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Background. Accurate tracking of Clostridium difficile transmission within healthcare settings is key to its containment but is
hindered by the lack of discriminatory power of standard genotyping methods. We describe a whole-genome phylogenetic-based
method to track the transmission of individual clones in infected hospital patients from the epidemic C. difficile 027/ST1 lineage,
and to distinguish between the 2 causes of recurrent disease, relapse (same strain), or reinfection (different strain).

Methods. We monitored patients with C. difficile infection in a UK hospital over a 2-year period. We performed whole-genome
sequencing and phylogenetic analysis of 108 strains isolated from symptomatic patients. High-resolution phylogeny was integrated
with in-hospital transfers and contact data to create an infection network linking individual patients and specific hospital wards.

Results. Epidemic C. difficile 027/ST1 caused the majority of infections during our sampling period. Integration of whole-
genome single nucleotide polymorphism (SNP) phylogenetic analysis, which accurately discriminated between 27 distinct SNP
genotypes, with patient movement and contact data identified 32 plausible transmission events, including ward-based contamination
(66%) or direct donor–recipient contact (34%). Highly contagious donors were identified who contributed to the persistence of clones
within distinct hospital wards and the spread of clones between wards, especially in areas of intense turnover. Recurrent cases were iden-
tified between 4 and 26 weeks, highlighting the limitation of the standard <8-week cutoff used for patient diagnosis and management.

Conclusions. Genome-based infection tracking to monitor the persistence and spread of C. difficilewithin healthcare facilities could
inform infection control and patient management.
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Clostridium difficile is the most common infectious cause of an-
tibiotic-associated diarrhea in healthcare facilities worldwide [1,
2]. Antibiotic treatment, advanced age, and exposure to a
healthcare facility are the major risk factors for C. difficile col-
onization leading to asymptomatic carriage, recurrent diarrhea,
pseudomembranous colitis, or death [3, 4].

Unlike other common healthcare-associated pathogens,
C. difficile produces highly resistant and transmissible spores
that confound standard infection control measures [5]. Both
asymptomatic carriers and symptomatic patients can excrete
spores leading to C. difficile spread by direct (person-to-person)
or indirect (environmental) modes of transmission. Con-
ventional genotypic methods used for studying C. difficile trans-
mission dynamics and epidemiology include polymerase chain

reaction (PCR) ribotyping [6], restriction endonuclease analysis
(REA) [7], pulsed-field gel electrophoresis [8], toxinotyping [9],
multilocus variable-number tandem-repeat analysis [10], and
multilocus sequence typing (MLST) [11].However, these meth-
ods are not sufficient to discriminate between genetically mono-
morphic lineages, such as those from the epidemic C. difficile
027/ST1 clade [12].

High-throughput, whole-genome sequencing (WGS) of bac-
terial pathogens has been successful for investigating C. difficile
at the global, national, and hospital levels [12–15]. In this study,
whole-genome phylogenetic analysis was combined with de-
tailed epidemiological data to monitor C. difficile 027/ST1 per-
sistence and transmission within a large university hospital site
in Liverpool, United Kingdom, over a 2-year period, revealing
novel insight into the dynamics of transmission and recurrent
infection.

METHODS

Study Population
Patients with Clostridium difficile infection (CDI) were recruit-
ed from the Royal Liverpool and Broadgreen University Hospi-
tals National Health Service (NHS) Trust, which manages 870
acute beds, between July 2008 and May 2010. Inclusion criteria
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were adult patients (aged ≥18 years) who developed healthcare-
associated diarrhea (ie, passed ≥3 liquid stools in the 24 hours
before assessment), had a positive C. difficile toxin test (TOX A/
B II enzyme-linked immunosorbent assay; Techlab, Blacksburg,
Virginia) and a confirmed diagnosis by independent clinicians
using national guidelines [16]. A CDI episode was considered
nosocomial (healthcare acquired) if the diarrhea arose ≥3
days from the day of hospital admission. Written informed con-
sent was obtained from the relevant patients. The study was ap-
proved by the Liverpool Research Ethics Committee (approval
reference number 08/H1005/32).

CDI Screening and Selection of Bacterial Isolates
Only PCR ribotype 027 confirmed isolates were included in this
study. Patient-level information collected included data on de-
mographics, patient ward location and movements through the
hospital, treatments given, and CDI disease outcomes. The full
details of these isolates (including accession numbers) are given
in Supplementary Table 1.

DNA Preparation, Sequencing, Sequence Read Mapping, and SNP
Detection
DNA was prepared and sequenced on the Illumina GAIIx plat-
form according to protocols previously described [17]. Paired-
end multiplex libraries were created with a 200-bp insertion
size. The read length was 76 bp with a minimum coverage of
44-fold. SNPs were identified according to methods previously
described [12]using the reference genome of C. difficile 027/ST1
strain R20291 [18] (available at https://www.sanger.ac.uk/
resources/downloads/bacteria/peptoclostridium-difficile.html).

Phylogenetic Analysis
Phylogenetic relationships were inferred with the neighbor-
joining distance method in SeaView using Jukes–Cantor model
[19]. Maximum likelihood analysis was performed using Fast-
Tree (–gamma –gtr) [20]. All trees were generated using the
Analysis of Phylogenetics and Evolution (APE) package [21].

Transmission Analysis of C. difficile 027/ST1
Transmissions of C. difficile 027/ST1 were defined by incorpo-
rating phylogenetic information obtained by whole-genome se-
quencing into a hospital ward–based transmission model [22].
Initially, we identified the potential donor isolate for each test
isolate based on its relative position in the phylogenetic tree.
For each test isolate, we assumed the donor isolate was of an
identical genotype (identical node in the phylogeny) as the
test (recipient) isolate, or of an ancestral genotype (ancestral
node in the phylogeny) to the test isolate, but was differentiated
from the test isolate by ≤2 SNPs [12, 23]. Afterward, based on
the hospital ward–based transmission model, epidemiological
events were inferred when these pairs shared time on the
same ward, either (1) after the donor’s sample, or before the re-
cipient’s sample, or (2) before both pair’s samples were taken.
For every successful transmission, the “minimum infectious

period” was the required criteria and was defined as the time be-
tween the first sample from the potential donor and ward contact
with the recipient, whereas the time between this ward contact
and the recipient’s first sample was termed the “incubation peri-
od” (Supplementary Figure 3). Maximum infectious periods of 8
weeks, incubation periods of 12 weeks, and ward contamination
time (time from donor discharge to recipient admission) of 26
weeks were allowed. Four types of ward-based contact (2 “direc-
tional,” 1 “nondirectional,” and 1 “ward contamination”) were as-
sessed to identify potential transmission links [22].

Statistical Analysis
Analysis of epidemiological and medicinal data associated with
potential donors was performed using GraphPad Prism 6 soft-
ware by unpaired 2-tailed t test. P values <.05 were considered
significant.

RESULTS

CDI During the Sampling Period
More than 10 580 hospital and community samples from 7048
patients were screened and 801 were confirmed as CDI, a pos-
itivity rate of 7.6%. Of these, 616 samples originated from hos-
pitalized patients and consisted of 453 nosocomial (healthcare
acquired) and 163 community-associated CDI cases (Fig-
ure 1A). From the retrievable samples cultured (463/616), 446
isolates were obtained (96% recovery rate) and were subjected to
PCR ribotyping (Figure 1A).

In response to enhanced infection control measures that were
gradually introduced prior to and throughout the sampling period,
monthly CDI figures gradually dropped from 38 in July 2008 (an-
nual total figure of 600, of which 353 were nosocomial) to 16 in
May 2010 (annual total of 190, of which 105 were nosocomial)
(Figure 1A). The control measures (Supplementary Table 2) in-
cluded more stringent antibiotic prescription policy, improved dis-
infection of wards, opening of a dedicated isolation ward, and
more effective testing and management of patients. This was also
consistent with UK-wide data during a comparable period [22].

During the entire sampling period, C. difficile 027/ST1 was
the most prevalent PCR ribotype, ranging from 50% in 2008
to 31% in 2010 (Figure 1B). Of theseC. difficile 027/ST1 samples,
108 (34%) were sampled and sequenced from 87 patients with
confirmed C. difficile infection (Supplementary Figure 1), includ-
ing multiple samples from 14 patients with recurrent infection.

Genome-Based Infection Tracking of C. difficile
To distinguish between strains from the genetically monomor-
phic 027/ST1 lineage [12], we performed whole-genome SNP
discovery of the C. difficile 027/ST1 sample collection and con-
structed a high-resolution phylogenetic tree based on SNPs
from the 3.8-Mb nonrepetitive core genome (95% of the ge-
nome). The SNP-based phylogeny subdivided the 108 sequenced
isolates from the single MLST genotype into 27 distinct SNP ge-
notypes (grouping of strains based on identical SNP patterns)
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that were differentiated by ≤70 SNPs, vastly improving the dis-
criminatory power over MLST genotyping (Supplementary
Figure 2).

To explore the dynamics of C. difficile 027/ST1 persistence
and spread among patients, we adopted an epidemiological
model [22] that identifies the most plausible C. difficile trans-
mission events based on shared time and wards of patients
and C. difficile MLST genotype. This model distinguishes be-
tween types of transmission events (Supplementary Figure 3)
including directional (transmission occurs on a shared ward
after donor’s and before recipient’s positive samples), nondirec-
tional (transmission on a shared ward preceding collection of
positive samples from both the donor and recipient), and ward
(transmission on a shared ward after donor’s discharge—no
temporal overlap between donor and recipient) contamination.
In addition, we increased the resolution of the model by incor-
porating all recorded patient movements between wards to track
the spread of C. difficile 027 within the hospital.

By combining this high-resolution SNP-based phylogeny
with our spatial–temporal model, we were able to identify 32
transmission events, including 21 ward-based transmission
events and 11 directional transmission events, both within
and between specific wards. We identified a transmission net-
work that links 11 wards around the hospital, including the
acute medicine assessment unit (AMAU) at the ground floor
and then specialty wards linked with admissions associated with
healthcare of elderly persons, gastrointestinal, renal/dialysis,
hematology, and surgical procedures. These could be geograph-
ically mapped to the following areas: 2P–2Q (second floor),
5M–5N and 5P–5Q (fifth floor), 6M–6N (sixth floor), 7Q (sev-
enth floor), and 8P–8Q (eighth floor), as well as to the infectious

diseases/isolation wards on the third floor that were utilized as
containment of acute confirmed cases (Figure 2A). Using the
transmission network (Figure 2A), we identified that the major-
ity of transmission events occurred within specific wards (25/32
[78%]), most commonly within the AMAU (9 transmission
events). In contrast, we did not observe any transmission events
that occurred within the infectious diseases/isolation wards,
where stringent infection control practices were in place.

We found that 22% of the transmission events spread C. dif-
ficile 027/ST1 between wards. The majority of transmission
events that occurred between wards originated from the AMAU
and circulated to specialtywards 5M–5N(3 transmission events),
2P–2Q (1 transmission event), and the infectious diseases/iso-
lation wards on the third floor (1 transmission event). We did
not observe any transmission events between the wards 5P–5Q,
6N, 7Q, or 8Q (Figure 2A). This method allowed us to establish
a highly discriminatory method (Supplementary Figure 4) to
track the spread of individual C. difficile 027 clones within a
hospital setting.

Identification of Highly Contagious Donors
The ward-based network analysis (Figure 2A) highlighted high
levels of transmission within the AMAU, and so we next inves-
tigated the spread of C. difficile 027/ST1 within this ward. We
constructed a detailed patient-to-patient transmission network
of 11 infected patients (Figure 2B) that are linked by 9 trans-
mission events: 8 ward-based and 1 directional. This patient-
to-patient transmission network identified donors who had
transmitted to multiple recipients, suggesting the presence of
highly contagious individuals. Among the 4 donors in the
AMAU, 1 donor infected a single recipient, another donor

Figure 1. Trends of Clostridium difficile incidence in the Royal Liverpool and Broadgreen University Hospitals National Health Service Trust complex. A, Incidences of C.
difficile cases during the period from 2004 to 2013. Sampling period was between July 2008 and May 2010. The right y-axis is absolute number of C. difficile infection (CDI)
cases and the left y-axis is percentage of positive C. difficile toxin enzyme immunoassays (EIAs). Different CDI cases are shown in straight blue (nosocomial) and straight purple
(total) lines. Trajectory of decline in nosocomial cases is shown by blue broken line. Percentage of positive C. difficile toxin EIA is shown by gold broken line. B, Percentage of
CDI cases based on most frequent C. difficile polymerase chain reaction ribotypes is shown by red (027/ST1), black (106), dark gray (001), gray (002), white (014/020), dark blue
(015), sky blue (078), dark green (005), light green (023), and black dotted (other ribotypes) boxes during sampling period.
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infected 2 recipients, and 2 donors each infected 3 recipients.
We could not identify triple donors in any other wards, but
we did identify 4 double donors in the 8P, 5P–5Q, 6M, and
5M–5N wards. A total of 15 single donors were identified in
the 6N, 2P–2Q, 5P–5Q, 7Q, 5M–5N, 8Q, and infectious diseas-
es/isolation wards (Figure 2C). Thus, we identified that the
AMAU contained the most contagious individuals.

Next, we were interested in identifying any features associated
with donor transmission frequency. Based on the patient move-
ment and contact data, we calculated both the incubation period
and infectious period for each transmission event (Supplemen-
tary Figure 3). We found that the donor incubation period was
not associated (P > .05) with the frequency of transmission
(Supplementary Figure 5), but the donor infectious period
was significantly shorter for triple donors compared to that of
single donors (P < .05; Supplementary Figure 5A).

We also investigated if higher-frequency transmission can be
linked to patient treatments or in-hospital transfers. We did not
find any significant association between this and the length of
stay in hospital nor the number of patient movements between
wards (Supplementary Figure 5). Furthermore, there was no
association (P > .05) with patient treatments including the du-
ration or number of antibiotic treatment, and exposure to pro-
ton pump inhibitors (Supplementary Figure 6). These results
suggest that the only observable feature associated with in-
creased transmission from donors was a short infectious period,
implying a brief but highly contagious state.

Identification of Source of Recurrent CDI
Thecurrentlyusedclinical definitionofCDIdefines subsequent in-
fectionas a recurrent infection if the secondepisodeoccurswithin8
weeks of the initial episode, ora new infection if the second episode

Figure 2. Hospital ward–level transmission analysis based on single-nucleotide polymorphism (SNP) genotypes of 027/ST1 isolates. A, Distribution of ward-based trans-
missions in different wards/units. Node sizes are proportional to the number of transmission events. Different types of ward-based contacts are shown in broken lines (direc-
tional) and straight lines (ward contamination). Node labels indicate floor number and specialty ward. Acute medical assessment unit (AMAU) is located at ground floor. Edge
labels indicate number of events. B, Transmission network between sampled patients within the AMAU. Different types of donors are shown by red (triple), gray (double), black
(single), and khaki (terminal). Line code for different types of ward-based contacts is the same as for (A). C, Bar plot showing the distribution of different type of donors within
specific wards (floor number and specialty ward). Color-coding for different types of donors is the same as for (B).
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occurs after 8 weeks [24]. Recurrent CDI may result from either
relapse with the same strain or reinfection with a different strain
[3].This distinction between relapse and reinfection is not possible
in clinical practice, but is an important distinction to make, as
identifying the source of the recurrent infection could guide
patient management policies. Our sampling included isolates
from 14 patients sampled at each disease episode (Figure 3A).

We sequenced isolates from these 14multiepisode patients (P1–
P14) (Figure 3A) and performed whole-genome SNP discovery of
29 sequenced isolates to construct a high-resolution maximum
likelihood phylogeny. The maximum likelihood tree (Figure 3B)
revealed that the paired episodes in 12 of the 14 patients shared
the exact SNP genotype (identical genome). However, we observed
that paired isolates from patient 2 (P02 in Figure 3) differed by
1 SNP, and paired isolates from patient 8 (P08 in Figure 3) differed
by 4 SNPs. This analysis indicates that the main source of

recurrentC. difficile 027 diseasewas the original infecting strain; we
are thus confident that 12 of the patients had relapsing infection.

Interestingly, in contrast to the 6 recurrent infections and 8
new infections in our sampling based on the existing clinical
definition of recurrent CDI (Figure 3A), we noted that the
time between the initial episode and the second episode was
well beyond the 8-week clinical criteria. On average, relapsing
disease occurred around 12 weeks after the initial episode, with
a range of 4–26 weeks (Figure 3C). These results suggest that the
current clinical definition of recurrent CDI may misclassify the
majority of recurrent cases in surveillance data.

DISCUSSION

Here we present a novel application of whole-genome phyloge-
netics to track the movements of individual C. difficile 027/ST1
clones persisting within and transmitting between patients that

Figure 3. Classification of recurrent disease as relapse or reinfection based on single-nucleotide polymorphism (SNP) genotypes. A, Temporal graph of 29 isolates (circle) of 027/
ST1 isolated from 14 patients (P1–P14). The isolates are colored on the basis of their SNP genotype group as in Supplementary Figure 2. B, Maximum likelihood tree based on SNP
differences across the core genome showing the position of 29 recurrent isolates of 027/ST1 isolated from 14 patients (P01–P14). Strain nodes are colored on the basis of their SNP
genotype group as in Supplementary Figure 2. C, Recurrent episodes isolated from 14 patients (P01–P14) with a range of 4 and 26 weeks. Abbreviation: ID, identification.
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cannot be accomplished with standard genotyping methods
[22] or stringent SNP cutoffs based on whole-genome sequenc-
ing [23]. The power of our approach is highlighted by the fact
that we could discriminate 108 strains from the C. difficile 027/
ST1 genotype into 27 distinct SNP genotypes and delineate
their precise evolutionary relationships. Our method to investi-
gate transmissions suggests that the majority of C. difficile 027/
ST1 strains at our hospital were circulated by ward-based con-
tamination (60%). In contrast, previous studies of transmissions
[22, 23] using different approaches suggested low rates of C. dif-
ficile transmission by ward-based contamination in different
hospitals. We believe each hospital maintains different rates
and types of C. difficile transmissions linked to infection control
practices and types of circulating C. difficile variants, and there-
fore one general view of C. difficile epidemiology and infection
dynamics cannot encompass every hospital.

Whole-genome sequencing has provided a unique benefit to
infection control management by identifying “super-spreaders”
who can infect a disproportionately high number of susceptible
individuals [25–27].We identified highly contagious donors of C.
difficile who were potential super-spreaders within the AMAU
responsible for spreading infection throughout the hospital.
The identification of conditions that facilitate an increase in fre-
quency of transmission is a priority during endemic and epidem-
ic situations to control or eliminate infections. The only notable
feature of theses highly contagious donors was the relatively short
infectious period, suggesting a brief but highly contagious state.
The AMAU is characterized by a high patient turnover rate, high
patient contact rates, and difficulties in carrying out disinfection
at the same stringency as the other wards. Thus, infection control
measures should be focused on these areas.

Another application of SNP genotyping includes the study of
persistent infection in individual patients. In particular, it is not
possible to distinguish between relapse (same strain) and rein-
fection (different strain) when the same ribotype is involved
using standard genotyping methods. This is an important dis-
tinction to make as a relapse would signify partial cure or in-
complete eradication of the organism, whereas reinfection
would signify an individual with a much higher propensity of
developing CDI. Therefore, establishing the precise form of re-
current infection could effectively guide patient management
and treatment policies. Our results based on SNP phylogeny in-
dicate that the definition of recurrent CDI may need to be ex-
tended beyond the 8-week clinical criteria, as we have found
that high rates of relapse (same strain) frequently occur beyond
the 8-week clinical criteria, and highlight that C. difficile 027/
ST1 recurrence can occur as long as 26 weeks after the initial
infection. Our claims are further supported by a growing
body of evidence that eradication of C. difficile with treatment
occurs only in a minority of treated patients [28, 29] and that
stool cultures post-CDI may remain positive for >26 weeks in
some patients [29]. Moreover, detailed study of recurrent

cases, including a larger sample size and multiple infectious
periods, would aid in identifying the factors associated with re-
current disease and demonstrate the efficacy of recurrence clas-
sification based on SNP genotypes.

Our study has some limitations. First, our study data have a
risk of selection bias as we were not able to include a proportion
of C. difficile 027/ST1 isolates due to logistic and technical lim-
itations associated with the lack of clinical, epidemiological, and
movement data for certain cases, as well as the fact that genomes
of certain isolates did not pass quality control measures due to
the insufficient levels of genome coverage. Second, although we
identified robust transmission networks with only one-third of
the C. difficile 027/ST1 strains sequenced, our infectious net-
work analysis may have missed transmission events that oc-
curred between symptomatic patients or asymptomatic carriers.
Even so, the analysis was able to monitor C. difficile spread at an
unprecedented resolution that allowed us to identify highly con-
tagious individuals or super-spreaders. We have not explored
any clinical features of highly contagious individuals, and this
warrants further investigation. Second, our recurrent analysis
may have misclassified the episodes of patients 2 and 8, as
these patients could have acquired isolates of the same geno-
types (point mutation) from exogenous sources after the initial
infection. However, our findings emphasize the importance of
accurate identification of recurrent cases that would facilitate
patient management to detect précised rates of disease of the
hospital, which would impact on economic rates of the hospital.
Recently, strict single-nucleotide variant cutoff criterion [30]
was suggested to classify recurrent cases, but this study did
not infer the evolutionary relationship between strains, which we
show is essential to discriminate 2 causes of recurrent disease.

In conclusion, we monitored the persistence and spread of
the epidemic C. difficile 027/ST1 lineage between symptomatic
hospital patients who could be the major source of CDI trans-
missions [28, 31]. Phylogenetic SNP genotyping was able to de-
tect precise patient-to-patient transmissions and recurrent
events of CDI. We envisage that genome databases with relevant
metadata will serve as a common, open-access resource that can
be exploited to identify and track C. difficile within their local
region through whole-genome sequencing or other comparative
measures such as SNP typing.

Supplementary Data
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Consisting of data provided by the author to benefit the reader, the posted
materials are not copyedited and are the sole responsibility of the author, so
questions or comments should be addressed to the author.
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