.png ) of the first and the last pulse for all 12 waveforms and for

ll 21 tests, which help in the sanity check of the test data being used. Supplementary files are

arked with 

∗ in Table 1 , 2 , and 3 to differentiate them from the primary files. 

. Experimental Design, Materials and Methods 

.1. Experimental setup 

To facilitate reliable data collection and testing while avoiding the need to interpret the nor-

al operation of the SNS, we have configured the HVCM within the RFTF facility to enable con-

inuous data streaming. The RFTF can operate under conditions similar to those of the SNS, ren-

ering the current experimental setup akin to the SNS. While the HVCM is in operation, the

hree-phase power (A, B, C) at 13.8 kVAC is transformed and converted to ±1300 VDC through

ransformers and a six-pulse controlled rectifier circuit. The resultant output voltage is subse-

uently filtered by two capacitors, which store an adequate charge to generate 1.3 ms pulses.

his DC voltage is then supplied to three H-bridge circuits, employing IGBT (insulated-gate bipo-

ar transistor) technology, with a nominal switching frequency of 20 kHz. See Fig. 1 (left) for an

llustration of the H-bridge schematic. 
ig. 1. H-Bridge circuit of the HVCM in the RFTF (left), high voltage and housing tank (right) connected to a klystron 

red cylinder) [4] . 
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Fig. 2. Screenshot of the RFTF controller screen showing the tuning/setting knobs and live waveform diagrams. 
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The high-power pulses undergo a voltage amplification process through pulse transformers.

Within this setup, the leakage inductance of the pulse transformers, coupled with the resonant

capacitors in the three phases (C A , C B , C C ), creates a resonant circuit characterized by a gain

that varies with frequency. These high voltage pulses emerging from the resonant capacitors

are merged and rectified by diodes, resulting in output pulses featuring a ripple frequency of

120 kHz. Subsequently, these pulses undergo filtration and are then directed to the cathode of

the klystrons, effectively closing the loop of the HVCM circuit. 

Within the HVCM, there exists a protective enclosure and a high voltage tank, illustrated

in Fig. 1 (right), while the red cylindrical component represents the load associated with the

klystron. To measure the magnetic flux within the transformer cores in the three phases (A-

Flux, B-Flux, C-Flux), a Rogowski coil is employed with an accuracy of ±1 %. Additionally, the

modulator voltage (Mod-V) and current (Mod-I) are precisely gauged using a North Star High

Voltage pulse compensated divider and a Stangenes current transformer, respectively. 

To govern the timing of IGBT gating and maintain the signal values within safe limits, the

HVCM in the RFTF utilizes a PXI-based controller. This controller also serves the purpose of

setting warning and trip thresholds for various signals, digitizing and storing waveforms, and

establishing communication via Ethernet with the control system. This controller stands as the

primary data acquisition system employed in this research study. Fig. 2 showcases a screenshot

from the controller’s computer, displaying the waveform plots for the three-phase flux (A-Flux,

B-Flux, C-Flux on the right) and the adjustment knobs employed to fine-tune the modulator.

Furthermore, Fig. 2 (on the left) provides a visual representation of the modulator voltage (Mod-

). In Section 2.2, we will delve into the details of how the "start pulse" and "flux compensation"

settings are manipulated in this work to induce fault-like effects within the recorded waveforms.

Following the data collection from normal and abnormal operating conditions, we plot the

pulses/samples for the A-Flux waveform in Fig. 3 . These data are reported in the “train ” subdi-
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Fig. 3. Plot of the training data: normal A-flux pulses (left) and faulty A-flux (right). 
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ectory as indicated by Table 2 . Given all settings of the RFTF are fixed during normal operation,

t is not surprising to see all waveforms in Fig. 3 (left) exhibiting identical shape, which is not

he case for the faulty waveforms in Fig. 3 (right) with different trends and shapes. 

.2. Test collection 

The authors have designed 21 experiments with anomalies being induced into the system

y systematically changing the settings of the RFTF HVCM, while ensuring the system does not

ompletely fail. The tests mimic the real faults the operators have seen in the past. Basically,

ach test involves the following steps: 

1. The controller and the data acquisition system are set to save a waveform signal every 7 s. 

2. The team waits about 3 min at the beginning of each test to collect normal data without any

changes in the settings. 

3. The team then gradually induces changes in the RFTF settings and waits about a minute

to collect waveform data under that change. The settings are changed by adjusting the 9

knobs in Fig. 2 to safe values determined by the team. The knobs belong to the categories of

“start pulse settings” and “flux compensation settings”. Table 4 provides a description of the

changes involved in each test. 

4. The test finishes when the max/min setting value is reached or when the system is in a

dangerous condition to fail. By looking in Table 4 , this constraint justifies why the tests have

different time lengths. 

In general, Table 4 shows that the Tests 1–12 involve a single setting change (e.g., increas-

ng A + start pulse width, decreasing B-Flux compensation), while Tests 13–21 involve multiple

ettings being changed simultaneously, which can impose additional risks on the machine. What

akes these tests unique is that they include different combinations of the settings in the HVCM

hat mimic a wide range of fault conditions that HVCM could see in real operation. The quality

f any developed model (machine learning, statistical) is assessed by its ability to predict the first

ulse that carries the fault precursors after the 3 min normal run. 

After the test data collection, we plot sample waveforms from Test 1 and Test 7 in Fig. 4

nd Fig. 5 , respectively. In each test plot, all 12 waveforms described in Section 1 (A + IGBT-I,

-Flux, Mod-V, etc.) are plotted. In each subplot, the first pulse of the test (before any setting

hange) and the last pulse (after all settings are changed to their planned values) are shown.

his helps the reader to visualize the relative changes in the waveforms from the beginning to

he end of the test. These two tests are selected here to reveal how these tests can be tricky.

or example, increasing the A + start pulse width by 5 % every minute in Fig. 4 can make a

oticeable variation in most waveforms, which may make it easier for the trained models to
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Table 4 

Description of the fault prognosis test scenarios [4] . 

Test num Description ∗ Total time (s) 

1 A + start pulse width increases by 5 %/min 868 

2 B + start pulse width increases by 5 %/min 707 

3 C + 

∗ start pulse width increases by 5 %/min 616 

4 A + start pulse width decreases by 5 %/min 469 

5 B + start pulse width decreases by 5 %/min 581 

6 C + 

∗ start pulse width decreases by 5 %/min 637 

7 A-Flux compensation increases by 25 ns/min 770 

8 B-Flux compensation increases by 25 ns/min 924 

9 C-Flux compensation increases by 25 ns/min 868 

10 A-Flux compensation decreases by 25 ns/min 812 

11 B-Flux compensation decreases by 25 ns/min 588 

12 C-Flux compensation decreases by 25 ns/min 693 

13 A + start pulse width is set to 20 %, A-Flux compensation increases by 

25 ns/min 

924 

14 A- ∗/B- ∗/C- start pulse widths all decrease by 5 %/min 763 

15 B + start pulse width is set to 100 %, B-Flux compensation decreases by 

25 ns/min 

707 

16 A-Flux compensation increases, B-Flux decreases, C-Flux increases by 

25 ns/min 

581 

17 A-Flux compensation decreases, B-Flux increases, C-Flux decreases by 

25 ns/min 

630 

18 C + 

∗ start pulse width is set to 90 %, C-Flux compensation increases by 

25 ns/min 

700 

19 B- ∗ start pulse width is set to 50 %, B + start pulse width increases by 5 %/min 518 

20 A + /A- ∗ start pulse widths are set to 20 %, A-Flux compensation decreases by 

25 ns/min 

749 

21 A- ∗/B- ∗/C- start pulse widths are set to 40 %, A + /B + /C + 

∗ start pulse widths 

increase by 5 %/min 

532 

∗ All tests start with a 3 min of normal run before start inducing fault changes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

predict an upcoming fault. However, Fig. 5 shows that increasing A-Flux compensation by 25 ns

every minute only makes a significant variation in the A-Flux waveform, while the other 11

waveforms remain almost identical. This shows that a possible flux fault in the A phase might

be missed by the trained models if they rely on the IGBT current signals alone for example. This

makes it a challenging task for the analyst to develop a robust model that can handle all 21 tests

despite their different nature. The plots of the remaining tests are not reported here for brevity,

but they can be found under the “test ” subdirectory as indicated in Table 3 . 

4.3. Data usage 

Although of the similarity of the general goal of improving HVCM reliability between this

dataset and our previous HVCM dataset [5] , it is important to clarify major differences between

the two datasets: 

• This dataset is collected from a test facility well-established to collect large amounts of data

(near real-time). The data collected from the RFTF was done in approximately a week of

work, without upgrades/changes in the RFTF components, operation settings, or maintenance

due to catastrophic failures. Therefore, the uniqueness of this dataset is that it is well-suited

for developing models for fault prognosis using the test suite we developed in Table 4 . We

demonstrated such applications in the main journal article associated with this data article

[ 4 ]. 

• Our previous dataset [5] had normal/faulty waveforms from the SNS 15 main HVCMs, which

do not have an efficient data acquisition system to handle the streamed data. Therefore, the

previous dataset was collected over the course of 2 years with a very sparse time frame
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Fig. 4. Waveform results for Test 1. The first pulse in the test (which is before inducing any setting change) and the last 

pulse (which is after inducing all setting changes) are shown [4] . 
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(recorded waveforms can be separated by hours and even days), where the systems may

have experienced changes in its components, operation settings, and routine maintenance.

The uniqueness of that dataset [5] is that the controller records large number of faults and

the fault reason for different systems, which makes it useful for fault classification in multi-

system environments but cannot be used for real-time prediction/prognosis as the waveforms

before the fault event were not recorded. 

Accordingly, it is worth noticing that the current dataset, which is based on a week of data

ollection in the RFTF, has a size of 4 GB, while the previous dataset [5] has only 2 GB of data,

ven though it was collected over 2 years from 15 different HVCM machines in the SNS. These

wo datasets can complement each other to predict the failure ahead of time and predict the

ault reason. Also, upgrading the data acquisition system to allow real time streaming is one of

he by-products of this work. 
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Fig. 5. Waveform results for Test 7. The first pulse in the test (which is before inducing any setting change) and the last 

pulse (which is after inducing all setting changes) are shown. 
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